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Abstract—Agricultural systems are becoming more 

vulnerable to climate changes, land degradation, and 

limited resources. This study presents a new Climate-

Adaptive Agriculture AI framework that predicts crop 

resilience by using deep learning and generative 

counterfactual reasoning. The model combines climate, 

soil, and plant data with a strong late-fusion architecture 

and a conditional Variational Autoencoder-Generative 

Adversarial Network (cVAE-GAN) to simulate different 

scenarios. By linking predictions with understandable 

results through SHAP (SHapley Additive exPlanations), 

the framework provides accurate forecasts along with 

practical insights for climate-resilient farming practices. 

The experiments showed a 15% reduction in RMSE 

compared to baseline models and improved 

understanding. This highlights the framework's 

potential as a tool to support decisions in sustainable 

agriculture. 

 

Index Terms—Climate-Adaptive AI, Crop Resilience, 

Multimodal Learning, Generative Counterfactuals, 

Precision Agriculture, Explainable AI (XAI) 

 

I. INTRODUCTION 

 

Agriculture is crucial for global food security, but 

climate change increasingly threatens it. Rising 

temperatures, erratic rainfall, soil degradation, and 

extreme weather events have disrupted productivity 

around the world. The Food and Agriculture 

Organization (FAO, 2023) states that global crop 

yields could fall by up to 20% by 2050 if current trends 

continue, with developing regions facing the biggest 

impacts. These challenges, along with rapid 

population growth and resource depletion, require new 

technologies to ensure farming is sustainable and 

resilient to climate change. Traditional statistical and 

rule-based models often struggle to capture the 

dynamic and complex interactions among climate, 

soil, and crop systems, which limits their effectiveness 

in guiding real-time decision-making [1]. 

In this situation, Artificial Intelligence (AI) has 

become a powerful tool for modern agriculture. With 

improvements in machine learning and deep neural 

networks, AI can analyze large and varied datasets like 

satellite images, climate records, and soil chemistry to 

find patterns that humans might miss. These models 

improve crop yield predictions, identify stress 

conditions, and optimize irrigation and fertilization 

schedules. However, most existing AI systems depend 

on data from a single source and do not explain their 

predictions or simulate “what-if” scenarios. This lack 

of explanation is crucial for handling uncertainty in 

agricultural systems [2]. 

To overcome these challenges, this research presents 

the Climate-Adaptive Agriculture AI (CAAI) 

framework, which combines multimodal deep 

learning, generative counterfactual simulation, and 

explainable AI. The model integrates satellite, soil, and 

climate data using a multimodal fusion network. It 

uses a conditional Variational Autoencoder–

Generative Adversarial Network (cVAE-GAN) to 

simulate adaptive scenarios and SHAP (SHapley 

Additive exPlanations) for interpretability. This 

combined system allows for accurate predictions and 

practical insights, helping farmers and policymakers 

make informed and adaptable decisions. By merging 

predictive modeling with generative reasoning, CAAI 
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shifts agricultural AI from merely predicting outcomes 

to actively adapting, supporting sustainable and data-

driven climate resilience[3]. 

 

II. RELATED WORK 

 

Artificial Intelligence (AI) and Machine Learning 

(ML) are changing agriculture by providing smart 

tools for predicting crop yields, detecting diseases, and 

managing resources efficiently. Early studies used 

traditional models like Linear Regression, Support 

Vector Machines (SVM), and Random Forests (RF) to 

estimate yields (Lobell et al., 2015; Jeong et al., 2016). 

While these models worked well in certain areas, they 

relied on limited climate and soil data. They struggled 

to capture the complex, nonlinear interactions between 

environmental, biological, and agronomic factors. As 

a result, their ability to predict outcomes across 

different agricultural settings was limited [4]. 

The growth of deep learning has greatly enhanced 

agricultural analytics with models that automatically 

extract complex spatial and temporal features. 

Convolutional Neural Networks (CNNs) are widely 

used for crop classification, monitoring plant health, 

and detecting stress using satellite and drone images 

(Zhong et al., 2019). Similarly, Recurrent Neural 

Networks (RNNs), particularly Long Short-Term 

Memory (LSTM) models, are used to analyze 

sequential climate data for yield forecasting (You et 

al., 2017). However, most deep models focus on one 

type of data—either images or weather—ignoring the 

connections between environmental and crop-related 

factors that affect resilience and productivity [5]. 

Recent progress in multimodal learning has aimed to 

integrate various data sources, such as satellite images, 

soil composition, and weather patterns. Zhang et al. 

(2020) showed that combining different data types 

improves accuracy and robustness. Still, many current 

frameworks use early-fusion techniques that merge 

raw data before extracting features, which can lead to 

loss of important information. Late-fusion 

architectures provide a better option by independently 

processing each type of data and then combining high-

level features, preserving vital relationships. However, 

many multimodal models still focus on predictions and 

lack the reasoning ability needed to simulate adaptive 

agricultural scenarios [6]. 

Generative modeling offers a promising way to tackle 

data scarcity and enhance model adaptability. 

Techniques like Generative Adversarial Networks 

(GANs) (Goodfellow et al., 2014) and Variational 

Autoencoders (VAEs) (Kingma & Welling, 2014) can 

generate synthetic data and simulate scenarios, but 

they are rarely designed for decision support. 

Counterfactual reasoning (Pearl, 2009) boosts this 

capability by addressing “what-if” questions, which 

are crucial for understanding how environmental 

changes impact yield outcomes. Interpretability is 

another challenge since most deep models act like 

black boxes. Explainable AI (XAI) methods, such as 

LIME, Layer-Wise Relevance Propagation, and SHAP 

(Lundberg & Lee, 2017), enhance transparency, with 

SHAP being the most reliable for attributing features. 

However, these methods are often used after the fact, 

which limits real-time understanding [7]. 

In summary, while AI has progressed in agricultural 

prediction, existing models struggle with adaptability, 

reasoning, and interpretability. The Climate-Adaptive 

Agriculture AI (CAAI) framework aims to tackle these 

issues through multimodal late-fusion learning, 

counterfactual simulation with a conditional VAE-

GAN, and integrated SHAP-based interpretability, 

creating a unified, transparent, and adaptive approach 

for sustainable climate-resilient agriculture. 

 

III. PROPOSED FRAMEWORK 

 

The proposed Climate-Adaptive Agriculture AI 

(CAAI) framework is intended to model, predict, and 

interpret crop resilience in various climatic and 

environmental conditions. It combines different types 

of data, generative counterfactual simulation, and 

explainable AI reasoning into a single system. Unlike 

traditional machine learning models that rely on one 

data type or fixed relationships, the CAAI framework 

uses multiple data sources, such as satellite imagery, 

climate sequences, and soil parameters, to understand 

complex, nonlinear connections. Additionally, it goes 

beyond prediction by simulating “what-if” scenarios 

that support flexible agricultural decision-making [8]. 

The framework includes three main modules: (i) 

Multimodal Data Fusion, (ii) Generative 

Counterfactual Simulation, and (iii) Resilience 

Prediction and Interpretability, as shown in Fig. 1. 
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Figure 1: Climate-Adaptive Agriculture Ai Framework 

 

3.1 Multimodal Data Fusion 

The first module focuses on effectively combining 

different data sources that represent various aspects of 

agricultural systems. Spatial, temporal, and static data 

are processed through separate encoders before they 

are merged in a late-fusion architecture.  

Spatial data (𝑋𝑖𝑚𝑔) derived from satellite or drone 

imagery are passed through a fine-tuned ResNet-50 

Convolutional Neural Network (CNN), which 

captures spatial and spectral features such as 

vegetation indices (NDVI, EVI), canopy texture, and 

land cover patterns. Temporal climate data (𝑋𝑡𝑒𝑚𝑝), 

including rainfall, humidity, and temperature series, 

are modeled using a Transformer Encoder, which 

employs self-attention to capture long-range temporal 

dependencies and seasonal dynamics. Static soil and 

crop parameters (𝑋𝑡𝑎𝑏𝑢𝑙𝑎𝑟), including pH, nitrogen, 

phosphorus, and potassium levels, are encoded using a 

Multi-Layer Perceptron (MLP) to generate compact 

feature vectors [9]. 

These representations are concatenated and fused 

using a nonlinear transformation to produce a unified 

embedding 𝐸, defined as: 

𝐸 = 𝑓𝑓𝑢𝑠𝑖𝑜𝑛(CNN(𝑋𝑖𝑚𝑔) ⊕ Transformer(𝑋𝑡𝑒𝑚𝑝) ⊕

MLP(𝑋𝑡𝑎𝑏𝑢𝑙𝑎𝑟))                         … (1) 

where ⊕ represents concatenation. This late-fusion 

strategy guarantees that each data type contributes 

valuable and complementary information. It helps the 

model capture the relationships between soil, climate, 

and vegetation. The resulting embedding E serves as 

the basis for both predictive modeling and generative 

reasoning within the framework. 

 
Figure 2: Multimodal Data Fusion Diagram 
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3.2 Generative Counterfactual Simulation 

The second module introduces a Generative 

Counterfactual Mechanism that allows the system to 

simulate different environmental or management 

scenarios. This part uses a conditional Variational 

Autoencoder and Generative Adversarial Network 

(cVAE-GAN), which combines the strengths of VAEs 

with the realism of GANs. The VAE Encoder 

compresses the combined data embedding E into a 

latent space z = Encoder(E), capturing the statistical 

distribution of the data. The Generator (Decoder), 

based on an external variable C (like rainfall reduction 

or fertilizer increase), creates a new counterfactual 

instance X′: 

X′ = G(z, C) 

The Discriminator (D) checks the realism of the 

generated samples. It helps the generator produce 

authentic, agriculturally relevant outcomes. This 

process enables researchers and policymakers to 

conduct “what-if” analyses. For example, they can 

simulate how yield or resilience would react to a 10% 

rise in temperature or a 5% increase in nitrogen levels. 

The module turns the framework from a static 

predictor into a flexible simulation engine that can 

explore and validate climate-resilient agricultural 

interventions [10].  

 
Figure 3: Generative Counterfactual Workflow 

 

3.3 Resilience Prediction and Interpretability 

The final module combines predictive modeling with 

explainability to ensure that results are not only correct 

but also clear and actionable. The fused embedding E 

is passed through a regression head that outputs a 

resilience score (R), a continuous value that represents 

yield potential or normalized resilience on a scale from 

0 to 1. This detailed quantitative assessment allows for 

comparisons across crops, locations, and seasons. 

To improve interpretability, the model uses SHAP 

(SHapley Additive exPlanations), a game-theoretic 

framework that measures the contribution of each 

feature to the final prediction. Local SHAP values 

provide insights at the farm level, highlighting key 

factors that influence a specific crop’s resilience. 
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Meanwhile, global SHAP summaries show the most 

important variables, such as temperature anomaly, 

nitrogen concentration, or rainfall deficit, affecting 

resilience across the dataset. This focus on 

interpretability ensures that the model serves as a clear 

decision-support tool, connecting AI-driven analytics 

with practical agricultural use. 

Together, these three modules—multimodal fusion, 

counterfactual generation, and explainable 

prediction—create a unified framework that learns 

complex environmental relationships, simulates 

adaptive responses, and delivers clear insights for 

sustainable and climate-resilient agriculture [11]. 

 

IV. EXPERIMENTAL SETUP 

 

The experimental setup aimed to assess the 

performance, robustness, and interpretability of the 

Climate-Adaptive Agriculture AI (CAAI) framework. 

We conducted the experiments using real-world 

multimodal agricultural datasets that included 

climatic, soil, and remote sensing data. Our goal was 

to evaluate the model’s ability to predict crop 

resilience accurately, simulate counterfactual 

agricultural scenarios, and offer explainable insights. 

This section describes the datasets used, details on 

model implementation, and the evaluation metrics 

used to validate the framework [12]. 

4.1 Datasets 

The study used four datasets: climate, soil, remote 

sensing, and phenotypic yield data. This ensured a 

strong model evaluation. Climate data came from the 

NASA POWER API (2010-2023) covering Haryana, 

Punjab, and Rajasthan. It provided records of 

temperature, rainfall, humidity, and solar radiation. 

Soil data from the NBSS&LUP and local research 

centers included chemical properties like pH, nitrogen, 

phosphorus, and potassium, as well as physical 

properties such as texture, moisture, and density. All 

soil data was normalized for consistency. Satellite 

imagery from Sentinel-2, with a 10 m resolution, was 

processed on Google Earth Engine. This helped 

correct atmospheric interference, mask clouds, and 

generate indices (NDVI, EVI) to evaluate vegetation 

health. Phenotypic yield data came from the ICAR and 

field trials, supplying actual crop yield and growth 

stage information as ground truth. All datasets were 

aligned in both space and time, and standardized to 

create an integrated multimodal dataset of over 25,000 

records for model training and validation [15]. 

4.2 Model Implementation 

The CAAI framework was implemented using 

TensorFlow 2.13 and PyTorch 1.12, with GPU 

acceleration on an NVIDIA RTX A6000 (48 GB). The 

model included three neural pipelines: a fine-tuned 

ResNet-50 CNN for extracting spatial features from 

satellite imagery, a Transformer Encoder with four 

self-attention layers for modeling temporal climate 

data, and a Multi-Layer Perceptron (MLP) with two 

hidden layers for encoding static soil attributes. The 

outputs of these networks were concatenated and 

passed through a fusion network with fully connected 

layers, ReLU activation, and a dropout rate of 0.3 to 

prevent overfitting. 

A conditional VAE-GAN (cVAE-GAN) was combined 

to generate counterfactual simulations. This approach 

used the strengths of Variational Autoencoders for 

latent representation and GANs for realistic data 

generation. The training objective minimized a 

composite loss function  

𝐿 = 𝐿𝑟𝑒𝑔 + 𝜆1𝐿𝑎𝑑𝑣 + 𝜆2𝐿𝐾𝐿,  

where 𝐿𝑟𝑒𝑔 is the mean squared error, 𝐿𝑎𝑑𝑣 is the 

adversarial loss, and 𝐿𝐾𝐿 is the Kullback–Leibler 

divergence. The weights were 𝜆1 = 0.3 and 𝜆2 = 0.1. 

The model was trained using the Adam optimizer 

(learning rate 1×10−4, batch size 64) with an 80-10-10 

split for training, validation, and testing. Data 

augmentation techniques like random rotation, 

scaling, and cropping were used on satellite images to 

improve generalization. Each experiment was repeated 

three times to ensure consistent and reproducible 

results [16]. 

4.3 Evaluation Metrics 

The performance of the CAAI framework was 

evaluated using RMSE, MAE, and R² to assess 

prediction accuracy; it showed a strong connection 

between predicted and actual yields. For the 

Generative Counterfactual Module, Validity, 

Proximity, and FID measured the realism and 

effectiveness of simulated “what-if” scenarios. Model 

interpretability was assessed using SHAP, which 

identified key factors like temperature and soil 

nitrogen that influence resilience. These results 

confirm that CAAI provides accurate, realistic, and 

understandable predictions for climate-resilient 

agriculture. 
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V. RESULTS AND DISCUSSION 

 

The experimental results show that the proposed 

CAAI framework performs better than traditional and 

single-modality models in all evaluation metrics. The 

Random Forest baseline achieved an RMSE of 0.46 

and an R² of 0.82. The LSTM model, which used only 

climate data, improved slightly with an RMSE of 0.41 

and R² of 0.85. In contrast, the Proposed Fusion + 

cVAE-GAN model showed a significant improvement, 

reducing RMSE to 0.34, lowering MAE to 0.28, and 

increasing the R²-score to 0.90. This 15% reduction in 

error confirms the advantage of combining multimodal 

data with generative counterfactual reasoning. The 

model also created realistic "what-if" scenarios using 

the generative module and provided clear insights 

through SHAP analysis. It highlighted key factors such 

as temperature anomalies, soil nitrogen, and rainfall 

patterns. Overall, the results demonstrate that the 

proposed framework is more precise, clear, and 

effective for climate-resilient agricultural decision-

making. 

Model RMSE ↓ MAE ↓ R² ↑ 

Random Forest 0.46 0.39 0.82 

LSTM (Climate only) 0.41 0.34 0.85 

Proposed (Fusion + 0.34 0.28 0.9 

 
Figure 4: Model Performance Metrics 

 

5.1 Quantitative Analysis 

The proposed CAAI framework showed better 

predictive accuracy and interpretability than 

traditional models and those using only one type of 

data. Experimental results indicated that combining 

different data sources significantly improved 

resilience prediction. This led to lower error rates and 

stronger correlations with actual yields. The model’s 

RMSE and MAE dropped by about 15% compared to 

baseline models like Random Forest and LSTM. 

Meanwhile, the R²-score increased from 0.85 to 0.90, 

confirming the framework's strength and precision in 

predicting crop resilience. 

5.2 Counterfactual Validity 

The Generative Counterfactual Module successfully 

created realistic “what-if” scenarios. It demonstrated 

the ability to simulate changes in yield outcomes under 

different climatic or soil conditions. For instance, 

counterfactual tests showed that a 10% increase in 

rainfall could raise yield predictions by up to 8%. In 

contrast, nutrient deficiencies greatly reduced 

resilience scores. These simulations show the model’s 

potential as a supportive tool for planning proactive 

adaptations. 

5.3 Interpretability Insights 

Interpretability analysis with SHAP (SHapley 

Additive exPlanations) gave clear insights into what 

affects model predictions. In all regions and crop 

types, temperature changes, soil nitrogen levels, and 

rainfall fluctuations were the main predictors of 

resilience. Local SHAP explanations confirmed the 

model's reasoning at the farm level, which ensured 

transparency and trust.  

In summary, the results show that the CAAI 

framework not only improves predictive performance 

but also offers clear and actionable insights. Its ability 

to combine different data types, simulate adaptive 

scenarios, and highlight important environmental 

interactions makes it a dependable system for 

supporting climate-resilient and sustainable 

agriculture [17]. 
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Figure 5: CAAI Framework For Climate Resilience 

 

VI. APPLICATIONS 

 

The proposed CAAI framework has many uses in 

modern agriculture and climate adaptation. It supports 

precision farming by providing guidance on optimal 

irrigation, fertilizer use, and planting schedules based 

on predicted resilience scores. Policymakers can refer 

to regional resilience maps created by the model for 

climate risk assessment and resource allocation, which 

helps them target vulnerable areas. In crop insurance 

and risk management, the model’s counterfactual 

simulations can estimate yield variability under 

various climate conditions, which supports fair and 

data-driven policies. Moreover, researchers and 

breeders can use generative insights to create climate-

resilient crop varieties, speeding up sustainable 

agricultural innovation [18]. 

 
Figure: Applications of CAAI Framework 
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VII. CHALLENGES AND LIMITATIONS 

 

Despite its strong performance, the framework faces 

several challenges. Integrating multimodal data with 

different spatial and temporal resolutions is complex. 

It often requires extensive preprocessing and 

alignment. The availability of labeled agricultural data 

is limited in many areas, which may impact model 

generalization. Additionally, the computational cost is 

significant. Training deep models like cVAE-GAN and 

Transformers needs high-end GPUs and long 

processing times. Another limitation is the 

actionability of counterfactuals. Some generated 

scenarios, while scientifically valid, may not always 

lead to practical field interventions. Finally, ensuring 

model interpretability for non-technical users, like 

farmers, continues to be a challenge[19]. 

 

VIII. FUTURE SCOPE 

 

Future research can improve the CAAI framework in 

several ways. To tackle data scarcity, federated 

learning can help train models together across 

institutions without sharing sensitive data. We could 

integrate reinforcement learning to create 

recommendation systems that adapt and learn the best 

farming strategies over time. Model compression and 

edge AI deployment will allow real-time predictions 

on local devices, even in areas with low connectivity. 

Additionally, developing counterfactual validation 

frameworks can enhance the reliability of the 

scenarios we generate. Expanding the dataset to 

include socio-economic and policy data can also 

increase the model’s impact, creating a more complete 

decision-support system for sustainable and climate-

resilient agriculture [20]. 

 

IX. CONCLUSION 

 

This study presents a comprehensive AI framework for 

climate-adaptive agriculture that combines 

multimodal data fusion and generative counterfactual 

reasoning. The model integrates spatial, temporal, and 

soil features to achieve high accuracy and 

interpretability. Experimental validation showed a 

15% improvement in prediction accuracy over 

traditional models, with explainable insights via 

SHAP. 

The framework provides a powerful decision-support 

system that not only predicts outcomes but also 

simulates adaptive responses, helping farmers, 

policymakers, and researchers to build resilient 

agricultural ecosystems capable of withstanding the 

challenges of a changing climate. 

Future research should emphasize real-time 

deployment, federated learning, and domain-specific 

model generalization to make AI an accessible, 

reliable, and sustainable agricultural companion. 
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