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Abstract—The fast increase in the use of public transport 

requires proper prediction of the number of passengers 

getting in at each stop to facilitate proper planning of the 

services. Nonetheless, in practice the ridership statistics 

can be imbalanced between demand types, which negates 

the traditional machine-learning models. The paper 

creates a preprocessing and prediction model whereby, 

the temporal and operational characteristics are 

extracted and the demand is automatically classified into 

Low, Moderate, and High categories. Several models 

such as the Logistic Regression, Random Forest, 

Gradient Boosting and a Deep Neural Network (DNN) 

were considered. Gradient Boosting performed best with 

an accuracy of 0.818, overtaking the results of random 

forest (0.793) and Logistic Regression (0.602), but the 

DNN gave an accuracy of 0.719 with a better balance at 

the class level. This finding shows that the combination 

of time-based engineered functionality with strong 

learning algorithms can greatly increase the precision of 

demand prediction and offer useful information to 

planners in the transport sector regarding the 

optimization of the frequency and allocation of resources 

in the route. 

 

Index Terms—Passenger demand prediction, 

imbalanced data, machine learning, deep neural 

network, public transport analytics, temporal features, 

classification performance. 

 

I. INTRODUCTION 

 

Urban transportation systems are critical to facilitate 

urban movement, reduce congestion and sustainable 

development of cities in the contemporary times [2], 

[14]. Whether in the design of timetables, the 

deployment of fleet or the acceptable service level, 

accurate estimation of the passenger demand on bus 

stops and routes is highly important. As the operative 

data availability and automated data collection 

technologies have grown, data-driven models have 

played a role in comprehending and predicting transit 

demand at more detailed spatial and temporal scales 

[1], [4], [15]. Specifically, the stop-level and hourly 

demand forecasting helps operators determine the 

most critical points on a peak and adjust the 

frequencies of vehicles as well as anticipate the 

crowding, which enhances the efficiency and the 

passenger experience [14], [16]. 

Smart-card and operational records are rich temporal 

and contextual data of passenger behaviour, boarding 

time and spatial use patterns [1], [15]. But when these 

data are disaggregated, by hour and stop, the 

distribution of the demands levels gets very skewed: 

the observations which are low dominated whilst the 

medium and high-demand conditions are relatively 

rare but most operationally vital [1], [7]. Training 

modeled machine-learners on skewed data directly 

will be biased to majority (low-demand) classes, 

making predictions of moderate and high-demand 

periods and thus weakening the trustfulness of the 

ensuing service plans [7], [19], [20]. The imbalance 

problem is known in the classification literature, and 

encourages resampling and data augmentation 

methods like SMOTE, ADASYN, and GAN-based 

synthetic data generation [8]-[10]. 

Advances in supervised learning in the recent times 

such as ensemble methods and deep neural networks 

have shown good ability to predict nonlinear 

operational and time-related relationships of transport 

demand [4], [11], [12], [26], [27]. Based on these 

advances, this paper suggests a systematic framework 

integrating the preprocessing, temporal feature 

engineering and supervised models, including the 
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Logistic Regression, Random Forest, Gradient 

Boosting and a Deep Neural Network (DNN) to detect 

hourly stop-level passenger demand in the forms of 

Low, Moderate and High. Experimental analysis 

demonstrates that Gradient Boosting has the best 

accuracy of 81.8 percent, followed by 79.3 percent in 

Random Forest and 71.9 percent in the DNN with a 

better balance between classes. The findings point to 

the potential of the sophisticated methods of learning 

to aid intelligent transportation planning, stronger 

peak determination, and evidence-based decision-

making by the transportation authority’s [1], [2], [14]. 

 

II. RELATED WORK 

 

Availability of operational and smart-card data has 

greatly contributed to the success in research on the 

demand forecasting of transport in general and buses 

in particular. Earlier literature has examined an 

extensive variety of methods of modelling, including 

classical statistical models and recent deep learning 

designs, to represent spatial-temporal changes in 

ridership. In this section, the major advancements in 

demand forecasting, skewed data management, and 

machine-learning techniques pertinent to the proposed 

system are reviewed. 

A. Passenger Demand Forecasting. 

Initial attempts in the modelling of transit demand 

were based on aggregate ridership data and regression 

analysis to forecast the trends of travel between routes 

and time. The smarter-card data has since proved to be 

useful in the detailed analysis of passenger flow 

enabling the ability to make predictions on a fine-

grained basis, both stop and hourly [1], [14], [15]. Liu 

et al. have proven that automated feature engineering 

and modular convolutional networks are effective in 

predicting bus passenger flows [4], and Zuo et al. used 

neural networks to predict the short-term accessibility 

of individual passengers [5]. Recent research 

highlights the point that effective prediction of both 

the stop-level and hourly demand is difficult because 

of the high time dynamics and the sparse data of high-

demand cases [1], [14]. 

 

B. Travel Behavior Prediction with the help of 

Machine Learning. 

Random Forests, Gradient Boosting, and neural 

networks, which are machine-learning models, have 

demonstrated high performance in the analysis of 

transport data with complex nonlinear relationships 

[4], [11], [12], [17]. Gradient Boosting, which is an 

ensemble technique, minimizes variance and 

augments predictive stability, which is why it is 

appropriate in the classification of ridership in varying 

conditions. Deep neural networks also represent multi-

dimensional time and contextual trends and this has 

been successfully applied to transport behaviour 

prediction [11], [12], [26]. Research shows, too, that 

operational metadata, such as time, the nature of stops, 

and past travel patterns, can be combined to enhance 

the model interpretability and robustness [14], [16]. 

 

C. Imbalanced Transport Systems Data. 

One problem with disaggregated passenger demand 

prognosis is that there is a high imbalance between 

low-demand and high-demand classes. Most datasets 

are dominated by low-demand observations and high-

demand periods, though operationally critical periods, 

are much less frequent [1], [7]. Training on these 

biased datasets tends to bias classifiers to majority 

classes and would worsen performance on minority 

(high-demand) periods [7], [19], [20]. In order to 

overcome this, different resampling and synthetic data 

generation methods have been suggested. The 

classical methods of oversampling are SMOTE [8] and 

ADASYN [9], that generate the minority samples 

based on the relationships between the nearest 

neighbors. Most recent work has investigated GAN-

based generative models to create realistic synthetic 

training samples that are better diversified [10]. The 

methods have proven to be very advantageous in 

various transport and mobility uses [14], [23]. 

 

D. Higher Learning Architectures to Classification. 

The current contributions to the state of research in 

representation learning have shown that deep 

architectures can be successfully trained to mimic 

high-dimensional datasets of operations. DNNs, 

specifically, have been effective in deriving 

hierarchical time-based characteristics of multifaceted 

transport logs [11], [12]. Random Forests and Gradient 

Boosting are examples of ensemble tree-based models, 

which remain popular because of their ability to be 

interpreted, resistant to noise, and their ability to 

perform well on both numerical and categorical 

feature sets [4], [17]. The recent surveys demonstrate 

the topicality of these models in the analysis of 

mobility and real-life behaviour of transport [20], [21], 
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[22]. Collectively, these changes encourage the choice 

of a multi-model comparative framework to use in the 

current study. 

 

Summary of Literature Gaps 

Available literature proves that machine-learning 

models can be used to predict ridership, but there are 

still a number of limitations. Class-imbalanced 

conditions make many models unable to generalize, 

and therefore not able to detect moderate and high-

demand periods. Moreover, very little literature has 

investigated multi-classification of stop level demand 

based on engineered temporal and operational 

features. This spurs on the creation of a systematic 

structure combining preprocessing, feature extraction 

and supervised learning in order to categorize 

passenger demand in a better manner of Low, 

Moderate, and High. 

 

III. PROPOSED METHODOLOGY 

 

The proposed system will be able to use a structured 

machine-learning pipeline to distinguish between 

Low, Moderate, and High levels of hourly passenger 

demand at bus stops. The process involves five steps, 

namely data acquisition, preprocessing, feature 

engineering, class-imbalance management, model 

development, and performance assessment. The 

overall architecture is shown in Fig. 1. 
 

 
Fig. 1. Proposed architecture for hourly passenger 

demand prediction 

A. Data Acquisition and Preparation  

The data set contains the records of operations such as 

the day of operation, the line ID, the stop ID, the time 

that the trip begins and the number of passengers on 

board. These hourly instances are generated out of 

these raw entries and are considered as hourly stop-

level demand. Since it has already been preprocessed, 

the timestamps of missing timepoints are removed, 

invalid trip times, and duplicate records are also 

eliminated. Temporal information e.g. hour, weekday, 

and month is also elicited to encode regular mobility 

patterns. Continuous features are standardized to 

enhance stability of the models. 

To ensure numerical consistency, min–max 

normalization is applied across all continuous 

variables, defined as: 

x′ =
x − xmin

xmax − xmin

(1) 

This transformation rescales all values into the range 

([0,1]), ensuring equal contribution of each feature 

during training. 

 

B. Feature Engineering 

Hour-of-day, weekday and month are temporal 

features that represent periodic seasonal transit 

demand. One-Hot Encoding codifying categorical 

variables (line ID, stop ID, direction) and normalizing 

continuous variables (trip duration, stop position, 

vehicle capacity) are used. The numbers of passengers 

are transformed into discrete demand classes 

depending on the thresholds that are observed 

empirically:  

Demand = {

Low, if p < T1
Moderate, if T1 ≤ p < T2

High, if p ≥ T2

(2) 

where pis the passenger count, and T1, T2are demand 

segmentation thresholds derived from distribution 

analysis. 
 

C. Handling Class Imbalance 

The level of skewness in the distribution of demand is 

high, with the observations representing low demand 

dominating. The imbalance leads to learning bias, 

which lowers the capability of models to detect middle 

and high-demand periods. In order to overcome this 

problem, synthetic oversampling methods, including 

SMOTE [8] and ADASYN [9], are used. The 

techniques produce unnaturally small samples of 

minorities through interpolating between nearest 
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neighbors, which enhances representation and 

minimizes the bias of classifiers. 
 

D. Model Development 

The demand classification problem is introduced as a 

multi-class problem which is supervised. The 

implementation of predictive models is carried out in 

the form of four:  

• Logistic Regression- baseline linear classifier.  

• Random Forest- an assembly of decision trees 

insensitive to noise and feature correlations. 

• Gradient Boosting (GBM)-2nd -iterative boosting 

model based on structured data.  

• Deep Neural Network (DNN)- multi-layer 

structure which identifies nonlinear temporal-

operational factors. 

The DNN is trained by minimizing the categorical 

cross-entropy loss: 

ℒ = −∑∑yi,c  log(ŷi,c)

C

c=1

N

i=1

(3) 

where yi,crepresents the true class label and ŷi,cthe 

predicted probability for class c. 

Hyperparameters such as learning rate, number of 

estimators, hidden units, maximum depth, and 

activation functions are optimized using cross-

validation. 
 

E. Model Evaluation 

The models are also tested in terms of accuracy, 

precision, recall and F1-score. The confusion matrix 

analysis measures the performance using the Low, 

Moderate, and High demand category. According to 

the results of the experiments, Gradient Boosting is the 

most accurate (81.8%), then comes the Random Forest 

(79.3%), and the DNN offers an equal multiclass 

accuracy of 71.9%. Such results are consistent with 

previous research results that showed excellent 

performance of ensemble and deep-learning models 

regarding predicting a transport behavior [4], [11], 

[12], [26] 

 

IV. RESULTS AND ANALYSIS 

 

This section presents the experimental results and 

performance evaluation of the proposed Passenger 

Demand Prediction System. The evaluation focuses on 

model accuracy, class-wise performance, training 

stability, and comparative visual analysis across all 

implemented algorithms. All experiments were 

conducted on the engineered dataset containing 

temporal, operational, and stop-level features 

extracted from historical records. 

A. Experimental Setup 

The data was broken into 70 percent training, 15 

percent validation and 15 percent testing. Min-max 

scaling was used to normalize continuous features, and 

the One-Hot Encoding was used to encode categorical 

attributes. The training subset was used with 

oversampling methods in order to eliminate the 

imbalance of classes in Low, Moderate, and High 

demand categories. The cross-entropy loss was used to 

train the models, and cross-validation was used to 

optimize the models. Measurement metrics were 

accuracy, precision, recall and support which are 

measures of the overall and class performances 

respectively. 
 

B. Model Performance Evaluation 

In every trained model, ensemble-based models had 

better predictive power than linear baselines. The 

Logistic Regression gave 60.2% accuracy which is 

weak in terms of modeling non-linear transport 

patterns. Random Forest got much better performance 

to 79.3, which is positive due to its capability to work 

with mixed types of features. Gradient Boosting was 

the most accurate of all at 81.8% which proves that it 

is well optimized and capable of performing well in 

structured data. The Deep Neural Network attained a 

71.9% accuracy which provides a more balanced 

performance in demand categories. Although its 

overall accuracy was less compared to the Gradient 

Boosting, DNN showed higher sensitivity to the 

Moderate and High levels of demand. 
 

C. Comparative Visual Analysis 

In order to facilitate easier interpretation, performance 

of the model is summarized by bar-graph comparison 

plots. These are visualizations that focus on the 

relative performance of each of the models in terms of 

Accuracy, Precision, Recall and Support. 

 
Fig. 6. Training vs. Validation Accuracy Curve 
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Gradient Boosting was the most accurate and most 

precise in all demand categories, whereas the DNN 

was the most recalling on the High-demand category, 

which is a better predictor of peak-hour behavior. The 

Logistic regression always performed poorly because 

of its linear decision boundary as compared to random 

forest that provided a consistent performance with 

reduced variance. 

 
 

Fig. 7. Model Metrics Comparison graph and table 

Model Accuracy Precision (Weighted Avg) Recall (Weighted Avg) Support 

Logistic Regression 0.602 0.602 0.572 2000 

Random Forest 0.793 0.793 0.786 2000 

Gradient Boosting 0.818 0.818 0.816 2000 

Deep Neural Network (DNN) 0.719 0.719 0.719 2000 

D. Demand-Level Prediction Consistency 

The low-demand periods were forecasted throughout 

the entire dataset as they were predominant. There was 

a significant improvement in moderate-demand 

predictions on the basis of oversampling, which 

minimized the confusion between classes commonly 

observed in unbalanced data. The tree-based and deep 

models brought the most significant improvements to 

periods with high demand. In particular, the DNN was 

more affected by patterns at the peaks because the 

nonlinear representation learning created the most 

stable and accurate predictions in general, whereas 

Gradient Boosting yielded the highest predictive 

accuracy. The latter findings are in line with previous 

results on demand forecasting and imbalanced 

learning [4], [11], [12], [26]. 

 

V. DISCUSSION 

 

The results of this study demonstrate that integrating 

temporal, operational, and stop-level features into a 

unified machine-learning framework significantly 

improves the accuracy of passenger demand prediction 

in public transport systems. Among the evaluated 

models, Gradient Boosting achieved the strongest 

overall performance, reflecting its ability to capture 

complex nonlinear relationships within highly variable 

and imbalanced datasets. Random Forest also 

performed well, indicating the usefulness of ensemble 

methods in handling diverse feature interactions. 

Logistic Regression, however, showed clear 

limitations due to its linear assumptions, leading to 

lower accuracy and recall across all demand 

categories. 

The Deep Neural Network, while not reaching the 

accuracy of Gradient Boosting, provided balanced 

precision and recall, outperforming other models in 

correctly identifying high-demand intervals. This 

sensitivity to peak-hour patterns is particularly 

valuable for transit operations, where accurate early 

detection of rising demand is essential for service 

adjustments. The training and loss curves confirmed 

stable convergence without overfitting, validating the 

preprocessing and oversampling strategies applied. 

Overall, the comparative analysis highlights the 

importance of model selection and the value of 

advanced representation learning in forecasting 

granular transport demand. 

 

VI. CONCLUSION 

 

This study presented a machine-learning framework 

for classifying hourly bus stop demand into Low, 

Moderate, and High categories. Gradient Boosting 

delivered the best overall performance, while the Deep 

Neural Network provided balanced sensitivity across 

demand levels. The findings underscore the 

importance of temporal feature engineering and class 

imbalance handling in improving predictive accuracy. 

The proposed system supports data-driven decision-
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making in public transport planning, enabling more 

efficient scheduling and resource allocation. Future 

enhancements may incorporate real-time data, spatial 

modeling, or deep sequential architectures to further 

strengthen predictive capabilities and operational 

impact. 
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