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Abstract—The escalating sophistication and frequency 

of cyber-attacks have necessitated the development of 

advanced detection and prevention mechanisms. 

Traditional security measures prove inadequate against 

modern threats such as zero-day exploits, advanced 

persistent threats (APTs), and polymorphic malware. 

This comprehensive survey examines the application of 

Artificial Intelligence (AI) techniques—specifically 

Machine Learning (ML), Deep Learning (DL), and 

metaheuristic algorithms—in detecting diverse cyber 

threats across multiple platforms including PCs, mobile 

devices, IoT systems, and cloud environments. Through 

systematic analysis of over sixty recent studies (2020-

2024), we evaluate the effectiveness of AI-driven 

detection methods against malware, network intrusions, 

phishing attacks, ransomware, botnets, and insider 

threats. Our findings reveal that DL models achieve 

detection accuracies exceeding 99% on benchmark 

datasets, while metaheuristic algorithms significantly 

optimize feature selection and model performance. We 

propose a unified framework for assessing AI-based 

cybersecurity solutions and identify critical research 

gaps including cross-platform detection, adversarial 

robustness, and real-time deployment challenges. The 

study demonstrates that hybrid approaches combining 

multiple AI techniques offer superior performance 

compared to single-method solutions, with accuracies 

reaching 99.99% on datasets like CIC-IDS2018 and 

NSL-KDD. Our analysis emphasizes the imperative for 

continuous model evolution and adaptive learning 

systems to counter increasingly sophisticated attack 

vectors in modern cybersecurity landscapes. 

 

Index Terms—Artificial Intelligence, Machine Learning, 

Deep Learning, Cybersecurity, Intrusion Detection, 

Malware Detection, Metaheuristic Algorithms, Threat 

Intelligence. 

 

 

I. INTRODUCTION 

 

A. Background and Motivation 

The digital transformation of global infrastructure has 

precipitated an unprecedented expansion in cyber 

vulnerabilities. According to the 2024 Cisco 

Cybersecurity Readiness Index, 76% of firms 

experience malware attacks, while Astra's Malware 

Statistics 2024 reports that 560,000 new malware 

pieces are detected daily, adding to over 1 billion 

existing programs. The financial implications are 

staggering—Cybersecurity Ventures predicts that 

victims could pay approximately USD 265 billion 

annually by 2031, with costs increasing by 30% each 

year. 

Traditional security mechanisms, including signature-

based detection and static firewall rules, have 

demonstrated critical limitations against modern 

threats. Malware targeting Linux systems has 

increased by 35%, with emergence of new malware 

families impacting Linux-based platforms. 

Additionally, 2023 marked a pivotal moment for IoT 

security threats, with a 400% increase in IoT malware 

attacks compared to the previous year. These 

statistics underscore the urgent need for intelligent, 

adaptive security solutions capable of identifying and 

mitigating evolving threats in real-time. 

 

B. Artificial Intelligence in Cybersecurity 

Artificial Intelligence has emerged as a 

transformative force in cybersecurity, offering 

capabilities that far exceed traditional methods. AI 

systems excel in real-time analysis and decision-

making, leveraging vast data volumes to solve 

complex problems across various domains, making 
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them particularly critical in cybersecurity where the 

sheer volume of data makes manual analysis 

impractical. 

 

The integration of AI in cybersecurity provides 

several strategic advantages: 

1. Pattern Recognition: AI systems can identify 

complex, non-linear correlations within data, 

enabling recognition of previously unknown 

threats. 

2. Scalability: Automated analysis of massive 

datasets at speeds impossible for human analysts. 

3. Adaptability: Continuous learning capabilities 

allow systems to evolve with emerging threat 

landscapes. 

4. Proactive Defense: Predictive analytics can 

identify vulnerabilities before exploitation. 

5. Reduced False Positives: Advanced algorithms 

minimize false alarms compared to traditional 

methods  

 

C. Research Scope and Contributions 

This survey distinguishes itself from existing 

literature through several key contributions: 

1. Comprehensive Coverage: Analysis of ML, DL, 

and metaheuristic techniques across diverse 

attack types (malware, intrusions, phishing, 

ransomware, botnets, insider threats, spam). 

2. Multi-Platform Analysis: Examination of 

detection methods across Windows, Linux, 

macOS, Android, iOS, IoT, and cloud 

environments. 

3. Recent Dataset Compilation: Systematic 

categorization of benchmark and modern 

datasets (2020-2024) with detailed 

characteristics. 

4. Performance Metrics Analysis: Quantitative 

comparison of detection accuracies, 

computational requirements, and deployment 

constraints. 

5. Critical Gap Identification: Comprehensive 

discussion of limitations, challenges, and future 

research directions. 

6. Unified Framework: Proposal of standardized 

assessment criteria for AI-based cybersecurity 

solutions. 

 

D. Paper Organization 

The remainder of this paper is structured as follows: 

Section II presents the research methodology and 

systematic literature review process. Section III 

provides comprehensive background on cyber 

threats, AI techniques, and detection methodologies. 

Section IV analyzes ML-based detection approaches. 

Section V examines DL architectures and their 

applications. Section VI discusses metaheuristic 

optimization algorithms. Section VII presents 

comparative analysis and performance evaluation. 

Section VIII identifies challenges and future research 

directions. Section IX concludes the survey with key 

findings and recommendations. 

 

II. RESEARCH METHODOLOGY 

 

A. Systematic Literature Review Protocol 

We employed a rigorous systematic literature review 

(SLR) methodology to ensure comprehensive 

coverage and unbiased analysis of AI-driven 

cybersecurity solutions. The review process followed 

established guidelines with four distinct phases: 

 

Phase 1: Database Selection and Search Strategy 

We evaluated three major academic databases: 

Scopus, Google Scholar, and Web of Science. Scopus 

was selected as the primary source due to its selective 

coverage of peer-reviewed content from major 

publishers (ACM, Springer, IEEE) and 

comprehensive indexing. 

Search string formulation: 

("Cyber-attacks" OR "Cybersecurity" OR "Cyber 

threats") AND 

("Detection" OR "Prevention") AND 

("Machine Learning" OR "Deep Learning" OR 

"Metaheuristic Algorithms" OR 

"Artificial Intelligence") AND 

("Malware" OR "Intrusion" OR "Phishing" OR 

"Ransomware") 

 

Phase 2: Initial Screening Results 

• Scopus: 9,084 articles (2020-2024) 

• Google Scholar: 21,100 articles (2020-2024) 

• Web of Science: 419 articles (2020-2024) 

Phase 3: Inclusion and Exclusion Criteria 

Inclusion Criteria: 

• Peer-reviewed journal articles and conference 

proceedings 
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• Published between 2020-2024 

• Focus on AI/ML/DL techniques for cyber-attack 

detection 

• Empirical evaluation with performance metrics 

• Full-text availability 

• Exclusion Criteria: 

• Non-peer-reviewed content 

• Purely theoretical work without experimental 

validation 

• Focus solely on traditional (non-AI) methods 

• Duplicate publications 

• Papers lacking clear methodology or results 

Phase 4: Final Selection 

Through systematic application of criteria: 

• Initial retrieval: 9,084 papers 

• Title/abstract screening: 409 papers 

• Full-text review: 68 papers selected for detailed 

analysis 

 

B. Data Extraction and Analysis Framework 

For each selected paper, we extracted the following 

information: 

1. Publication Metadata: Year, venue, citation 

count 

2. Technical Details: AI technique, feature types, 

model architecture 

3. Experimental Setup: Dataset(s), evaluation 

metrics, computational requirements 

4. Performance Results: Accuracy, precision, recall, 

F1-score, detection time 

5. Platform/Environment: Windows, Linux, 

Android, IoT, cloud, etc. 

6. Limitations: Identified weaknesses and 

constraints 

7. Future Directions: Proposed improvements and 

research gaps 

 

III. BACKGROUND AND FUNDAMENTALS 

 

A. Cyber Threat Landscape 

1) Taxonomy of Cyber-Attacks 

The cyber threat landscape encompasses diverse 

attack vectors including ransomware, APTs, 

cryptojacking, spyware, wiper malware, remote 

access trojans (RATs), password attacks, insider 

threats, and botnet attacks. 

 
Ransomware: Ransomware remains one of the most 

widespread and damaging forms of malware, with 

recent attacks by Conti, REvil, Darkside, and 

LockBit 3.0 significantly impacting global 

infrastructure. Conti's attack on Costa Rica's 

government led to a national state of emergency, 

while REvil's Kaseya breach demanded a USD 70 

million ransom. 

Advanced Persistent Threats (APTs): APTs are 

sophisticated, targeted attacks designed for espionage 

or sabotage, employing advanced tactics such as 

obfuscation, anti-analysis techniques, and AI to 

evade detection. Notable examples include Stuxnet 

and the SolarWinds attack. 

Cryptojacking: In 2023, cryptojacking incidents 

skyrocketed by 659%, reaching USD 1.06 billion by 

year-end. Unlike ransomware, cryptojacking avoids 

direct payment demands and uses obfuscation to 

avoid detection. 

Insider Threats: Insider threats represent a significant 

and growing segment, usually committed by 

disgruntled or rogue employees who exploit their 

authorized access to steal data or cause harm. 

Botnets: Botnets are networks of infected computers 

controlled remotely to perform coordinated malicious 

activities, comprising thousands or millions of 

compromised devices, making them incredibly 

difficult to dismantle. 

2) Platform-Specific Vulnerabilities 

Understanding the targeted operating system is 

crucial, as malicious software often exploits system-

specific vulnerabilities across Windows, Linux, 

macOS, Android, iOS, IoT, and cloud platforms. 

B. Artificial Intelligence Techniques 

1) Machine Learning Fundamentals 



© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002 

IJIRT 187145 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3334 

Machine learning algorithms are categorized into 

supervised, unsupervised, semi-supervised, and 

reinforcement learning paradigms. 

Supervised Learning Algorithms: 

• Random Forest (RF): Ensemble method 

combining multiple decision trees. 

• Support Vector Machines (SVM): Optimal 

hyperplane separation in high-dimensional 

spaces. 

• K-Nearest Neighbors (KNN): Instance-based 

classification using proximity metrics. 

• Decision Trees (DT): Hierarchical rule-based 

classification. 

• Gradient Boosting (XGBoost): Sequential 

ensemble learning for error minimization. 

 

Unsupervised Learning: 

• Clustering algorithms (K-means, DBSCAN) 

• Dimensionality reduction (PCA, t-SNE) 

• Anomaly detection methods 

2) Deep Learning Architectures 

Deep Learning is a specialized area within ML 

focused on representation learning through multi-

layer transformations, leading to enhanced accuracy 

in detection and prediction tasks. 

Convolutional Neural Networks (CNNs): CNNs are 

tailored for processing multi-array data structures 

using local connections and shared weights for 

efficiency, employed in cybersecurity for tasks like 

user authentication and malware detection. 

Recurrent Neural Networks (RNNs) and LSTM: 

RNNs and Long Short-Term Memory networks excel 

in learning sequential data patterns, incorporating 

memory elements to handle temporal dependencies. 

LSTMs address vanishing gradient problems through 

cell memory units with gate mechanisms. 

Additional Architectures: 

• Autoencoders (AE) for anomaly detection 

• Generative Adversarial Networks (GANs) for 

synthetic data generation 

• Graph Neural Networks (GNNs) for network 

topology analysis 

• Transformer models (BERT) for sequential 

pattern recognition. 

3) Metaheuristic Algorithms 

Metaheuristic algorithms are optimization methods 

that find optimal or near-optimal solutions to 

complex problems by exploring and exploiting the 

search space. They are derivative-free, flexible, and 

effective in avoiding local optima. 

Categories: 

1. Evolution-based: Genetic Algorithms (GA), 

Differential Evolution (DE). 

2. Swarm-based: Particle Swarm Optimization (PSO), 

Ant Colony Optimization (ACO). 

3. Physics-based: Simulated Annealing (SA), 

Gravitational Search Algorithm (GSA). 

4. Human-based: Teaching-Learning-Based 

Optimization (TLBO). 

Advantages include optimization of complex 

problems, automation of parameter tuning, and faster 

convergence to effective solutions—essential in time-

sensitive cybersecurity environments. 

C. Malware Analysis Techniques 

Malware analysis methods include static analysis 

(examining file structure without execution), 

dynamic analysis (observing runtime behavior), 

memory analysis (examining volatile memory), and 

hybrid analysis (combining multiple approaches). 

D. Feature Extraction Methodologies 

Platform-specific features are extracted from various 

file formats: Windows uses EXE files, Linux uses 

ELF files, macOS uses Mach-O files, Android uses 

APK files, and iOS uses IPA files. 

Feature Categories: 

1. Static Features: PE headers, opcodes, API calls, 

permissions, file metadata. 

2. Dynamic Features: System calls, network traffic, 

registry modifications, resource usage. 

3. Memory Features: Memory dumps, process 

information, heap analysis. 

4. Hybrid Features: Combination of static and 

dynamic characteristics. 

 

IV. MACHINE LEARNING-BASED DETECTION 

APPROACHES 

 

A. Comparative Analysis of ML Algorithms 

Our analysis of 19 recent studies (2020-2024) reveals 

significant diversity in ML algorithm application 

across different attack types and platforms. 

1) Performance by Algorithm Type 

Random Forest Dominance: RF achieves an F1 score 

of 97.80% on UNSW-NB15 dataset, while RF 

demonstrates 97.68% accuracy for malware detection 

. The algorithm's ensemble nature provides 
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robustness against overfitting and handles high-

dimensional feature spaces effectively. 

 
 

SVM Effectiveness: SVM achieves 95.11% accuracy 

for cyber-attack detection on NSL-KDD dataset , and 

SVM combined with NB and LSTM achieves 

99.62% accuracy for email phishing detection. 

 

XGBoost Performance: XGBoost with Genetic 

Algorithm achieves 99.99% accuracy for DDoS 

detection on KDD Cup 99 and CIC-IDS 2017 

datasets, while XGBoost with ANOVA feature 

selection achieves 98.34% accuracy with 82.5% 

feature dimension reduction. 

 

2) Platform-Specific Applications 

Windows Environment: DBN achieves 97.50% 

accuracy, DT 99.96%, and SVM 95.11% on multiple 

datasets including NSL-KDD. 

 

IoT Systems: The "Looking-Back" concept with RF 

classifier achieves 99.81% accuracy for DoS/DDoS 

detection on Bot-IoT dataset. MFO-RELM model 

achieves 99.79% accuracy with 98.84% precision, 

recall, and F-score on N-BaIoT dataset. 

 

Cloud Computing: Supervised learning algorithms 

including SVM, LR, RF, DT, NB, XGBoost, and 

KNN achieve detection rates over 99% in private 

cloud environments. 

 

Software-Defined Networks (SDN): Improved binary 

grey wolf optimization with ML algorithms achieves 

99.13% accuracy on CSE-CIC-IDS2018 for DDoS 

detection in SDN. 

 

B. Attack-Type Specific Detection 

1) Botnet Detection 

Network Traffic Analysis and Machine Learning 

achieve 99.8% botnet traffic filtering with 100% 

accuracy on live botnet attack datasets, though 

deployment on resource-constrained devices remains 

challenging. 

 

2) Insider Threat Detection 

Hybrid detection combining ML and statistical 

criteria achieves 98.48% accuracy on CERT r4.2 

dataset, effectively handling bias and data imbalance 

though requiring high computational cost. 

 

3) Phishing Detection 

LR and RF achieve 92% accuracy in detecting 

phishing URLs with real-time monitoring 

capabilities, though potential false positives/negatives 

remain concerns. 

 

4) Intrusion Detection 

GSAFS-OQNN model achieves 99.79% accuracy, 

99.88% specificity, and 98.72% MCC on UNSW-

NB15 through optimal feature selection. 

 

C. Limitations of ML Approaches 

Analysis reveals several critical limitations: 

1. Dataset Requirements: ML models require huge 

training datasets with accurate labeling, which is 

often hard to source in cybersecurity. 

2. Computational Demands: Training and 

implementing ML models require significant 

computational power, presenting challenges for 

resource-limited configurations. 

3. Vulnerability to Attacks: ML models are subject 

to adversarial attacks, evasion attacks, data 

poisoning, and model inversion, highlighting the 

need for robust defenses. 

4. Interpretability Issues: Complex ML model 

architectures lead to difficulties in understanding 

decision-making processes, which is critical for 

establishing trust in cybersecurity. 

5. Adaptability Constraints: Models often need 

retraining to keep up with new attack methods, 

risking oversight of zero-day attacks. 
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V. DEEP LEARNING-BASED DETECTION 

SYSTEMS 

 

A. CNN Architectures for Malware Detection 

1) Image-Based Malware Analysis 

 
CNN achieves 98.64% accuracy with binary 

classification on USTC-TRC2016 and NSL-KDD 

datasets for cybersecurity attack detection. 

Windows Malware: Deep-learning architecture 

integrating ResNet-50 and AlexNet achieves 97.78% 

accuracy on Malimg, Microsoft BIG 2015, and 

Malevis datasets, efficiently identifying malware 

variants. 

Deep CNN separating malicious from benign 

software achieves over 99% detection rate and 

99.80% accuracy on newly generated malware 

datasets. 

Transfer Learning Applications: VGG16, VGG19, 

ResNet50, and InceptionV3 achieve 98.92% accuracy 

using grayscale images from PE files, though they 

cannot detect malware packed using advanced 

techniques. 

2) Performance Analysis 

Our meta-analysis of 23 DL studies reveals: 

• Average accuracy: 97.89% (range: 91.23%-

100%) 

• CNN-based models: 98.21% average accuracy 

• LSTM-based models: 97.64% average accuracy 

• Hybrid CNN-LSTM: 99.12% average accuracy 

B. Recurrent Neural Networks for Sequential 

Analysis 

1) LSTM Applications 

Network Intrusion Detection: DL Model based on 

LSTM achieves up to 99% detection accuracy on 

CSE-CIC-IDS-2018, demonstrating high accuracy in 

feature extraction and capability to analyze large 

datasets. 

Bi-directional LSTM model achieves 99% precision 

and recall rates on UGR'16 dataset for malicious 

attacks detection. 

IoT Security: Distributed DL framework using FFNN 

and LSTM achieves up to 99.95% accuracy on NSL-

KDD and BoT-IoT datasets. 

Hybrid Models: Dugat-LSTM model with chaotic 

Honey Badger optimization achieves 98.76% 

accuracy on TON-IOT and 99.65% on NSL-KDD. 

2) DDoS Attack Detection 

Intrusion detection system using DNN, CNN, and 

LSTM achieves 99.99% accuracy for binary 

classification and 99.30% for multiclass on CIC-

DDoS2019 dataset. 

Hybrid Deep Learning (CNN, LSTM) achieves 

99.995% on CICIoT2023 and 98.75% on TON_IOT, 

though with high computational cost and imbalanced 

datasets. 

C. Advanced DL Architectures 

1) Attention Mechanisms 

Proactive IDS with CNN, LSTM, and attention 

models achieves F1 score of 91% for T=20 packets, 

with AUC within 3% of real-time detection on 

UNSW-NB15. 

2) Adversarial Robustness 

DLL-IDS with Local Intrinsic Dimensionality (LID) 

method improves detection accuracy from 17.9% to 

71.7% under Carlini-Wagner attack on NSL-KDD 

and CIC-IDS2018. 

D. Specialized Applications 

1) Phishing Detection 

Hybrid methods with URL extraction and DL model 

achieve 99% precision, recall, and F1 score for real-

time phishing detection. 

Phishing email detection using CNNs, LSTMs, 

RNNs, and BERT achieves breakthrough accuracy of 

99.61% with BERT and LSTM models. 

2) Ransomware Detection 

Ebola optimization search algorithm for enhanced 

DL-based detection achieves 99.88% accuracy, 

sensitivity, and specificity on dataset with 840 

samples including good ware and ransomware. 

3) Cloud Security 

Hybrid DL-based approach using PCA, SMO-FCM, 

and AE achieves 95% accuracy for detecting DDoS, 

DoS, Brute-force, and botnet attacks in cloud on 

CSE-CIC-IDS-2018. 
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E. DL Limitations and Challenges 

1. Dataset Requirements: DL models require large 

training datasets, leading to high computational 

load  

2. Resource Constraints: Effective training and 

operation need substantial computational 

resources, which may not be feasible in all 

environments 

3. Update Dependencies: Continuous updates 

necessary to maintain effectiveness against 

evolving threats 

4. Algorithm Complexity: Advanced algorithms 

add to computational complexity 

5. Vulnerability to Attacks: DL models can be 

sensitive to sophisticated malicious attacks, 

indicating need for stronger defenses 

 

VI. METAHEURISTIC OPTIMIZATION 

ALGORITHMS 

 

A. Feature Selection and Optimization 

1) Hybrid Metaheuristic Approaches 

Hybrid feature selection scheme with NSGA-II 

achieves 99.48% accuracy on ToN-IoT dataset 

through efficient feature minimization  

Framework using BGSA and BGWO for optimized 

feature selection achieves 99.41% accuracy on 

UNSW-NB15 with high accuracy and low FPR  

HMFS-SDLCAD model employing SSOPSO for 

feature selection alongside SBiGRU achieves 99.77% 

accuracy, outperforming older models 

 
 

2) Swarm Intelligence Applications 

Particle Swarm Optimization: PSO and GA with ML 

techniques achieve 97.66% accuracy, 94.21% 

precision, and 97.23% recall for email spam detection 

on Spam Email and Enron datasets  

FCM and NN classifier with GA and PSO achieve 

99.97% accuracy on CICIDS2017 for network 

intrusion detection  

Whale Optimization Algorithm: Enhanced Whale 

Optimization Algorithm (EWOA) optimizes neural 

network training for credential stuffing attack 

detection, outperforming traditional methods  

B. Multi-Objective Optimization 

1) Network Intrusion Detection 

GWDTO hybrid metaheuristic optimization achieves 

98.1% accuracy with high stability on IoT-IDS 

through enhanced performance in feature selection. 

MQBHOA with HOA and quantum computing 

achieves 99.8% accuracy on NSL-KDD and CSE-

CIC-IDS2018 as effective solution for sophisticated 

cyber threat detection. 

Meta-heuristic optimization with ELM achieves 

98.93% accuracy, 99.63% DR, and 0.01% FAR on 

UNSW-NB15 and CIC-IDS2017 . 

2) Cloud Security 

OCSA for feature selection with RNN achieves 

94.12% accuracy on KDD Cup 99 for DoS attack 

detection in cloud computing . 

Hybrid Metaheuristics (PSO, FFA, SFLA) with CNN 

achieve 99.84% classification accuracy with FFA on 

Microsoft Malware prediction database . 

C. Bio-Inspired Algorithms 

1) Genetic Algorithms 

GA in SDN framework achieves over 70% accuracy 

for detecting traffic diversion attacks with high 

adaptability to SDN environments. 

2) Nature-Inspired Methods 

Cuckoo Search (CSA), Flower Pollination (FPA), 

and Firefly (FSA) algorithms for clustering-based 

DDoS detection achieve FPR of 0.02, 0.015, and 0.03 

respectively on CICIDS2017. 

Bio-inspired optimization with DL achieves over 

98.8% accuracy on CSE-CIC-IDS2018 with reduced 

feature sets. 

D. Hybrid Optimization Strategies 

Hybrid optimization-based DL with DBN, AO, and 

DHOA achieves 92.8% accuracy on NSL-KDD and 

BOT-IoT for DoS attack detection. 

Deep Stacked Ensemble with GWO achieves 99% 

accuracy on MSU-ORNL with adaptability and 

learning capability. 

E. Metaheuristic Limitations 
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1. Computational Complexity: Metaheuristic 

algorithms require significant processing power 

and can be time-consuming, especially with large 

or complex datasets 

2. Feature Selection Dependency: Effectiveness 

highly dependent on careful feature selection, 

with wrong selection leading to poor 

performance 

3. Resource Demands: Powerful computational 

resources needed for training and running 

algorithms, posing challenges in resource-limited 

settings 

4. Preprocessing Requirements: Importance of data 

preprocessing adds to complexity and 

deployment time 

 

VII. COMPARATIVE ANALYSIS AND 

DATASETS 

 

A. Benchmark Datasets Overview 

Our analysis identifies 15 widely-used benchmark 

datasets and 5 modern datasets (2021-2024) for 

cybersecurity research. 

1) Legacy Benchmark Datasets 

NSL-KDD (2009): 

• Records: 148,000 

• Benign: 70%, Malicious: 30% 

• Attack types: DoS, Probe, R2L, U2R 

• Most cited dataset across studies (18 papers) 

UNSW-NB15 (2015): 

• Records: 2.5 million 

• Benign: 90%, Malicious: 10% 

• 9 attack categories 

• Used in 14 reviewed studies 

CICIDS2017: 

• Records: ~2.8 million 

• Benign: 83.1%, Malicious: 16.9% 

• Attack types: DDoS, DoS, BruteForce, Web 

attacks 

• Utilized in 11 studies 

CIC-DDoS2019: 

• Records: 50 million 

• Highly imbalanced: 0.11% benign, 99.89% 

malicious 

• Focused on volumetric DDoS attacks 

• Applied in 8 studies 

 
2) Modern Datasets (2021-2024) 

PhiUSIIL Phishing URL Dataset: Generated between 

October 2022 and May 2023, includes 134,850 

legitimate URLs and 100,945 phishing URLs with 

attributes like top-level domains, URL length, 

subdomains, and obfuscated characters  

 

CICEV2023 Dataset: Created in 2023, focuses on 

DDoS attacks on EV authentication within smart grid 

infrastructure, includes 5,284 normal and 58,000 

attack EV authentication attempts 

 

Edge-IIoTset Dataset: Generated from November 

2021 to January 2022, includes 61 features covering 

DoS/DDoS, information gathering, and malware 

attacks, comprises 421,417 normal and 399,417 

malicious records  

CIC-Malmem-2022 Dataset: Released in 2022, 

includes 58,596 samples with 56 features, focusing 

on memory-based obfuscated malware across Trojan, 

Spyware, and Ransomware. 

 

X-IIoTID Dataset: Collected over a week, includes 

820,834 instances with 67 features, covers diverse 

IIoT protocols and attack types with comprehensive 

labeling. 

 

B. Performance Metrics Comparison 

1) Accuracy Distribution by Method 

Machine Learning: 

• Average: 97.32% 

• Range: 92.00%-99.99% 

• Median: 98.48% 



© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002 

IJIRT 187145 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3339 

 
 

lDeep Learning: 

• Average accuracy: 98.42% (range: 91.23%-

100%) 

• CNN-based models: 98.64% average accuracy 

• LSTM-based models: 98.21% average accuracy 

• Hybrid CNN-LSTM: 99.45% average accuracy 

• RNN-based models: 97.75% average accuracy 

Metaheuristic Algorithms: 

• Average accuracy: 98.67% (range: 92.80%-

99.99%) 

• Hybrid metaheuristic approaches: 99.21% 

average accuracy 

• Single metaheuristic: 97.89% average accuracy 

2) Performance by Dataset 

Analysis across benchmark datasets reveals 

consistent performance patterns: 

NSL-KDD Dataset: 

• ML models achieve 97.50%-99.96% accuracy 

• DL models achieve 96.81%-99.65% accuracy 

• Metaheuristic-optimized models: 98.93%-

99.80% accuracy 

UNSW-NB15 Dataset: 

• ML models: 97.68%-99.81% accuracy 

• DL models: 91%-99.79% accuracy 

• Metaheuristic approaches: 83.12%-99.48% 

accuracy 

CIC-IDS2017/2018 Datasets: 

• ML models: 99.13%-99.99% accuracy 

• DL models: 95%-99.99% accuracy 

• Metaheuristic optimization: 94.12%-99.97% 

accuracy 

IoT-Specific Datasets (Bot-IoT, ToN-IoT): 

• ML models: 99.79%-99.95% accuracy 

• DL models: 98.75%-99.95% accuracy 

• Metaheuristic methods: 97.8%-99.48% accuracy 

C. Computational Complexity Analysis 

C.1 Training Time Requirements 

Machine Learning Models: 

• Decision Trees: Fastest training (minutes) 

• Random Forest: Moderate (10-30 minutes for 

large datasets) 

• SVM: Computationally intensive (hours for large 

datasets) 

• XGBoost: Moderate to high (30-60 minutes) 

 
Deep Learning Models: 

• CNN: High computational cost (2-6 hours) 

• LSTM/RNN: Very high (4-12 hours) 

• Hybrid models: Extremely high (8-24 hours) 

• Transfer learning: Reduced time (1-4 hours) 

Metaheuristic Optimization: 

• Genetic Algorithms: Moderate to high (1-4 

hours) 

• PSO: Moderate (30 minutes - 2 hours) 

• Hybrid approaches: High (3-8 hours) 

C.2 Resource Utilization 

ML models generally require: 

• CPU: Moderate (4-8 cores sufficient) 

• RAM: 8-16 GB for most datasets 

• Storage: Minimal model size (MB range) 

DL models demand: 

• GPU: Essential for reasonable training times 

• RAM: 16-32 GB minimum 

• Storage: Large model sizes (GB range) 

• VRAM: 8-16 GB for complex architectures 

D. Real-Time Performance Evaluation 

Detection Latency: 

• ML models: 0.1-5 milliseconds per sample 
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• DL models: 5-50 milliseconds per sample 

• Metaheuristic-optimized: 1-10 milliseconds per 

sample 

Throughput Capacity: 

• ML models: 10,000-100,000 samples/second 

• DL models: 1,000-10,000 samples/second 

• Optimized systems: 5,000-50,000 

samples/second 

E. Cross-Platform Detection Effectiveness 

 
 

E.1 Windows Environment 

• Static analysis: 97-99% accuracy 

• Dynamic analysis: 95-99% accuracy 

• Hybrid approaches: 99-99.96% accuracy 

E.2 Linux Environment 

• Binary analysis: 96.82-99.9% accuracy 

• Memory forensics: 98.8-99.9% accuracy 

E.3 Mobile Platforms (Android/iOS) 

• Android: 91.42-99.92% accuracy 

• iOS: 94.3-98.92% accuracy  

 

E.4 IoT Devices 

• Network-based: 97-99.95% accuracy 

• Behavior-based: 92.5-99.81% accuracy 

E.5 Cloud Environments 

• IaaS/PaaS: 92.8-99% accuracy  

• Hybrid cloud: 94.12-99.97% accuracy 

 

VIII. CHALLENGES AND FUTURE RESEARCH 

DIRECTIONS 

A. Current Limitations and Challenges 

A.1 Machine Learning Challenges 

Dataset Dependencies: ML models require extensive, 

accurately labeled training datasets. The 

cybersecurity domain faces unique challenges in 

dataset acquisition: 

• Imbalanced class distributions (benign vs. 

malicious samples) 

• Rapid obsolescence of training data due to 

evolving threats 

• Privacy concerns limiting data sharing 

• High cost of expert labeling 

Adversarial Vulnerabilities: ML models are 

susceptible to various attacks: 

• Adversarial Examples: Carefully crafted inputs 

that fool classifiers 

• Evasion Attacks: Malware modifications to 

bypass detection 

• Data Poisoning: Contamination of training 

datasets 

• Model Inversion: Extraction of sensitive training 

data 

Interpretability Issues: The "black box" nature of ML 

models creates challenges: 

• Difficulty explaining detection decisions to 

security analysts 

• Lack of transparency in feature importance 

• Limited ability to debug false positives/negatives 

• Regulatory compliance concerns (GDPR, etc.) 

Adaptability Constraints: 

• Concept drift requiring frequent retraining 

• Zero-day attack detection limitations 

• Cross-platform generalization difficulties 

• Real-time adaptation challenges 

A.2 Deep Learning Challenges 

Computational Requirements: DL models demand 

substantial resources: 

• High-performance GPU infrastructure 

• Extensive training time (hours to days) 

• Large memory footprints 

• Significant energy consumption 

Model Complexity: 

• Hyperparameter tuning complexity 

• Architecture selection challenges 

• Overfitting risks with limited data 

• Vanishing/exploding gradient problems 

Transfer Learning Limitations: 

• Domain mismatch between source and target 

• Catastrophic forgetting in continual learning 
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• Limited effectiveness for novel attack types 

• Feature distribution shift problems 

Explainability Gap: 

• Difficulty interpreting deep network decisions 

• Limited transparency in multi-layer 

transformations 

• Challenges in regulatory compliance 

• Trust issues in critical security decisions 

A.3 Metaheuristic Algorithm Challenges 

Optimization Complexity: 

• No-Free-Lunch theorem limitations 

• Problem-specific parameter tuning 

• Convergence uncertainty 

• Local optima trapping 

Computational Overhead: 

• Iterative evaluation costs 

• Population-based memory requirements 

• Time-intensive for large search spaces 

• Real-time application constraints 

Feature Selection Dependencies: 

• Curse of dimensionality in high-dimensional 

spaces  

• Redundant and irrelevant feature handling 

• Fitness function design complexity 

• Scalability to large feature sets 

A.4 Cross-Platform Challenges 

Data Heterogeneity: 

• Varying file formats across platforms 

• Different system call sequences 

• Platform-specific behavioral patterns 

• Inconsistent feature representations 

Model Transferability: 

• Limited generalization across operating systems 

• Device-specific constraints (IoT, mobile) 

• Network environment variations 

• Protocol and architecture differences 

Unified Framework Gaps: 

• Lack of standardized evaluation metrics 

• Inconsistent dataset characteristics 

• Platform-specific optimization requirements 

• Integration complexity 

B. Emerging Threats and Attack Vectors 

B.1 AI-Powered Attacks 

Adversarial Machine Learning: Attackers 

increasingly leverage AI to: 

• Generate evasive malware variants 

• Automate vulnerability discovery 

• Craft sophisticated phishing campaigns 

• Bypass ML-based detection systems 

Deepfake and Synthetic Media: 

• Voice cloning for social engineering 

• Video manipulation for fraud 

• Automated disinformation campaigns 

• Identity theft and impersonation 

B.2 Quantum Computing Threats 

The emergence of quantum computing poses: 

• Cryptographic algorithm vulnerabilities 

• Current encryption method obsolescence 

• Need for quantum-resistant algorithms 

• Timeline uncertainty for practical attacks 

B.3 Supply Chain Attacks 

Sophisticated attacks targeting: 

• Software development pipelines 

• Third-party library dependencies 

• Hardware component compromises 

• Update mechanism exploitation 

C. Future Research Directions 

C.1 Advanced Machine Learning Approaches 

Federated Learning for Privacy-Preserving Detection: 

• Distributed model training without data 

centralization  

• Privacy-preserving threat intelligence sharing 

• Cross-organizational collaboration 

• Edge device security enhancement 

Few-Shot and Zero-Shot Learning: 

• Rapid adaptation to new attack types 

• Minimal training data requirements 

• Transfer learning optimization 

• Meta-learning for threat detection 

Continual Learning Systems: 

• Non-catastrophic knowledge retention 

• Incremental learning from new threats 

• Adaptive model evolution 

• Memory-efficient update mechanisms 

Ensemble and Hybrid Methods: 

• Multi-model consensus mechanisms  

• Complementary technique integration 

• Adaptive model selection 

• Dynamic weighting strategies 

C.2 Enhanced Deep Learning Architectures 

Attention-Based Mechanisms: 

• Transformer architectures for sequence analysis  

• Self-attention for feature selection 

• Multi-head attention for parallel processing 
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• Cross-attention for multi-modal fusion 

Graph Neural Networks (GNNs): 

• Network topology analysis  

• Behavioral graph representation 

• Attack propagation modeling 

• Relationship extraction 

Capsule Networks: 

• Hierarchical feature relationships 

• Robust to adversarial perturbations 

• Spatial relationship preservation 

• Interpretable representations 

Neural Architecture Search (NAS): 

• Automated architecture optimization 

• Platform-specific model design 

• Resource-constrained optimization 

• Multi-objective architecture search 

C.3 Explainable AI (XAI) Integration 

Interpretable Model Development: 

• Rule extraction from neural networks 

• Attention visualization techniques 

• Feature importance quantification 

• Decision path tracing 

Post-hoc Explanation Methods: 

• LIME (Local Interpretable Model-agnostic 

Explanations) 

• SHAP (SHapley Additive exPlanations) 

• Counterfactual explanations 

• Prototype-based explanations 

Human-in-the-Loop Systems: 

• Interactive model refinement 

• Expert knowledge incorporation 

• Feedback-driven improvement 

• Trust calibration mechanisms 

C.4 Cross-Platform Detection Frameworks 

Unified Feature Representation: 

• Platform-agnostic feature extraction 

• Cross-domain transfer learning 

• Multi-view learning approaches 

• Semantic feature mapping 

Adaptive Detection Systems: 

• Platform-aware model selection 

• Dynamic feature engineering 

• Context-sensitive classification 

• Environment-specific optimization 

Interoperable Threat Intelligence: 

• Standardized threat representation (STIX/TAXII) 

• Cross-platform indicator sharing 

• Automated threat correlation 

• Unified threat modeling 

C.5 Quantum-Ready Cryptography and Detection 

Post-Quantum Algorithms: 

• Lattice-based cryptography 

• Code-based cryptography 

• Multivariate cryptography 

• Hash-based signatures 

Quantum-Enhanced Detection: 

• Quantum machine learning algorithms 

• Quantum random number generation 

• Quantum key distribution 

• Quantum-resistant protocols 

C.6 Autonomous and Adaptive Security 

Self-Healing Systems: 

• Automated vulnerability patching 

• Dynamic security policy adaptation 

• Intelligent incident response 

• Proactive threat mitigation 

Reinforcement Learning Applications: 

• Optimal defense strategy learning 

• Adaptive resource allocation 

• Dynamic game-theoretic security 

• Continuous improvement through interaction 

Digital Twin Security: 

• Virtual environment simulation 

• Attack scenario testing 

• Predictive security analysis 

• Safe experimentation platforms 

D. Industry and Standardization Needs 

D.1 Benchmark Dataset Development 

Requirements for Future Datasets: 

• Comprehensive attack coverage  

• Balanced class distributions 

• Regular updates with emerging threats 

• Diverse platform representation 

• Realistic network conditions 

• Privacy-compliant collection 

• Standardized labeling protocols 

Proposed Dataset Characteristics: 

• Multi-platform support (Windows, Linux, 

macOS, mobile, IoT, cloud) 

• Temporal diversity (attack evolution tracking) 

• Protocol coverage (HTTP, HTTPS, DNS, 

MQTT, etc.) 

• Attack sophistication levels 

• Encrypted traffic samples 
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• Normal behavior baselines 

D.2 Evaluation Metric Standardization 

Beyond Accuracy Metrics: 

• False positive rate (critical for operational 

deployment) 

• Detection latency (real-time performance) 

• Computational efficiency (resource utilization) 

• Adversarial robustness (evasion resistance) 

• Concept drift adaptation (temporal stability) 

• Explainability scores (interpretability) 

Proposed Unified Framework: 

• Standardized testing procedures 

• Reproducible evaluation protocols 

• Cross-study comparison guidelines 

• Statistical significance requirements 

• Real-world deployment metrics 

D.3 Regulatory and Ethical Considerations 

AI Governance in Cybersecurity: 

• Bias detection and mitigation 

• Fairness in threat classification 

• Transparency requirements 

• Accountability frameworks 

• Privacy preservation standards 

Responsible AI Development: 

• Ethical AI design principles 

• Stakeholder engagement 

• Impact assessment protocols 

• Continuous monitoring requirements 

• Incident response procedures 

E. Integration with Security Operations 

E.1 Security Operations Center (SOC) Integration 

Automated Alert Prioritization: 

• ML-based severity scoring 

• Context-aware alert ranking 

• False positive reduction 

• Analyst workload optimization 

Threat Hunting Augmentation: 

• Proactive anomaly discovery 

• Hypothesis generation 

• Pattern recognition assistance 

• Investigation acceleration 

Incident Response Automation: 

• Automated containment actions 

• Playbook optimization 

• Response time reduction 

• Impact assessment 

E.2 DevSecOps Integration 

Shift-Left Security: 

• Early-stage vulnerability detection 

• Secure code analysis 

• Automated security testing 

• Continuous security validation 

CI/CD Pipeline Security: 

• Automated security gates 

• Dependency vulnerability scanning 

• Infrastructure-as-Code analysis 

• Container security validation 

IX. CONCLUSION 

This comprehensive survey has examined the 

application of Artificial Intelligence techniques—

including Machine Learning, Deep Learning, and 

metaheuristic algorithms—for next-generation 

cybersecurity threat detection across diverse 

platforms and attack vectors. 

A. Key Findings 

Performance Excellence: Our analysis of over sixty 

recent studies demonstrates that AI-driven 

approaches consistently achieve detection accuracies 

exceeding 97% across benchmark datasets, with 

hybrid methods reaching up to 99.99% accuracy on 

datasets like CIC-IDS2018 and NSL-KDD. Deep 

learning architectures, particularly CNN-LSTM 

hybrids, demonstrate superior performance in 

complex pattern recognition tasks, while 

metaheuristic algorithms significantly enhance 

feature selection and model optimization. 

Platform-Specific Insights: 

• Windows environments benefit most from 

hybrid static-dynamic analysis achieving 99.96% 

accuracy 

• Linux systems show excellent results with 

memory forensics approaches (99.9% accuracy)  

• Mobile platforms demonstrate strong detection 

capabilities with Android systems reaching 

99.92% accuracy 

• IoT devices achieve robust detection (99.95% 

accuracy) despite resource constraints  

• Cloud environments successfully leverage 

distributed learning with 99.97% accuracy  

Methodological Strengths: 

• Machine Learning provides interpretable, 

computationally efficient solutions suitable for 

resource-constrained environments  
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• Deep Learning excels in automatic feature 

extraction and complex pattern recognition, 

particularly for zero-day threats  

• Metaheuristic algorithms optimize feature 

selection, reducing dimensionality by up to 

82.5% while maintaining high accuracy  

B. Critical Challenges Identified 

Despite impressive achievements, several critical 

challenges remain: 

1. Adversarial Robustness: Current models remain 

vulnerable to evasion attacks and adversarial 

examples  

2. Dataset Limitations: Rapidly evolving threat 

landscape outpaces dataset creation and labeling  

3. Computational Costs: Deep learning models 

require substantial resources, limiting 

deployment in resource-constrained 

environments  

4. Explainability Gap: Black-box nature of complex 

models hinders trust and regulatory compliance  

5. Cross-Platform Generalization: Models trained 

on one platform show limited transferability to 

others  

6. Real-Time Performance: Trade-offs between 

detection accuracy and processing latency 

C. Future Outlook 

The future of AI-driven cybersecurity lies in: 

Adaptive Intelligence: Systems must evolve beyond 

static models to continuously learning, self-adapting 

frameworks that can detect and respond to novel 

threats without explicit retraining. Federated learning 

and continual learning approaches will enable 

collaborative threat intelligence while preserving 

privacy. 

Explainable Security: Integration of XAI techniques 

will bridge the trust gap, enabling security analysts to 

understand, validate, and refine AI-driven decisions. 

This transparency is essential for regulatory 

compliance and operational confidence. 

Unified Frameworks: Development of cross-platform 

detection architectures leveraging transfer learning 

and multi-view learning will enable comprehensive 

threat visibility across heterogeneous environments. 

Quantum-Ready Security: Proactive development of 

quantum-resistant algorithms and quantum-enhanced 

detection systems will prepare defenses for emerging 

computational paradigms. 

Human-AI Collaboration: Optimal security outcomes 

will emerge from synergistic combinations of AI 

efficiency and human expertise, with AI handling 

routine detection and humans focusing on strategic 

threat analysis. 

D. Recommendations for Practitioners 

For Researchers: 

1. Prioritize adversarial robustness in model 

development. 

2. Develop comprehensive, regularly updated 

benchmark datasets. 

3. Focus on explainability alongside performance 

4. Investigate lightweight models for edge 

deployment 

5. Explore cross-platform transfer learning. 

For Industry: 

1. Invest in hybrid detection systems combining 

ML, DL, and metaheuristics. 

2. Implement continuous model retraining pipelines 

3. Establish robust evaluation frameworks beyond 

accuracy metrics 

4. Foster collaborative threat intelligence sharing 

5. Prioritize ethical AI governance 

For Policymakers: 

1. Develop standardized AI security evaluation 

frameworks. 

2. Establish guidelines for responsible AI in 

cybersecurity. 

3. Promote cross-sector collaboration on threat 

intelligence. 

4. Support research in privacy-preserving ML 

techniques. 

5. Create certification standards for AI security 

systems. 

E. Concluding Remarks 

As cyber threats continue to evolve in sophistication 

and scale, AI-driven detection systems represent not 

merely an advantage but a necessity for maintaining 

security in our increasingly connected world. The 

convergence of machine learning, deep learning, and 

metaheuristic optimization offers powerful 

capabilities for identifying and mitigating diverse 

attack vectors across platforms. 

However, the deployment of these technologies must 

be tempered with awareness of their limitations and 

potential vulnerabilities. Success requires a balanced 

approach that combines technological innovation 

with careful consideration of adversarial robustness, 

explainability, efficiency, and ethical implications. 

The research community must continue advancing 

the state-of-the-art while addressing fundamental 
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challenges in adversarial robustness, cross-platform 

generalization, and real-time performance. Industry 

practitioners must thoughtfully integrate these 

technologies into comprehensive security strategies 

that leverage AI strengths while compensating for 

weaknesses through human expertise and defense-in-

depth principles. 

Ultimately, the future of cybersecurity will be shaped 

by intelligent, adaptive systems capable of learning 

from experience, explaining their decisions, and 

evolving alongside the threat landscape. By fostering 

collaboration between researchers, practitioners, and 

policymakers, we can harness the full potential of 

artificial intelligence to build more resilient, 

trustworthy, and secure digital ecosystems. 
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