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Abstract—The escalating sophistication and frequency
of cyber-attacks have necessitated the development of
advanced detection and prevention mechanisms.
Traditional security measures prove inadequate against
modern threats such as zero-day exploits, advanced
persistent threats (APTs), and polymorphic malware.
This comprehensive survey examines the application of
Artificial Intelligence (AI) techniques—specifically
Machine Learning (ML), Deep Learning (DL), and
metaheuristic algorithms—in detecting diverse cyber
threats across multiple platforms including PCs, mobile
devices, IoT systems, and cloud environments. Through
systematic analysis of over sixty recent studies (2020-
2024), we evaluate the effectiveness of Al-driven
detection methods against malware, network intrusions,
phishing attacks, ransomware, botnets, and insider
threats. Our findings reveal that DL models achieve
detection accuracies exceeding 99% on benchmark
datasets, while metaheuristic algorithms significantly
optimize feature selection and model performance. We
propose a unified framework for assessing Al-based
cybersecurity solutions and identify critical research
gaps including cross-platform detection, adversarial
robustness, and real-time deployment challenges. The
study demonstrates that hybrid approaches combining
multiple Al techniques offer superior performance
compared to single-method solutions, with accuracies
reaching 99.99% on datasets like CIC-IDS2018 and
NSL-KDD. Our analysis emphasizes the imperative for
continuous model evolution and adaptive learning
systems to counter increasingly sophisticated attack
vectors in modern cybersecurity landscapes.

Index Terms—Artificial Intelligence, Machine Learning,
Deep Learning, Cybersecurity, Intrusion Detection,
Malware Detection, Metaheuristic Algorithms, Threat
Intelligence.
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I. INTRODUCTION

A. Background and Motivation

The digital transformation of global infrastructure has
precipitated an unprecedented expansion in cyber
vulnerabilities. According to the 2024 Cisco
Cybersecurity Readiness Index, 76% of firms
experience malware attacks, while Astra's Malware
Statistics 2024 reports that 560,000 new malware
pieces are detected daily, adding to over 1 billion
existing programs. The financial implications are
staggering—Cybersecurity Ventures predicts that
victims could pay approximately USD 265 billion
annually by 2031, with costs increasing by 30% each
year.

Traditional security mechanisms, including signature-
based detection and static firewall rules, have
demonstrated critical limitations against modern
threats. Malware targeting Linux systems has
increased by 35%, with emergence of new malware
families  impacting  Linux-based  platforms.
Additionally, 2023 marked a pivotal moment for IoT
security threats, with a 400% increase in IoT malware
attacks compared to the previous year. These
statistics underscore the urgent need for intelligent,
adaptive security solutions capable of identifying and
mitigating evolving threats in real-time.

B. Artificial Intelligence in Cybersecurity

Artificial  Intelligence has emerged as a
transformative force in cybersecurity, offering
capabilities that far exceed traditional methods. Al
systems excel in real-time analysis and decision-
making, leveraging vast data volumes to solve
complex problems across various domains, making
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them particularly critical in cybersecurity where the
sheer volume of data makes manual analysis
impractical.

The integration of Al in cybersecurity provides

several strategic advantages:

1. Pattern Recognition: Al systems can identify
complex, non-linear correlations within data,
enabling recognition of previously unknown
threats.

2. Scalability: Automated analysis of massive
datasets at speeds impossible for human analysts.

3. Adaptability: Continuous learning capabilities
allow systems to evolve with emerging threat
landscapes.

4. Proactive Defense: Predictive analytics can
identify vulnerabilities before exploitation.

5. Reduced False Positives: Advanced algorithms
minimize false alarms compared to traditional
methods

C. Research Scope and Contributions

This survey distinguishes itself from existing

literature through several key contributions:

1. Comprehensive Coverage: Analysis of ML, DL,
and metaheuristic techniques across diverse
attack types (malware, intrusions, phishing,
ransomware, botnets, insider threats, spam).

2. Multi-Platform  Analysis: Examination  of
detection methods across Windows, Linux,
macOS, Android, i0OS, IoT, and cloud
environments.

3. Recent Dataset Compilation: Systematic
categorization of benchmark and modern
datasets (2020-2024) with detailed
characteristics.

4. Performance Metrics Analysis: Quantitative

comparison of detection accuracies,
computational requirements, and deployment
constraints.

5. Critical Gap Identification: Comprehensive
discussion of limitations, challenges, and future
research directions.

6. Unified Framework: Proposal of standardized
assessment criteria for Al-based cybersecurity
solutions.

D. Paper Organization

IJIRT 187145

The remainder of this paper is structured as follows:
Section II presents the research methodology and
systematic literature review process. Section III
provides comprehensive background on cyber
threats, Al techniques, and detection methodologies.
Section IV analyzes ML-based detection approaches.
Section V examines DL architectures and their
applications. Section VI discusses metaheuristic
optimization algorithms. Section VII presents
comparative analysis and performance evaluation.
Section VIII identifies challenges and future research
directions. Section IX concludes the survey with key
findings and recommendations.

II. RESEARCH METHODOLOGY

A. Systematic Literature Review Protocol

We employed a rigorous systematic literature review
(SLR) methodology to ensure comprehensive
coverage and unbiased analysis of Al-driven
cybersecurity solutions. The review process followed
established guidelines with four distinct phases:

Phase 1: Database Selection and Search Strategy

We evaluated three major academic databases:
Scopus, Google Scholar, and Web of Science. Scopus
was selected as the primary source due to its selective
coverage of peer-reviewed content from major
publishers  (ACM, Springer, IEEE)  and
comprehensive indexing.

Search string formulation:

("Cyber-attacks" OR "Cybersecurity" OR "Cyber
threats") AND

("Detection" OR "Prevention") AND

("Machine Learning” OR "Deep Learning" OR
"Metaheuristic Algorithms" OR

"Artificial Intelligence") AND

("Malware" OR "Intrusion" OR "Phishing" OR
"Ransomware")

Phase 2: Initial Screening Results

e Scopus: 9,084 articles (2020-2024)

e Google Scholar: 21,100 articles (2020-2024)

e Web of Science: 419 articles (2020-2024)

Phase 3: Inclusion and Exclusion Criteria

Inclusion Criteria:

e  Peer-reviewed journal articles and conference
proceedings

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3332



© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

e  Published between 2020-2024

e Focus on AI/ML/DL techniques for cyber-attack
detection

e Empirical evaluation with performance metrics

e  Full-text availability

e  Exclusion Criteria:

e Non-peer-reviewed content

e Purely theoretical work without experimental
validation

e  Focus solely on traditional (non-AI) methods

e Duplicate publications

e  Papers lacking clear methodology or results

Phase 4: Final Selection

Through systematic application of criteria:

e Initial retrieval: 9,084 papers

o  Title/abstract screening: 409 papers

e  Full-text review: 68 papers selected for detailed
analysis

B. Data Extraction and Analysis Framework

For each selected paper, we extracted the following

information:

1. Publication Metadata: Year, venue, citation
count

2. Technical Details: Al technique, feature types,
model architecture

3. Experimental Setup: Dataset(s), evaluation
metrics, computational requirements

4. Performance Results: Accuracy, precision, recall,
F1-score, detection time

5. Platform/Environment:
Android, IoT, cloud, etc.

6. Limitations:  Identified  weaknesses  and
constraints

Windows, Linux,

7. Future Directions: Proposed improvements and
research gaps

III. BACKGROUND AND FUNDAMENTALS

A. Cyber Threat Landscape

1) Taxonomy of Cyber-Attacks

The cyber threat landscape encompasses diverse
attack vectors including ransomware, APTs,
cryptojacking, spyware, wiper malware, remote
access trojans (RATSs), password attacks, insider
threats, and botnet attacks.
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Ransomware: Ransomware remains one of the most
widespread and damaging forms of malware, with
recent attacks by Conti, REvil, Darkside, and
LockBit 3.0 significantly impacting global
infrastructure. Conti's attack on Costa Rica's
government led to a national state of emergency,
while REvil's Kaseya breach demanded a USD 70
million ransom.

Advanced Persistent Threats (APTs): APTs are
sophisticated, targeted attacks designed for espionage
or sabotage, employing advanced tactics such as
obfuscation, anti-analysis techniques, and Al to
evade detection. Notable examples include Stuxnet
and the SolarWinds attack.

Cryptojacking: In 2023, cryptojacking incidents
skyrocketed by 659%, reaching USD 1.06 billion by
year-end. Unlike ransomware, cryptojacking avoids
direct payment demands and uses obfuscation to
avoid detection.

Insider Threats: Insider threats represent a significant
and growing segment, usually committed by
disgruntled or rogue employees who exploit their
authorized access to steal data or cause harm.
Botnets: Botnets are networks of infected computers
controlled remotely to perform coordinated malicious
activities, comprising thousands or millions of
compromised devices, making them incredibly
difficult to dismantle.

2) Platform-Specific Vulnerabilities

Understanding the targeted operating system is
crucial, as malicious software often exploits system-
specific vulnerabilities across Windows, Linux,
macOS, Android, i0S, 10T, and cloud platforms.

B. Artificial Intelligence Techniques

1) Machine Learning Fundamentals
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Machine learning algorithms are categorized into
supervised, unsupervised, semi-supervised, and
reinforcement learning paradigms.

Supervised Learning Algorithms:

e Random Forest (RF): Ensemble method
combining multiple decision trees.

e Support Vector Machines (SVM): Optimal
hyperplane separation in high-dimensional
spaces.

e K-Nearest Neighbors (KNN): Instance-based
classification using proximity metrics.

e Decision Trees (DT): Hierarchical rule-based
classification.

e Gradient Boosting (XGBoost): Sequential
ensemble learning for error minimization.

Unsupervised Learning:

e  Clustering algorithms (K-means, DBSCAN)

e Dimensionality reduction (PCA, t-SNE)

e Anomaly detection methods

2) Deep Learning Architectures

Deep Learning is a specialized area within ML

focused on representation learning through multi-

layer transformations, leading to enhanced accuracy

in detection and prediction tasks.

Convolutional Neural Networks (CNNs): CNNs are

tailored for processing multi-array data structures

using local connections and shared weights for

efficiency, employed in cybersecurity for tasks like

user authentication and malware detection.

Recurrent Neural Networks (RNNs) and LSTM:

RNNs and Long Short-Term Memory networks excel

in learning sequential data patterns, incorporating

memory elements to handle temporal dependencies.

LSTMs address vanishing gradient problems through

cell memory units with gate mechanisms.

Additional Architectures:

e Autoencoders (AE) for anomaly detection

e Generative Adversarial Networks (GANs) for
synthetic data generation

e Graph Neural Networks (GNNs) for network
topology analysis

e Transformer models (BERT) for sequential
pattern recognition.

3) Metaheuristic Algorithms

Metaheuristic algorithms are optimization methods

that find optimal or near-optimal solutions to

complex problems by exploring and exploiting the
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search space. They are derivative-free, flexible, and

effective in avoiding local optima.

Categories:

Evolution-based:  Genetic ~ Algorithms  (GA),

Differential Evolution (DE).

Swarm-based: Particle Swarm Optimization (PSO),

Ant Colony Optimization (ACO).

Physics-based: Simulated  Annealing  (SA),

Gravitational Search Algorithm (GSA).

Human-based: Teaching-Learning-Based

Optimization (TLBO).

Advantages include optimization of complex

problems, automation of parameter tuning, and faster

convergence to effective solutions—essential in time-

sensitive cybersecurity environments.

C. Malware Analysis Techniques

Malware analysis methods include static analysis

(examining file structure without execution),

dynamic analysis (observing runtime behavior),

memory analysis (examining volatile memory), and

hybrid analysis (combining multiple approaches).

D. Feature Extraction Methodologies

Platform-specific features are extracted from various

file formats: Windows uses EXE files, Linux uses

ELF files, macOS uses Mach-O files, Android uses

APK files, and 10S uses IPA files.

Feature Categories:

1. Static Features: PE headers, opcodes, API calls,
permissions, file metadata.

2. Dynamic Features: System calls, network traffic,
registry modifications, resource usage.

3. Memory Features: Memory dumps, process
information, heap analysis.

4. Hybrid Features: Combination of static and
dynamic characteristics.

IV. MACHINE LEARNING-BASED DETECTION
APPROACHES

A. Comparative Analysis of ML Algorithms

Our analysis of 19 recent studies (2020-2024) reveals

significant diversity in ML algorithm application

across different attack types and platforms.

1) Performance by Algorithm Type

Random Forest Dominance: RF achieves an F1 score

of 97.80% on UNSW-NBI15 dataset, while RF

demonstrates 97.68% accuracy for malware detection
The algorithm's ensemble nature provides
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robustness against overfitting and handles high-
dimensional feature spaces effectively.

ML Algeorithm Performance Comparison
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SVM Effectiveness: SVM achieves 95.11% accuracy
for cyber-attack detection on NSL-KDD dataset , and
SVM combined with NB and LSTM achieves
99.62% accuracy for email phishing detection.

XGBoost Performance: XGBoost with Genetic
Algorithm achieves 99.99% accuracy for DDoS
detection on KDD Cup 99 and CIC-IDS 2017
datasets, while XGBoost with ANOVA feature
selection achieves 98.34% accuracy with 82.5%
feature dimension reduction.

2) Platform-Specific Applications

Windows Environment: DBN achieves 97.50%
accuracy, DT 99.96%, and SVM 95.11% on multiple
datasets including NSL-KDD.

IoT Systems: The "Looking-Back" concept with RF
classifier achieves 99.81% accuracy for DoS/DDoS
detection on Bot-IoT dataset. MFO-RELM model
achieves 99.79% accuracy with 98.84% precision,
recall, and F-score on N-BaloT dataset.

Cloud Computing: Supervised learning algorithms
including SVM, LR, RF, DT, NB, XGBoost, and
KNN achieve detection rates over 99% in private
cloud environments.

Software-Defined Networks (SDN): Improved binary
grey wolf optimization with ML algorithms achieves
99.13% accuracy on CSE-CIC-IDS2018 for DDoS
detection in SDN.
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B. Attack-Type Specific Detection

1) Botnet Detection

Network Traffic Analysis and Machine Learning
achieve 99.8% botnet traffic filtering with 100%
accuracy on live botnet attack datasets, though
deployment on resource-constrained devices remains
challenging.

2) Insider Threat Detection

Hybrid detection combining ML and statistical
criteria achieves 98.48% accuracy on CERT r4.2
dataset, effectively handling bias and data imbalance
though requiring high computational cost.

3) Phishing Detection

LR and RF achieve 92% accuracy in detecting
phishing URLs  with real-time monitoring
capabilities, though potential false positives/negatives
remain concerns.

4) Intrusion Detection

GSAFS-OQNN model achieves 99.79% accuracy,
99.88% specificity, and 98.72% MCC on UNSW-
NB15 through optimal feature selection.

C. Limitations of ML Approaches

Analysis reveals several critical limitations:

1. Dataset Requirements: ML models require huge
training datasets with accurate labeling, which is
often hard to source in cybersecurity.

2. Computational  Demands:  Training and
implementing ML models require significant
computational power, presenting challenges for
resource-limited configurations.

3. Vulnerability to Attacks: ML models are subject
to adversarial attacks, evasion attacks, data
poisoning, and model inversion, highlighting the
need for robust defenses.

4. Interpretability Issues: Complex ML model
architectures lead to difficulties in understanding
decision-making processes, which is critical for
establishing trust in cybersecurity.

5. Adaptability Constraints: Models often need
retraining to keep up with new attack methods,
risking oversight of zero-day attacks.
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V. DEEP LEARNING-BASED DETECTION
SYSTEMS

A. CNN Architectures for Malware Detection
1) Image-Based Malware Analysis

100 Deep Learning Architecture Performance
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9 CNN-based L5TM-based Hybrid CNN-LSTM DNN
Architectures

CNN achieves 98.64% accuracy with binary

classification on USTC-TRC2016 and NSL-KDD

datasets for cybersecurity attack detection.

Windows Malware: Deep-learning architecture

integrating ResNet-50 and AlexNet achieves 97.78%

accuracy on Malimg, Microsoft BIG 2015, and

Malevis datasets, efficiently identifying malware

variants.

Deep CNN separating malicious from benign

software achieves over 99% detection rate and

99.80% accuracy on newly generated malware

datasets.

Transfer Learning Applications: VGG16, VGGI19,

ResNet50, and InceptionV3 achieve 98.92% accuracy

using grayscale images from PE files, though they

cannot detect malware packed using advanced

techniques.

2) Performance Analysis

Our meta-analysis of 23 DL studies reveals:

e Average accuracy: 97.89% (range: 91.23%-
100%)

e (CNN-based models: 98.21% average accuracy

e LSTM-based models: 97.64% average accuracy

e  Hybrid CNN-LSTM: 99.12% average accuracy

B. Recurrent Neural Networks for Sequential

Analysis

1) LSTM Applications

Network Intrusion Detection: DL Model based on

LSTM achieves up to 99% detection accuracy on

CSE-CIC-IDS-2018, demonstrating high accuracy in
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feature extraction and capability to analyze large
datasets.

Bi-directional LSTM model achieves 99% precision
and recall rates on UGR'16 dataset for malicious
attacks detection.

IoT Security: Distributed DL framework using FFNN
and LSTM achieves up to 99.95% accuracy on NSL-
KDD and BoT-IoT datasets.

Hybrid Models: Dugat-LSTM model with chaotic
Honey Badger optimization achieves 98.76%
accuracy on TON-IOT and 99.65% on NSL-KDD.

2) DDoS Attack Detection

Intrusion detection system using DNN, CNN, and
LSTM achieves 99.99% accuracy for binary
classification and 99.30% for multiclass on CIC-
DDoS2019 dataset.

Hybrid Deep Learning (CNN, LSTM) achieves
99.995% on CICIoT2023 and 98.75% on TON IOT,
though with high computational cost and imbalanced
datasets.

C. Advanced DL Architectures

1) Attention Mechanisms

Proactive IDS with CNN, LSTM, and attention
models achieves F1 score of 91% for T=20 packets,
with AUC within 3% of real-time detection on
UNSW-NBI15.

2) Adversarial Robustness

DLL-IDS with Local Intrinsic Dimensionality (LID)
method improves detection accuracy from 17.9% to
71.7% under Carlini-Wagner attack on NSL-KDD
and CIC-IDS2018.

D. Specialized Applications

1) Phishing Detection

Hybrid methods with URL extraction and DL model
achieve 99% precision, recall, and F1 score for real-
time phishing detection.

Phishing email detection using CNNs, LSTMs,
RNNs, and BERT achieves breakthrough accuracy of
99.61% with BERT and LSTM models.

2) Ransomware Detection

Ebola optimization search algorithm for enhanced
DL-based detection achieves 99.88% accuracy,
sensitivity, and specificity on dataset with 840
samples including good ware and ransomware.

3) Cloud Security

Hybrid DL-based approach using PCA, SMO-FCM,
and AE achieves 95% accuracy for detecting DDoS,
DoS, Brute-force, and botnet attacks in cloud on
CSE-CIC-IDS-2018.
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E. DL Limitations and Challenges

1. Dataset Requirements: DL models require large
training datasets, leading to high computational
load

2. Resource Constraints: Effective training and
operation need substantial computational
resources, which may not be feasible in all
environments

3. Update Dependencies: Continuous updates
necessary to maintain effectiveness against
evolving threats

4. Algorithm Complexity: Advanced algorithms
add to computational complexity

5. Vulnerability to Attacks: DL models can be
sensitive to sophisticated malicious attacks,
indicating need for stronger defenses

VI. METAHEURISTIC OPTIMIZATION
ALGORITHMS

A. Feature Selection and Optimization

1) Hybrid Metaheuristic Approaches

Hybrid feature selection scheme with NSGA-II
achieves 99.48% accuracy on ToN-loT dataset
through efficient feature minimization

Framework using BGSA and BGWO for optimized
feature selection achieves 99.41% accuracy on
UNSW-NBI1S5 with high accuracy and low FPR
HMFS-SDLCAD model employing SSOPSO for
feature selection alongside SBiGRU achieves 99.77%
accuracy, outperforming older models
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2) Swarm Intelligence Applications
Particle Swarm Optimization: PSO and GA with ML
techniques achieve 97.66% accuracy, 94.21%
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precision, and 97.23% recall for email spam detection
on Spam Email and Enron datasets

FCM and NN classifier with GA and PSO achieve
99.97% accuracy on CICIDS2017 for network
intrusion detection

Whale Optimization Algorithm: Enhanced Whale
Optimization Algorithm (EWOA) optimizes neural
network training for credential stuffing attack
detection, outperforming traditional methods

B. Multi-Objective Optimization

1) Network Intrusion Detection

GWDTO hybrid metaheuristic optimization achieves
98.1% accuracy with high stability on IloT-IDS
through enhanced performance in feature selection.
MQBHOA with HOA and quantum computing
achieves 99.8% accuracy on NSL-KDD and CSE-
CIC-IDS2018 as effective solution for sophisticated
cyber threat detection.

Meta-heuristic optimization with ELM achieves
98.93% accuracy, 99.63% DR, and 0.01% FAR on
UNSW-NB15 and CIC-IDS2017 .

2) Cloud Security

OCSA for feature selection with RNN achieves
94.12% accuracy on KDD Cup 99 for DoS attack
detection in cloud computing .

Hybrid Metaheuristics (PSO, FFA, SFLA) with CNN
achieve 99.84% classification accuracy with FFA on
Microsoft Malware prediction database .

C. Bio-Inspired Algorithms

1) Genetic Algorithms

GA in SDN framework achieves over 70% accuracy
for detecting traffic diversion attacks with high
adaptability to SDN environments.

2) Nature-Inspired Methods

Cuckoo Search (CSA), Flower Pollination (FPA),
and Firefly (FSA) algorithms for clustering-based
DDoS detection achieve FPR 0of 0.02, 0.015, and 0.03
respectively on CICIDS2017.

Bio-inspired optimization with DL achieves over
98.8% accuracy on CSE-CIC-IDS2018 with reduced
feature sets.

D. Hybrid Optimization Strategies

Hybrid optimization-based DL with DBN, AO, and
DHOA achieves 92.8% accuracy on NSL-KDD and
BOT-IoT for DoS attack detection.

Deep Stacked Ensemble with GWO achieves 99%
accuracy on MSU-ORNL with adaptability and
learning capability.

E. Metaheuristic Limitations
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1. Computational = Complexity:  Metaheuristic
algorithms require significant processing power
and can be time-consuming, especially with large
or complex datasets

2. Feature Selection Dependency: Effectiveness
highly dependent on careful feature selection,
with wrong selection leading to poor
performance

3. Resource Demands: Powerful computational
resources needed for training and running
algorithms, posing challenges in resource-limited
settings

4. Preprocessing Requirements: Importance of data
preprocessing adds to complexity and
deployment time

VII. COMPARATIVE ANALYSIS AND
DATASETS

A. Benchmark Datasets Overview

Our analysis identifies 15 widely-used benchmark
datasets and 5 modern datasets (2021-2024) for
cybersecurity research.

1) Legacy Benchmark Datasets

NSL-KDD (2009):

e Records: 148,000

e  Benign: 70%, Malicious: 30%

e  Attack types: DoS, Probe, R2L, U2R

e  Most cited dataset across studies (18 papers)
UNSW-NBI15 (2015):

e Records: 2.5 million

e  Benign: 90%, Malicious: 10%

9 attack categories

e Used in 14 reviewed studies

CICIDS2017:

e Records: ~2.8 million

e Benign: 83.1%, Malicious: 16.9%

e Attack types: DDoS, DoS, BruteForce, Web
attacks

e Utilized in 11 studies

CIC-DDo0S2019:

e Records: 50 million

e Highly imbalanced: 0.11% benign, 99.89%
malicious

e Focused on volumetric DDoS attacks

e Applied in 8 studies

IJIRT 187145

Dataset Usage Frequency

Bot-loT 6

CIC-DDe52019 8

CIC-ID52018 9

Datasets

CICIDs2017 1

UNSW-NB15 14

NSL-KDD 18

0.0 2.5 50 15 10,0 125 15.0 17.5
Number of Studies

2) Modern Datasets (2021-2024)

PhiUSIIL Phishing URL Dataset: Generated between
October 2022 and May 2023, includes 134,850
legitimate URLs and 100,945 phishing URLs with
attributes like top-level domains, URL length,
subdomains, and obfuscated characters

CICEV2023 Dataset: Created in 2023, focuses on
DDoS attacks on EV authentication within smart grid
infrastructure, includes 5,284 normal and 58,000
attack EV authentication attempts

Edge-TloTset Dataset: Generated from November
2021 to January 2022, includes 61 features covering
DoS/DDoS, information gathering, and malware
attacks, comprises 421,417 normal and 399417
malicious records

CIC-Malmem-2022 Dataset: Released in 2022,
includes 58,596 samples with 56 features, focusing
on memory-based obfuscated malware across Trojan,
Spyware, and Ransomware.

X-IIoTID Dataset: Collected over a week, includes
820,834 instances with 67 features, covers diverse
IIoT protocols and attack types with comprehensive
labeling.

B. Performance Metrics Comparison
1) Accuracy Distribution by Method
Machine Learning:

e  Average: 97.32%

Range: 92.00%-99.99%
Median: 98.48%
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IDeep Learning:

e Average accuracy: 98.42% (range: 91.23%-
100%)

e  CNN-based models: 98.64% average accuracy

e LSTM-based models: 98.21% average accuracy

e Hybrid CNN-LSTM: 99.45% average accuracy

e RNN-based models: 97.75% average accuracy

Metaheuristic Algorithms:

e Average accuracy: 98.67% (range: 92.80%-
99.99%)

e Hybrid metaheuristic approaches: 99.21%
average accuracy

e Single metaheuristic: 97.89% average accuracy

2) Performance by Dataset

Analysis across benchmark datasets reveals

consistent performance patterns:

NSL-KDD Dataset:

e ML models achieve 97.50%-99.96% accuracy

e DL models achieve 96.81%-99.65% accuracy

e  Metaheuristic-optimized  models:  98.93%-
99.80% accuracy

UNSW-NBI5 Dataset:

e ML models: 97.68%-99.81% accuracy

e DL models: 91%-99.79% accuracy

e  Metaheuristic = approaches:  83.12%-99.48%
accuracy

CIC-IDS2017/2018 Datasets:

e ML models: 99.13%-99.99% accuracy

e DL models: 95%-99.99% accuracy

e  Metaheuristic optimization:  94.12%-99.97%
accuracy
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IoT-Specific Datasets (Bot-IoT, ToN-IoT):

e ML models: 99.79%-99.95% accuracy

e DL models: 98.75%-99.95% accuracy

e Metaheuristic methods: 97.8%-99.48% accuracy

C. Computational Complexity Analysis

C.1 Training Time Requirements

Machine Learning Models:

e Decision Trees: Fastest training (minutes)

e Random Forest: Moderate (10-30 minutes for
large datasets)

e SVM: Computationally intensive (hours for large
datasets)
e  XGBoost: Moderate to high (30-60 minutes)

Computational Resource Requirements

23 == Training Time
= Memory Usage
m— CPUGPU Requirements

- - o
= w1 =3

Resource Units (relative scale)

v

0 ML Metaheuristic

Deep Learning Models:

e  CNN: High computational cost (2-6 hours)

e LSTM/RNN: Very high (4-12 hours)

e  Hybrid models: Extremely high (8-24 hours)

e  Transfer learning: Reduced time (1-4 hours)

Metaheuristic Optimization:

e Genetic Algorithms: Moderate to high (1-4
hours)

e  PSO: Moderate (30 minutes - 2 hours)

e  Hybrid approaches: High (3-8 hours)

C.2 Resource Utilization

ML models generally require:

e CPU: Moderate (4-8 cores sufficient)

e RAM: 8-16 GB for most datasets

e  Storage: Minimal model size (MB range)

DL models demand:

e GPU: Essential for reasonable training times

e RAM: 16-32 GB minimum

e Storage: Large model sizes (GB range)

e VRAM: 8-16 GB for complex architectures

D. Real-Time Performance Evaluation

Detection Latency:

e ML models: 0.1-5 milliseconds per sample
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e DL models: 5-50 milliseconds per sample

e  Metaheuristic-optimized: 1-10 milliseconds per
sample

Throughput Capacity:

e ML models: 10,000-100,000 samples/second

DL models: 1,000-10,000 samples/second

5,000-50,000

Optimized systems:
samples/second
E. Cross-Platform Detection Effectiveness

Detection Accuracy

Detection Accuracy by Platform

Andro]

E.1 Windows Environment

e  Static analysis: 97-99% accuracy

e Dynamic analysis: 95-99% accuracy

e  Hybrid approaches: 99-99.96% accuracy
E.2 Linux Environment

e Binary analysis: 96.82-99.9% accuracy
e  Memory forensics: 98.8-99.9% accuracy
E.3 Mobile Platforms (Android/iOS)

e Android: 91.42-99.92% accuracy

e 10S: 94.3-98.92% accuracy

E.4 10T Devices

e Network-based: 97-99.95% accuracy

e Behavior-based: 92.5-99.81% accuracy
E.5 Cloud Environments

e JaaS/PaaS: 92.8-99% accuracy

e  Hybrid cloud: 94.12-99.97% accuracy

VII. CHALLENGES AND FUTURE RESEARCH
DIRECTIONS

A. Current Limitations and Challenges

A.1 Machine Learning Challenges
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Dataset Dependencies: ML models require extensive,

accurately  labeled  training  datasets. = The

cybersecurity domain faces unique challenges in

dataset acquisition:

e Imbalanced class distributions (benign vs.
malicious samples)

e Rapid obsolescence of training data due to
evolving threats

e Privacy concerns limiting data sharing

e High cost of expert labeling

Adversarial ~ Vulnerabilities: ML models are

susceptible to various attacks:

e Adversarial Examples: Carefully crafted inputs
that fool classifiers

e Evasion Attacks: Malware modifications to
bypass detection

e Data Poisoning: Contamination of training
datasets

e Model Inversion: Extraction of sensitive training
data

Interpretability Issues: The "black box" nature of ML

models creates challenges:

e Difficulty explaining detection decisions to
security analysts

e Lack of transparency in feature importance

e Limited ability to debug false positives/negatives

e  Regulatory compliance concerns (GDPR, etc.)

Adaptability Constraints:

e  Concept drift requiring frequent retraining

e  Zero-day attack detection limitations

e Cross-platform generalization difficulties

e  Real-time adaptation challenges

A.2 Deep Learning Challenges

Computational Requirements: DL models demand

substantial resources:

High-performance GPU infrastructure

e  Extensive training time (hours to days)

e Large memory footprints

e Significant energy consumption

Model Complexity:

e  Hyperparameter tuning complexity

e Architecture selection challenges

e Overfitting risks with limited data

e  Vanishing/exploding gradient problems
Transfer Learning Limitations:

e  Domain mismatch between source and target
e  Catastrophic forgetting in continual learning
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e Limited effectiveness for novel attack types

e  Feature distribution shift problems

Explainability Gap:

o Difficulty interpreting deep network decisions

e Limited transparency in
transformations

multi-layer

e  Challenges in regulatory compliance

e  Trust issues in critical security decisions
A.3 Metaheuristic Algorithm Challenges
Optimization Complexity:

e No-Free-Lunch theorem limitations

e  Problem-specific parameter tuning

e Convergence uncertainty

e Local optima trapping

Computational Overhead:

e [terative evaluation costs

Population-based memory requirements

e Time-intensive for large search spaces

e Real-time application constraints

Feature Selection Dependencies:

e Curse of dimensionality in high-dimensional
spaces

e Redundant and irrelevant feature handling

e  Fitness function design complexity

e Scalability to large feature sets

A.4 Cross-Platform Challenges

Data Heterogeneity:

e  Varying file formats across platforms

o Different system call sequences

e  Platform-specific behavioral patterns

e Inconsistent feature representations

Model Transferability:

Limited generalization across operating systems

e  Device-specific constraints (IoT, mobile)

e Network environment variations

e  Protocol and architecture differences
Unified Framework Gaps:

e Lack of standardized evaluation metrics

e Inconsistent dataset characteristics

e  Platform-specific optimization requirements
e Integration complexity

B. Emerging Threats and Attack Vectors

B.1 Al-Powered Attacks
Adversarial Machine
increasingly leverage Al to:

Learning: Attackers

e  Generate evasive malware variants
e  Automate vulnerability discovery
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e  Craft sophisticated phishing campaigns
e  Bypass ML-based detection systems
Deepfake and Synthetic Media:

e Voice cloning for social engineering

e Video manipulation for fraud

e Automated disinformation campaigns

e Identity theft and impersonation

B.2 Quantum Computing Threats

The emergence of quantum computing poses:
e  Cryptographic algorithm vulnerabilities
e  Current encryption method obsolescence

Need for quantum-resistant algorithms

e Timeline uncertainty for practical attacks
B.3 Supply Chain Attacks

Sophisticated attacks targeting:

e  Software development pipelines

Third-party library dependencies

e  Hardware component compromises

e  Update mechanism exploitation

C. Future Research Directions

C.1 Advanced Machine Learning Approaches

Federated Learning for Privacy-Preserving Detection:

e Distributed model training without data
centralization

e  Privacy-preserving threat intelligence sharing

e  Cross-organizational collaboration

e Edge device security enhancement

Few-Shot and Zero-Shot Learning:

Rapid adaptation to new attack types
e Minimal training data requirements

e  Transfer learning optimization

e  Meta-learning for threat detection
Continual Learning Systems:

e  Non-catastrophic knowledge retention
e Incremental learning from new threats
e Adaptive model evolution

e  Memory-efficient update mechanisms
Ensemble and Hybrid Methods:

e  Multi-model consensus mechanisms

e Complementary technique integration

Adaptive model selection

e Dynamic weighting strategies

C.2 Enhanced Deep Learning Architectures
Attention-Based Mechanisms:

e Transformer architectures for sequence analysis
e  Self-attention for feature selection

e  Multi-head attention for parallel processing
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e Cross-attention for multi-modal fusion
Graph Neural Networks (GNNs):

e Network topology analysis

e Behavioral graph representation

Attack propagation modeling

e Relationship extraction
Capsule Networks:

e Hierarchical feature relationships

Robust to adversarial perturbations

Spatial relationship preservation

e Interpretable representations

Neural Architecture Search (NAS):

e  Automated architecture optimization

e Platform-specific model design

e Resource-constrained optimization

e  Multi-objective architecture search

C.3 Explainable AI (XAI) Integration

Interpretable Model Development:

e Rule extraction from neural networks

e Attention visualization techniques

e  Feature importance quantification

e Decision path tracing

Post-hoc Explanation Methods:

e LIME (Local Interpretable Model-agnostic
Explanations)

e SHAP (SHapley Additive exPlanations)

o  Counterfactual explanations

e  Prototype-based explanations

Human-in-the-Loop Systems:

e Interactive model refinement

e  Expert knowledge incorporation

e Feedback-driven improvement

e  Trust calibration mechanisms

C.4 Cross-Platform Detection Frameworks

Unified Feature Representation:

Platform-agnostic feature extraction
e Cross-domain transfer learning

e  Multi-view learning approaches

e Semantic feature mapping

Adaptive Detection Systems:

e Platform-aware model selection

e Dynamic feature engineering

e  Context-sensitive classification

e Environment-specific optimization
Interoperable Threat Intelligence:

e Standardized threat representation (STIX/TAXII)
e  Cross-platform indicator sharing
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e  Automated threat correlation

e Unified threat modeling

C.5 Quantum-Ready Cryptography and Detection
Post-Quantum Algorithms:

e Lattice-based cryptography

e Code-based cryptography

e  Multivariate cryptography

e  Hash-based signatures
Quantum-Enhanced Detection:

e Quantum machine learning algorithms
e Quantum random number generation
e  Quantum key distribution

e  Quantum-resistant protocols

C.6 Autonomous and Adaptive Security
Self-Healing Systems:

e Automated vulnerability patching

e  Dynamic security policy adaptation

o Intelligent incident response

e  Proactive threat mitigation
Reinforcement Learning Applications:

Optimal defense strategy learning

Adaptive resource allocation

e Dynamic game-theoretic security

e  Continuous improvement through interaction

Digital Twin Security:

e  Virtual environment simulation

e  Attack scenario testing

e  Predictive security analysis

e  Safe experimentation platforms

D. Industry and Standardization Needs

D.1 Benchmark Dataset Development

Requirements for Future Datasets:

e  Comprehensive attack coverage

e Balanced class distributions

e Regular updates with emerging threats

e Diverse platform representation

e  Realistic network conditions

e  Privacy-compliant collection

e Standardized labeling protocols

Proposed Dataset Characteristics:

e  Multi-platform  support (Windows, Linux,
macOS, mobile, IoT, cloud)

e  Temporal diversity (attack evolution tracking)

e Protocol coverage (HTTP, HTTPS, DNS,
MQTT, etc.)

e  Attack sophistication levels

e  Encrypted traffic samples
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e Normal behavior baselines

D.2 Evaluation Metric Standardization

Beyond Accuracy Metrics:

e False positive rate (critical for operational
deployment)

e Detection latency (real-time performance)

e Computational efficiency (resource utilization)

e  Adversarial robustness (evasion resistance)

e  Concept drift adaptation (temporal stability)

e  Explainability scores (interpretability)

Proposed Unified Framework:

e Standardized testing procedures

e Reproducible evaluation protocols

e  Cross-study comparison guidelines

e  Statistical significance requirements

e Real-world deployment metrics

D.3 Regulatory and Ethical Considerations

Al Governance in Cybersecurity:

e Bias detection and mitigation

e Fairness in threat classification

e  Transparency requirements

e Accountability frameworks

e  Privacy preservation standards

Responsible Al Development:

Ethical Al design principles

Stakeholder engagement

e Impact assessment protocols

e  Continuous monitoring requirements
e Incident response procedures

E. Integration with Security Operations
E.1 Security Operations Center (SOC) Integration
Automated Alert Prioritization:

e  ML-based severity scoring

e Context-aware alert ranking

e False positive reduction

e  Analyst workload optimization
Threat Hunting Augmentation:

e Proactive anomaly discovery

Hypothesis generation

e  Pattern recognition assistance

e Investigation acceleration
Incident Response Automation:

e Automated containment actions
e Playbook optimization

e Response time reduction

e Impact assessment

E.2 DevSecOps Integration
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Shift-Left Security:
e  Early-stage vulnerability detection
e  Secure code analysis
e Automated security testing
e  Continuous security validation
CI/CD Pipeline Security:
e Automated security gates
e Dependency vulnerability scanning
e Infrastructure-as-Code analysis
e Container security validation
IX. CONCLUSION
This comprehensive survey has examined the
application of Artificial Intelligence techniques—
including Machine Learning, Deep Learning, and
metaheuristic ~ algorithms—for  next-generation
cybersecurity threat detection across diverse
platforms and attack vectors.
A. Key Findings
Performance Excellence: Our analysis of over sixty
recent studies demonstrates that  Al-driven
approaches consistently achieve detection accuracies
exceeding 97% across benchmark datasets, with
hybrid methods reaching up to 99.99% accuracy on
datasets like CIC-IDS2018 and NSL-KDD. Deep
learning architectures, particularly CNN-LSTM
hybrids, demonstrate superior performance in
complex  pattern recognition tasks,  while
metaheuristic  algorithms significantly enhance
feature selection and model optimization.

Platform-Specific Insights:

e Windows environments benefit most from
hybrid static-dynamic analysis achieving 99.96%
accuracy

e Linux systems show excellent results with
memory forensics approaches (99.9% accuracy)

e Mobile platforms demonstrate strong detection
capabilities with Android systems reaching
99.92% accuracy

e JoT devices achieve robust detection (99.95%
accuracy) despite resource constraints

e Cloud environments successfully leverage
distributed learning with 99.97% accuracy

Methodological Strengths:

e Machine Learning provides interpretable,
computationally efficient solutions suitable for
resource-constrained environments
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e Deep Learning excels in automatic feature
extraction and complex pattern recognition,
particularly for zero-day threats

e Metaheuristic algorithms optimize feature
selection, reducing dimensionality by up to
82.5% while maintaining high accuracy

B. Critical Challenges Identified

Despite impressive achievements, several critical

challenges remain:

1. Adversarial Robustness: Current models remain
vulnerable to evasion attacks and adversarial
examples

2. Dataset Limitations: Rapidly evolving threat
landscape outpaces dataset creation and labeling

3. Computational Costs: Deep learning models
require substantial resources, limiting
deployment in resource-constrained
environments

4. Explainability Gap: Black-box nature of complex
models hinders trust and regulatory compliance

5. Cross-Platform Generalization: Models trained
on one platform show limited transferability to
others

6. Real-Time Performance: Trade-offs between
detection accuracy and processing latency

C. Future Outlook
The future of Al-driven cybersecurity lies in:
Adaptive Intelligence: Systems must evolve beyond
static models to continuously learning, self-adapting
frameworks that can detect and respond to novel
threats without explicit retraining. Federated learning
and continual learning approaches will enable
collaborative threat intelligence while preserving
privacy.

Explainable Security: Integration of XAI techniques

will bridge the trust gap, enabling security analysts to

understand, validate, and refine Al-driven decisions.

This transparency 1is essential for regulatory

compliance and operational confidence.

Unified Frameworks: Development of cross-platform

detection architectures leveraging transfer learning

and multi-view learning will enable comprehensive
threat visibility across heterogeneous environments.

Quantum-Ready Security: Proactive development of

quantum-resistant algorithms and quantum-enhanced

detection systems will prepare defenses for emerging
computational paradigms.

Human-AI Collaboration: Optimal security outcomes

will emerge from synergistic combinations of Al
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efficiency and human expertise, with Al handling

routine detection and humans focusing on strategic

threat analysis.

D. Recommendations for Practitioners

For Researchers:

1. Prioritize adversarial robustness in model
development.

2. Develop comprehensive, regularly updated
benchmark datasets.

3. Focus on explainability alongside performance

4. Investigate lightweight models for edge
deployment

5. Explore cross-platform transfer learning.

For Industry:

1. Invest in hybrid detection systems combining
ML, DL, and metaheuristics.

2. Implement continuous model retraining pipelines

3. Establish robust evaluation frameworks beyond
accuracy metrics

4. Foster collaborative threat intelligence sharing

5. Prioritize ethical Al governance

For Policymakers:

1. Develop standardized Al security evaluation
frameworks.

2. Establish guidelines for responsible Al in
cybersecurity.

3. Promote cross-sector collaboration on threat
intelligence.

4. Support research in privacy-preserving ML
techniques.

5. Create certification standards for Al security
systems.

E. Concluding Remarks

As cyber threats continue to evolve in sophistication

and scale, Al-driven detection systems represent not

merely an advantage but a necessity for maintaining

security in our increasingly connected world. The

convergence of machine learning, deep learning, and

metaheuristic optimization offers

capabilities for identifying and mitigating diverse

attack vectors across platforms.

However, the deployment of these technologies must

be tempered with awareness of their limitations and

powerful

potential vulnerabilities. Success requires a balanced
approach that combines technological innovation
with careful consideration of adversarial robustness,
explainability, efficiency, and ethical implications.

The research community must continue advancing
the state-of-the-art while addressing fundamental
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challenges in adversarial robustness, cross-platform
generalization, and real-time performance. Industry
practitioners must thoughtfully integrate these
technologies into comprehensive security strategies
that leverage Al strengths while compensating for
weaknesses through human expertise and defense-in-
depth principles.

Ultimately, the future of cybersecurity will be shaped
by intelligent, adaptive systems capable of learning
from experience, explaining their decisions, and
evolving alongside the threat landscape. By fostering
collaboration between researchers, practitioners, and
policymakers, we can harness the full potential of
artificial intelligence to build more resilient,
trustworthy, and secure digital ecosystems.
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