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Abstract—Agricultural systems are becoming more
vulnerable to climate changes, land degradation, and
limited resources. This study presents a new Climate-
Adaptive Agriculture Al framework that predicts crop
resilience by using deep learning and generative
counterfactual reasoning. The model combines climate,
soil, and plant data with a strong late-fusion architecture
and a conditional Variational Autoencoder-Generative
Adversarial Network (cVAE-GAN) to simulate different
scenarios. By linking predictions with understandable
results through SHAP (SHapley Additive exPlanations),
the framework provides accurate forecasts along with
practical insights for climate-resilient farming practices.
The experiments showed a 15% reduction in RMSE
compared to baseline models and improved
understanding. This highlights the framework's
potential as a tool to support decisions in sustainable
agriculture.

Index Terms—Climate-Adaptive AI, Crop Resilience,
Multimodal Learning, Generative Counterfactuals,
Precision Agriculture, Explainable AI (XAI)

I. INTRODUCTION

Agriculture is crucial for global food security, but
climate change increasingly threatens it. Rising
temperatures, erratic rainfall, soil degradation, and
extreme weather events have disrupted productivity
around the world. The Food and Agriculture
Organization (FAO, 2023) states that global crop
yields could fall by up to 20% by 2050 if current trends
continue, with developing regions facing the biggest
impacts. These challenges, along with rapid
population growth and resource depletion, require new
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technologies to ensure farming is sustainable and
resilient to climate change. Traditional statistical and
rule-based models often struggle to capture the
dynamic and complex interactions among climate,
soil, and crop systems, which limits their effectiveness
in guiding real-time decision-making [1].

In this situation, Artificial Intelligence (AI) has
become a powerful tool for modern agriculture. With
improvements in machine learning and deep neural
networks, Al can analyze large and varied datasets like
satellite images, climate records, and soil chemistry to
find patterns that humans might miss. These models
improve crop vyield predictions, identify stress
conditions, and optimize irrigation and fertilization
schedules. However, most existing Al systems depend
on data from a single source and do not explain their
predictions or simulate “what-if” scenarios. This lack
of explanation is crucial for handling uncertainty in
agricultural systems [2].

To overcome these challenges, this research presents
the Climate-Adaptive Agriculture Al (CAAI)
framework, which combines multimodal deep
learning, generative counterfactual simulation, and
explainable Al. The model integrates satellite, soil, and
climate data using a multimodal fusion network. It
uses a conditional Variational Autoencoder—
Generative Adversarial Network (cVAE-GAN) to
simulate adaptive scenarios and SHAP (SHapley
Additive exPlanations) for interpretability. This
combined system allows for accurate predictions and
practical insights, helping farmers and policymakers
make informed and adaptable decisions. By merging
predictive modeling with generative reasoning, CAAI

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 5884



© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

shifts agricultural Al from merely predicting outcomes
to actively adapting, supporting sustainable and data-
driven climate resilience[3].

II. RELATED WORK

Artificial Intelligence (AI) and Machine Learning
(ML) are changing agriculture by providing smart
tools for predicting crop yields, detecting diseases, and
managing resources efficiently. Early studies used
traditional models like Linear Regression, Support
Vector Machines (SVM), and Random Forests (RF) to
estimate yields (Lobell et al., 2015; Jeong et al., 2016).
While these models worked well in certain areas, they
relied on limited climate and soil data. They struggled
to capture the complex, nonlinear interactions between
environmental, biological, and agronomic factors. As
a result, their ability to predict outcomes across
different agricultural settings was limited [4].

The growth of deep learning has greatly enhanced
agricultural analytics with models that automatically
extract complex spatial and temporal features.
Convolutional Neural Networks (CNNs) are widely
used for crop classification, monitoring plant health,
and detecting stress using satellite and drone images
(Zhong et al., 2019). Similarly, Recurrent Neural
Networks (RNNs), particularly Long Short-Term
Memory (LSTM) models, are used to analyze
sequential climate data for yield forecasting (You et
al., 2017). However, most deep models focus on one
type of data—either images or weather—ignoring the
connections between environmental and crop-related
factors that affect resilience and productivity [5].
Recent progress in multimodal learning has aimed to
integrate various data sources, such as satellite images,
soil composition, and weather patterns. Zhang et al.
(2020) showed that combining different data types
improves accuracy and robustness. Still, many current
frameworks use early-fusion techniques that merge
raw data before extracting features, which can lead to
loss of important information. Late-fusion
architectures provide a better option by independently
processing each type of data and then combining high-
level features, preserving vital relationships. However,
many multimodal models still focus on predictions and
lack the reasoning ability needed to simulate adaptive
agricultural scenarios [6].
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Generative modeling offers a promising way to tackle
data scarcity and enhance model adaptability.
Techniques like Generative Adversarial Networks
(GANSs) (Goodfellow et al., 2014) and Variational
Autoencoders (VAEs) (Kingma & Welling, 2014) can
generate synthetic data and simulate scenarios, but
they are rarely designed for decision support.
Counterfactual reasoning (Pearl, 2009) boosts this
capability by addressing “what-if” questions, which
are crucial for understanding how environmental
changes impact yield outcomes. Interpretability is
another challenge since most deep models act like
black boxes. Explainable Al (XAI) methods, such as
LIME, Layer-Wise Relevance Propagation, and SHAP
(Lundberg & Lee, 2017), enhance transparency, with
SHAP being the most reliable for attributing features.
However, these methods are often used after the fact,
which limits real-time understanding [7].

In summary, while Al has progressed in agricultural
prediction, existing models struggle with adaptability,
reasoning, and interpretability. The Climate-Adaptive
Agriculture Al (CAAI) framework aims to tackle these
issues through multimodal late-fusion learning,
counterfactual simulation with a conditional VAE-
GAN, and integrated SHAP-based interpretability,
creating a unified, transparent, and adaptive approach
for sustainable climate-resilient agriculture.

III. PROPOSED FRAMEWORK

The proposed Climate-Adaptive Agriculture Al
(CAAI) framework is intended to model, predict, and
interpret crop resilience in various climatic and
environmental conditions. It combines different types
of data, generative counterfactual simulation, and
explainable Al reasoning into a single system. Unlike
traditional machine learning models that rely on one
data type or fixed relationships, the CAAI framework
uses multiple data sources, such as satellite imagery,
climate sequences, and soil parameters, to understand
complex, nonlinear connections. Additionally, it goes
beyond prediction by simulating “what-if” scenarios
that support flexible agricultural decision-making [8].
The framework includes three main modules: (i)
Multimodal  Data  Fusion, (ii)  Generative
Counterfactual Simulation, and (iii) Resilience
Prediction and Interpretability, as shown in Fig. 1.
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Figure 1: Climate-Adaptive Agriculture Ai Framework

3.1 Multimodal Data Fusion

The first module focuses on effectively combining
different data sources that represent various aspects of
agricultural systems. Spatial, temporal, and static data
are processed through separate encoders before they
are merged in a late-fusion architecture.

Spatial data (Xj;4) derived from satellite or drone
imagery are passed through a fine-tuned ResNet-50
Neural Network (CNN), which
captures spectral features such as
vegetation indices (NDVI, EVI), canopy texture, and

Convolutional
spatial and

land cover patterns. Temporal climate data (X¢emp),
including rainfall, humidity, and temperature series,
are modeled using a Transformer Encoder, which
employs self-attention to capture long-range temporal
dependencies and seasonal dynamics. Static soil and

crop parameters (X¢qpuiar), including pH, nitrogen,
phosphorus, and potassium levels, are encoded using a
Multi-Layer Perceptron (MLP) to generate compact
feature vectors [9].

These representations are concatenated and fused
using a nonlinear transformation to produce a unified
embedding E, defined as:

E = frusion(CNN(Xjng) @D Transformer(Xeemy) D
MLP(Xtabular)) . (I)
where @ represents concatenation. This late-fusion
strategy guarantees that each data type contributes
valuable and complementary information. It helps the
model capture the relationships between soil, climate,
and vegetation. The resulting embedding E serves as
the basis for both predictive modeling and generative
reasoning within the framework.
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Figure 2: Multimodal Data Fusion Diagram
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3.2 Generative Counterfactual Simulation

The second module introduces a Generative
Counterfactual Mechanism that allows the system to
simulate different environmental or management
scenarios. This part uses a conditional Variational
Autoencoder and Generative Adversarial Network
(cVAE-GAN), which combines the strengths of VAEs
with the realism of GANs. The VAE Encoder
compresses the combined data embedding E into a
latent space z = Encoder(E), capturing the statistical
distribution of the data. The Generator (Decoder),
based on an external variable C (like rainfall reduction
or fertilizer increase), creates a new counterfactual
instance X":

X'=G(z, C)

The Discriminator (D) checks the realism of the
generated samples. It helps the generator produce
authentic, agriculturally relevant outcomes. This
process enables researchers and policymakers to
conduct “what-if” analyses. For example, they can
simulate how yield or resilience would react to a 10%
rise in temperature or a 5% increase in nitrogen levels.
The module turns the framework from a static
predictor into a flexible simulation engine that can
explore and validate climate-resilient agricultural
interventions [10].

Create alternative
outcomes based on

Develop policies based
on informed decisions

inputs

Ewvaluste potentia
effects of scenarios

Us=e insights to guide
decision-making

Figure 3: Generative Counterfactual Workflow

3.3 Resilience Prediction and Interpretability

The final module combines predictive modeling with
explainability to ensure that results are not only correct
but also clear and actionable. The fused embedding E
is passed through a regression head that outputs a
resilience score (R), a continuous value that represents
yield potential or normalized resilience on a scale from
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0 to 1. This detailed quantitative assessment allows for
comparisons across crops, locations, and seasons.

To improve interpretability, the model uses SHAP
(SHapley Additive exPlanations), a game-theoretic
framework that measures the contribution of each
feature to the final prediction. Local SHAP values
provide insights at the farm level, highlighting key
factors that influence a specific crop’s resilience.
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Meanwhile, global SHAP summaries show the most
important variables, such as temperature anomaly,
nitrogen concentration, or rainfall deficit, affecting
resilience across the dataset. This focus on
interpretability ensures that the model serves as a clear
decision-support tool, connecting Al-driven analytics
with practical agricultural use.

Together, these three modules—multimodal fusion,
counterfactual generation, and explainable
prediction—create a unified framework that learns
complex environmental relationships, simulates
adaptive responses, and delivers clear insights for
sustainable and climate-resilient agriculture [11].

IV. EXPERIMENTAL SETUP

The experimental setup aimed to assess the
performance, robustness, and interpretability of the
Climate-Adaptive Agriculture Al (CAAI) framework.
We conducted the experiments using real-world
multimodal agricultural datasets that included
climatic, soil, and remote sensing data. Our goal was
to evaluate the model’s ability to predict crop
resilience  accurately, simulate counterfactual
agricultural scenarios, and offer explainable insights.
This section describes the datasets used, details on
model implementation, and the evaluation metrics
used to validate the framework [12].

4.1 Datasets

The study used four datasets: climate, soil, remote
sensing, and phenotypic yield data. This ensured a
strong model evaluation. Climate data came from the
NASA POWER API (2010-2023) covering Haryana,
Punjab, and Rajasthan. It provided records of
temperature, rainfall, humidity, and solar radiation.
Soil data from the NBSS&LUP and local research
centers included chemical properties like pH, nitrogen,
phosphorus, and potassium, as well as physical
properties such as texture, moisture, and density. All
soil data was normalized for consistency. Satellite
imagery from Sentinel-2, with a 10 m resolution, was
processed on Google Earth Engine. This helped
correct atmospheric interference, mask clouds, and
generate indices (NDVI, EVI) to evaluate vegetation
health. Phenotypic yield data came from the ICAR and
field trials, supplying actual crop yield and growth
stage information as ground truth. All datasets were
aligned in both space and time, and standardized to
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create an integrated multimodal dataset of over 25,000
records for model training and validation [15].

4.2 Model Implementation

The CAAI framework was implemented using
TensorFlow 2.13 and PyTorch 1.12, with GPU
acceleration on an NVIDIA RTX A6000 (48 GB). The
model included three neural pipelines: a fine-tuned
ResNet-50 CNN for extracting spatial features from
satellite imagery, a Transformer Encoder with four
self-attention layers for modeling temporal climate
data, and a Multi-Layer Perceptron (MLP) with two
hidden layers for encoding static soil attributes. The
outputs of these networks were concatenated and
passed through a fusion network with fully connected
layers, ReLU activation, and a dropout rate of 0.3 to
prevent overfitting.

A conditional VAE-GAN (cVAE-GAN) was combined
to generate counterfactual simulations. This approach
used the strengths of Variational Autoencoders for
latent representation and GANs for realistic data
generation. The training objective minimized a
composite loss function

L=Lreg+ AlLadv + A2LKL,

where Lreg is the mean squared error, Ladv is the
adversarial loss, and LKL is the Kullback—Leibler
divergence. The weights were A1 = 0.3 and A2 = 0.1.
The model was trained using the Adam optimizer
(learning rate 1x10—4, batch size 64) with an 80-10-10
split for training, validation, and testing. Data
augmentation techniques like random rotation,
scaling, and cropping were used on satellite images to
improve generalization. Each experiment was repeated
three times to ensure consistent and reproducible
results [16].

4.3 Evaluation Metrics

The performance of the CAAI framework was
evaluated using RMSE, MAE, and R? to assess
prediction accuracy; it showed a strong connection
between predicted and actual yields. For the
Generative  Counterfactual  Module, Validity,
Proximity, and FID measured the realism and
effectiveness of simulated “what-if” scenarios. Model
interpretability was assessed using SHAP, which
identified key factors like temperature and soil
nitrogen that influence resilience. These results
confirm that CAAI provides accurate, realistic, and
understandable predictions for climate-resilient
agriculture.
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V. RESULTS AND DISCUSSION

The experimental results show that the proposed
CAALI framework performs better than traditional and
single-modality models in all evaluation metrics. The
Random Forest baseline achieved an RMSE of 0.46
and an R? of 0.82. The LSTM model, which used only
climate data, improved slightly with an RMSE of 0.41
and R? of 0.85. In contrast, the Proposed Fusion +
cVAE-GAN model showed a significant improvement,
reducing RMSE to 0.34, lowering MAE to 0.28, and

increasing the R2-score to 0.90. This 15% reduction in
error confirms the advantage of combining multimodal
data with generative counterfactual reasoning. The
model also created realistic "what-if" scenarios using
the generative module and provided clear insights
through SHAP analysis. It highlighted key factors such
as temperature anomalies, soil nitrogen, and rainfall
patterns. Overall, the results demonstrate that the
proposed framework is more precise, clear, and
effective for climate-resilient agricultural decision-
making.

| Model | RMSE | | MAE | | Rt
| Random Forest | 0.46 [ 0.39 | 082 |
| LSTM (Climate only) I 0.41 I 0.34 | o085 |
‘ Proposed (Fusion + H 0.34 H 0.28 H 0.9 ‘
walues I:I R=
MAE
RMSE
Models

Random Forest \
only)

LSTM (Climate

Proposed (Fusion
+

Figure 4: Model Performance Metrics

5.1 Quantitative Analysis

The proposed CAAI framework showed better
predictive accuracy and interpretability than
traditional models and those using only one type of
data. Experimental results indicated that combining
different data significantly improved
resilience prediction. This led to lower error rates and
stronger correlations with actual yields. The model’s
RMSE and MAE dropped by about 15% compared to
baseline models like Random Forest and LSTM.
Meanwhile, the R2-score increased from 0.85 to 0.90,

sources

confirming the framework's strength and precision in
predicting crop resilience.

5.2 Counterfactual Validity

The Generative Counterfactual Module successfully
created realistic “what-if” scenarios. It demonstrated
the ability to simulate changes in yield outcomes under
different climatic or soil conditions. For instance,
counterfactual tests showed that a 10% increase in
rainfall could raise yield predictions by up to 8%. In
contrast, nutrient deficiencies greatly reduced
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resilience scores. These simulations show the model’s
potential as a supportive tool for planning proactive

adaptations.
5.3 Interpretability Insights
Interpretability analysis with SHAP (SHapley

Additive exPlanations) gave clear insights into what
affects model predictions. In all regions and crop
types, temperature changes, soil nitrogen levels, and
rainfall fluctuations were the main predictors of
resilience. Local SHAP explanations confirmed the
model's reasoning at the farm level, which ensured
transparency and trust.

In summary, the results show that the CAAI
framework not only improves predictive performance
but also offers clear and actionable insights. Its ability
to combine different data types, simulate adaptive
scenarios, and highlight important environmental
interactions makes it a dependable system for
supporting  climate-resilient ~and  sustainable
agriculture [17].
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Figure 5: CAAI Framework For Climate Resilience

VI. APPLICATIONS

The proposed CAAI framework has many uses in
modern agriculture and climate adaptation. It supports
precision farming by providing guidance on optimal
irrigation, fertilizer use, and planting schedules based
on predicted resilience scores. Policymakers can refer
to regional resilience maps created by the model for
climate risk assessment and resource allocation, which

Developing climate-
resilient crop
varieties

Crop Insurance

Estimating yield
variability for fair
policies

Enhanced
Agricultural
Resilience

helps them target vulnerable areas. In crop insurance
and risk management, the model’s counterfactual
simulations can estimate yield wvariability under
various climate conditions, which supports fair and
data-driven policies. Moreover, researchers and
breeders can use generative insights to create climate-
resilient crop varieties, speeding up sustainable
agricultural innovation [18].

Precision
Farming

Optimizing resource
use for better yields

Policy Making

Informing climate
risk assessment and
resource allocation

Figure: Applications of CAAI Framework
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VII. CHALLENGES AND LIMITATIONS

Despite its strong performance, the framework faces
several challenges. Integrating multimodal data with
different spatial and temporal resolutions is complex.
It often requires extensive preprocessing and
alignment. The availability of labeled agricultural data
is limited in many areas, which may impact model
generalization. Additionally, the computational cost is
significant. Training deep models like cVAE-GAN and
Transformers needs high-end GPUs and long
processing times. Another limitation is the
actionability of counterfactuals. Some generated
scenarios, while scientifically valid, may not always
lead to practical field interventions. Finally, ensuring
model interpretability for non-technical users, like
farmers, continues to be a challenge[19].

VIII. FUTURE SCOPE

Future research can improve the CAAI framework in
several ways. To tackle data scarcity, federated
learning can help train models together across
institutions without sharing sensitive data. We could
integrate  reinforcement  learning to  create
recommendation systems that adapt and learn the best
farming strategies over time. Model compression and
edge Al deployment will allow real-time predictions
on local devices, even in areas with low connectivity.
Additionally, developing counterfactual validation
frameworks can enhance the reliability of the
scenarios we generate. Expanding the dataset to
include socio-economic and policy data can also
increase the model’s impact, creating a more complete
decision-support system for sustainable and climate-
resilient agriculture [20].

IX. CONCLUSION

This study presents a comprehensive Al framework for
climate-adaptive ~ agriculture ~ that  combines
multimodal data fusion and generative counterfactual
reasoning. The model integrates spatial, temporal, and
soil features to achieve high accuracy and
interpretability. Experimental validation showed a
15% improvement in prediction accuracy over
traditional models, with explainable insights via
SHAP.
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The framework provides a powerful decision-support
system that not only predicts outcomes but also
simulates adaptive responses, helping farmers,
policymakers, and researchers to build resilient
agricultural ecosystems capable of withstanding the
challenges of a changing climate.

Future research should emphasize real-time
deployment, federated learning, and domain-specific
model generalization to make Al an accessible,
reliable, and sustainable agricultural companion.
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