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Abstract—The fast increase in the use of public transport
requires proper prediction of the number of passengers
getting in at each stop to facilitate proper planning of the
services. Nonetheless, in practice the ridership statistics
can be imbalanced between demand types, which negates
the traditional machine-learning models. The paper
creates a preprocessing and prediction model whereby,
the temporal and operational characteristics are
extracted and the demand is automatically classified into
Low, Moderate, and High categories. Several models
such as the Logistic Regression, Random Forest,
Gradient Boosting and a Deep Neural Network (DNN)
were considered. Gradient Boosting performed best with
an accuracy of 0.818, overtaking the results of random
forest (0.793) and Logistic Regression (0.602), but the
DNN gave an accuracy of 0.719 with a better balance at
the class level. This finding shows that the combination
of time-based engineered functionality with strong
learning algorithms can greatly increase the precision of
demand prediction and offer useful information to
planners in the transport sector regarding the
optimization of the frequency and allocation of resources
in the route.

Index Terms—Passenger demand prediction,
imbalanced data, machine learning, deep neural
network, public transport analytics, temporal features,
classification performance.

[. INTRODUCTION

Urban transportation systems are critical to facilitate
urban movement, reduce congestion and sustainable
development of cities in the contemporary times [2],
[14]. Whether in the design of timetables, the
deployment of fleet or the acceptable service level,
accurate estimation of the passenger demand on bus
stops and routes is highly important. As the operative
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data availability and automated data collection
technologies have grown, data-driven models have
played a role in comprehending and predicting transit
demand at more detailed spatial and temporal scales
[1], [4], [15]. Specifically, the stop-level and hourly
demand forecasting helps operators determine the
most critical points on a peak and adjust the
frequencies of vehicles as well as anticipate the
crowding, which enhances the efficiency and the
passenger experience [14], [16].

Smart-card and operational records are rich temporal
and contextual data of passenger behaviour, boarding
time and spatial use patterns [1], [15]. But when these
data are disaggregated, by hour and stop, the
distribution of the demands levels gets very skewed:
the observations which are low dominated whilst the
medium and high-demand conditions are relatively
rare but most operationally vital [1], [7]. Training
modeled machine-learners on skewed data directly
will be biased to majority (low-demand) classes,
making predictions of moderate and high-demand
periods and thus weakening the trustfulness of the
ensuing service plans [7], [19], [20]. The imbalance
problem is known in the classification literature, and
encourages resampling and data augmentation
methods like SMOTE, ADASYN, and GAN-based
synthetic data generation [8]-[10].

Advances in supervised learning in the recent times
such as ensemble methods and deep neural networks
have shown good ability to predict nonlinear
operational and time-related relationships of transport
demand [4], [11], [12], [26], [27]. Based on these
advances, this paper suggests a systematic framework
integrating the preprocessing, temporal feature
engineering and supervised models, including the
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Logistic Regression, Random Forest, Gradient
Boosting and a Deep Neural Network (DNN) to detect
hourly stop-level passenger demand in the forms of
Low, Moderate and High. Experimental analysis
demonstrates that Gradient Boosting has the best
accuracy of 81.8 percent, followed by 79.3 percent in
Random Forest and 71.9 percent in the DNN with a
better balance between classes. The findings point to
the potential of the sophisticated methods of learning
to aid intelligent transportation planning, stronger
peak determination, and evidence-based decision-
making by the transportation authority’s [1], [2], [14].

II. RELATED WORK

Availability of operational and smart-card data has
greatly contributed to the success in research on the
demand forecasting of transport in general and buses
in particular. Earlier literature has examined an
extensive variety of methods of modelling, including
classical statistical models and recent deep learning
designs, to represent spatial-temporal changes in
ridership. In this section, the major advancements in
demand forecasting, skewed data management, and
machine-learning techniques pertinent to the proposed
system are reviewed.

A. Passenger Demand Forecasting.

Initial attempts in the modelling of transit demand
were based on aggregate ridership data and regression
analysis to forecast the trends of travel between routes
and time. The smarter-card data has since proved to be
useful in the detailed analysis of passenger flow
enabling the ability to make predictions on a fine-
grained basis, both stop and hourly [1], [14], [15]. Liu
et al. have proven that automated feature engineering
and modular convolutional networks are effective in
predicting bus passenger flows [4], and Zuo et al. used
neural networks to predict the short-term accessibility
of individual passengers [5]. Recent research
highlights the point that effective prediction of both
the stop-level and hourly demand is difficult because
of the high time dynamics and the sparse data of high-
demand cases [1], [14].

B. Travel Behavior Prediction with the help of
Machine Learning.

Random Forests, Gradient Boosting, and neural
networks, which are machine-learning models, have
demonstrated high performance in the analysis of
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transport data with complex nonlinear relationships
[4], [11], [12], [17]. Gradient Boosting, which is an
ensemble technique, minimizes variance and
augments predictive stability, which is why it is
appropriate in the classification of ridership in varying
conditions. Deep neural networks also represent multi-
dimensional time and contextual trends and this has
been successfully applied to transport behaviour
prediction [11], [12], [26]. Research shows, too, that
operational metadata, such as time, the nature of stops,
and past travel patterns, can be combined to enhance
the model interpretability and robustness [14], [16].

C. Imbalanced Transport Systems Data.

One problem with disaggregated passenger demand
prognosis is that there is a high imbalance between
low-demand and high-demand classes. Most datasets
are dominated by low-demand observations and high-
demand periods, though operationally critical periods,
are much less frequent [1], [7]. Training on these
biased datasets tends to bias classifiers to majority
classes and would worsen performance on minority
(high-demand) periods [7], [19], [20]. In order to
overcome this, different resampling and synthetic data
generation methods have been suggested. The
classical methods of oversampling are SMOTE [8] and
ADASYN [9], that generate the minority samples
based on the relationships between the nearest
neighbors. Most recent work has investigated GAN-
based generative models to create realistic synthetic
training samples that are better diversified [10]. The
methods have proven to be very advantageous in
various transport and mobility uses [14], [23].

D. Higher Learning Architectures to Classification.

The current contributions to the state of research in
representation learning have shown that deep
architectures can be successfully trained to mimic
high-dimensional datasets of operations. DNNSs,
specifically, have been effective in deriving
hierarchical time-based characteristics of multifaceted
transport logs [11], [12]. Random Forests and Gradient
Boosting are examples of ensemble tree-based models,
which remain popular because of their ability to be
interpreted, resistant to noise, and their ability to
perform well on both numerical and categorical
feature sets [4], [17]. The recent surveys demonstrate
the topicality of these models in the analysis of
mobility and real-life behaviour of transport [20], [21],
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[22]. Collectively, these changes encourage the choice
of a multi-model comparative framework to use in the
current study.

Summary of Literature Gaps

Available literature proves that machine-learning
models can be used to predict ridership, but there are
still a number of limitations. Class-imbalanced
conditions make many models unable to generalize,
and therefore not able to detect moderate and high-
demand periods. Moreover, very little literature has
investigated multi-classification of stop level demand
based on engineered temporal and operational
features. This spurs on the creation of a systematic
structure combining preprocessing, feature extraction
and supervised learning in order to -categorize
passenger demand in a better manner of Low,
Moderate, and High.

III. PROPOSED METHODOLOGY

The proposed system will be able to use a structured
machine-learning pipeline to distinguish between
Low, Moderate, and High levels of hourly passenger
demand at bus stops. The process involves five steps,
namely data acquisition, preprocessing, feature
engineering, class-imbalance management, model
development, and performance assessment. The
overall architecture is shown in Fig. 1.
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Fig. 1. Proposed architecture for hourly passenger
demand prediction
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A. Data Acquisition and Preparation

The data set contains the records of operations such as
the day of operation, the line ID, the stop ID, the time
that the trip begins and the number of passengers on
board. These hourly instances are generated out of
these raw entries and are considered as hourly stop-
level demand. Since it has already been preprocessed,
the timestamps of missing timepoints are removed,
invalid trip times, and duplicate records are also
eliminated. Temporal information e.g. hour, weekday,
and month is also elicited to encode regular mobility
patterns. Continuous features are standardized to
enhance stability of the models.

To ensure numerical consistency, min—max
normalization is applied across all continuous

variables, defined as:
X — Xpi
% = min (1 )
Xmax ~ Xmin
This transformation rescales all values into the range
([0,1]), ensuring equal contribution of each feature

during training.

B. Feature Engineering

Hour-of-day, weekday and month are temporal
features that represent periodic seasonal transit
demand. One-Hot Encoding codifying categorical
variables (line ID, stop ID, direction) and normalizing
continuous variables (trip duration, stop position,
vehicle capacity) are used. The numbers of passengers
are transformed into discrete demand classes
depending on the thresholds that are observed

empirically:
Low, ifp<Ty
Demand = {Moderate, if T; <p <T, )
High, ifp>T,

where pis the passenger count, and T;, T,are demand
segmentation thresholds derived from distribution
analysis.

C. Handling Class Imbalance

The level of skewness in the distribution of demand is
high, with the observations representing low demand
dominating. The imbalance leads to learning bias,
which lowers the capability of models to detect middle
and high-demand periods. In order to overcome this
problem, synthetic oversampling methods, including
SMOTE [8] and ADASYN [9], are used. The
techniques produce unnaturally small samples of
minorities through interpolating between nearest
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neighbors, which enhances representation and
minimizes the bias of classifiers.

D. Model Development

The demand classification problem is introduced as a

multi-class problem which is supervised. The

implementation of predictive models is carried out in
the form of four:

e Logistic Regression- baseline linear classifier.

e Random Forest- an assembly of decision trees
insensitive to noise and feature correlations.

e  Gradient Boosting (GBM)-2nd -iterative boosting
model based on structured data.

e Deep Neural Network (DNN)- multi-layer
structure which identifies nonlinear temporal-
operational factors.

The DNN is trained by minimizing the categorical

cross-entropy loss:

N
C
L== % Yyicloghi) O
c=1
i=1

where y; .represents the true class label and ¥; .the
predicted probability for class c.

Hyperparameters such as learning rate, number of
estimators, hidden wunits, maximum depth, and
activation functions are optimized using cross-
validation.

E. Model Evaluation

The models are also tested in terms of accuracy,
precision, recall and F1-score. The confusion matrix
analysis measures the performance using the Low,
Moderate, and High demand category. According to
the results of the experiments, Gradient Boosting is the
most accurate (81.8%), then comes the Random Forest
(79.3%), and the DNN offers an equal multiclass
accuracy of 71.9%. Such results are consistent with
previous research results that showed excellent
performance of ensemble and deep-learning models
regarding predicting a transport behavior [4], [11],
[12], [26]

IV. RESULTS AND ANALYSIS

This section presents the experimental results and
performance evaluation of the proposed Passenger
Demand Prediction System. The evaluation focuses on
model accuracy, class-wise performance, training
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stability, and comparative visual analysis across all
implemented algorithms. All experiments were
conducted on the engineered dataset containing
temporal, operational, and stop-level features
extracted from historical records.

A. Experimental Setup

The data was broken into 70 percent training, 15
percent validation and 15 percent testing. Min-max
scaling was used to normalize continuous features, and
the One-Hot Encoding was used to encode categorical
attributes. The training subset was used with
oversampling methods in order to ecliminate the
imbalance of classes in Low, Moderate, and High
demand categories. The cross-entropy loss was used to
train the models, and cross-validation was used to
optimize the models. Measurement metrics were
accuracy, precision, recall and support which are
measures of the overall and class performances
respectively.

B. Model Performance Evaluation

In every trained model, ensemble-based models had
better predictive power than linear baselines. The
Logistic Regression gave 60.2% accuracy which is
weak in terms of modeling non-linear transport
patterns. Random Forest got much better performance
to 79.3, which is positive due to its capability to work
with mixed types of features. Gradient Boosting was
the most accurate of all at 81.8% which proves that it
is well optimized and capable of performing well in
structured data. The Deep Neural Network attained a
71.9% accuracy which provides a more balanced
performance in demand categories. Although its
overall accuracy was less compared to the Gradient
Boosting, DNN showed higher sensitivity to the
Moderate and High levels of demand.

C. Comparative Visual Analysis

In order to facilitate easier interpretation, performance
of the model is summarized by bar-graph comparison
plots. These are visualizations that focus on the
relative performance of each of the models in terms of
Accuracy, Precision, Recall and Support.
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Fig. 6. Training vs. Validation Accuracy Curve
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Gradient Boosting was the most accurate and most
precise in all demand categories, whereas the DNN
was the most recalling on the High-demand category,
which is a better predictor of peak-hour behavior. The
Logistic regression always performed poorly because
of its linear decision boundary as compared to random
forest that provided a consistent performance with
reduced variance.
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Fig. 7. Model Metrics Comparison graph and table

Model Accuracy Precision (Weighted Avg) | Recall (Weighted Avg) | Support
Logistic Regression 0.602 0.602 0.572 2000
Random Forest 0.793 0.793 0.786 2000
Gradient Boosting 0.818 0.818 0.816 2000
Deep Neural Network (DNN) 0.719 0.719 0.719 2000

D. Demand-Level Prediction Consistency

The low-demand periods were forecasted throughout
the entire dataset as they were predominant. There was
a significant improvement in moderate-demand
predictions on the basis of oversampling, which
minimized the confusion between classes commonly
observed in unbalanced data. The tree-based and deep
models brought the most significant improvements to
periods with high demand. In particular, the DNN was
more affected by patterns at the peaks because the
nonlinear representation learning created the most
stable and accurate predictions in general, whereas
Gradient Boosting yielded the highest predictive
accuracy. The latter findings are in line with previous
results on demand forecasting and imbalanced
learning [4], [11], [12], [26].

V. DISCUSSION

The results of this study demonstrate that integrating
temporal, operational, and stop-level features into a
unified machine-learning framework significantly
improves the accuracy of passenger demand prediction
in public transport systems. Among the evaluated
models, Gradient Boosting achieved the strongest
overall performance, reflecting its ability to capture
complex nonlinear relationships within highly variable
and imbalanced datasets. Random Forest also
performed well, indicating the usefulness of ensemble
methods in handling diverse feature interactions.
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Logistic Regression, however, showed clear
limitations due to its linear assumptions, leading to
lower accuracy and recall across all demand
categories.

The Deep Neural Network, while not reaching the
accuracy of Gradient Boosting, provided balanced
precision and recall, outperforming other models in
correctly identifying high-demand intervals. This
sensitivity to peak-hour patterns is particularly
valuable for transit operations, where accurate early
detection of rising demand is essential for service
adjustments. The training and loss curves confirmed
stable convergence without overfitting, validating the
preprocessing and oversampling strategies applied.
Overall, the comparative analysis highlights the
importance of model selection and the value of
advanced representation learning in forecasting
granular transport demand.

VI. CONCLUSION

This study presented a machine-learning framework
for classifying hourly bus stop demand into Low,
Moderate, and High categories. Gradient Boosting
delivered the best overall performance, while the Deep
Neural Network provided balanced sensitivity across
demand levels. The findings underscore the
importance of temporal feature engineering and class
imbalance handling in improving predictive accuracy.
The proposed system supports data-driven decision-
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making in public transport planning, enabling more
efficient scheduling and resource allocation. Future
enhancements may incorporate real-time data, spatial
modeling, or deep sequential architectures to further
strengthen predictive capabilities and operational
impact.
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