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Abstract- Diagnosing cancer from medical imaging still 

represents one of most complex jobs in clinical practice, 

especially lung cancer and breast cancer, which had 

more than 4.8 million new cases combined in 2022. Lung 

cancer continues to have the highest mortality rate 

because it is detected late, and breast cancer is the most 

diagnosed cancer in women and requires accurate 

diagnostic processes in a timely manner. Previously 

established diagnostic workflows heavily utilize the 

judgment of radiologists and pathologists on assessing 

CT scans and the histopathology slides. The process is 

time-consuming, subjective and often not possible in 

resource poor settings.    

Deep learning-based methods have been developed with 

strong performance using underlying architectures (such 

as VGG19, ResNet, DenseNet, Inception-based networks, 

and EfficientNet). These models have performed 

impressively well compared to the state-of-the-art 

performance reported in the literature, while also 

providing strong feature extraction capabilities. 

However, many previous studies had some level of lack 

of diversity in the dataset, overfitting due to low number 

of datasets, insufficient cross-model comparisons and 

standardized preprocessing pipelines. Further, a lot of 

research only takes into account one model or dataset, 

limiting the power of the reported results to be 

meaningful for deployment in the real-world. 

To fill these gaps, this study presented a full evaluation 

framework model for automated cancer detection based 

on eight state-of-the-art ImageNet pretrained CNN 

architectures - VGG19, ResNet152V2, DenseNet201, 

InceptionV3, InceptionResNetV2, Xception, 

EfficientNetB1, and MobileNetV2. A consistent 

framework was applied between two datasets - Lung 

Cancer CT Scan dataset and BreaKHis Breast Cancer 

Histopathology. The framework included consistency in 

preprocessing, image augmentation, as well as using a 

single classification head with a two stage training 

process for all architectures of frozen training and fine-

tuning 35% of backbone layers. Performance was 

measured with Accuracy, Precision, Recall, F1-score, 

ROC–AUC, and PR–AUC metrics.The proposed 

framework demonstrated high discriminative 

performance across both domains. DenseNet201 

achieved the highest accuracy (99.0%+) and ROC–AUC 

(0.99+) for the classification of lung cancer, exceeding 

several results in the current literature. In breast cancer 

histopathology images, VGG19 was the top-performing 

model with an accuracy of 90%, high precision, and a 

ROC–AUC of 0.96. This provides a measure of 

consistency with previous research emphasizing the 

utility of deeper CNN backbones for texture-rich medical 

images. The results support that a standardized multi-

model evaluation strategy enhances reliability, limits 

bias from the datasets, and increases clarity in the 

supporting the model choice for practical use cases.  

 

I. INTRODUCTION 

 

Cancer continues to be one of the leading causes of 

global mortality, with lung cancer and breast cancer 

comprising the highest proportion of global cancer 

incidence. According to the World Health 

Organization (WHO), in 2022, there were 

approximately 2.5 million and 2.3 million new lung 

cancer and breast cancer cases respectively, 

accounting for around 12.4% and 11.6% of all new 

cases of cancer globally. Lung cancer continues to be 

the most fatal cancer modality, because most patients 

are diagnosed after the cancer has progressed to a late 

stage, while breast cancer remains the most frequently 

diagnosed cancer among women internationally. The 

diagnostic process is almost entirely reliant on 

radiologists and pathologists manually interpreting CT 

scans and histopathology images, which can take a 

significant amount of time, is susceptible to human 

subjectivity and it is often not available in low 

resource environments. The demands on diagnostic 

services are compounded as populations age, 

incidence of risk factors change, and more cases go 

undiagnosed with pressure on specialized 
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pathology/radiology capacity to meet demand, 

particularly in low and middle income environments 

where screening and timely diagnosis may not be 

available. In consideration of these challenges, the 

demand for automated, fast, and reliable AI 

diagnostic-assist tools is warranted in order to improve 

accuracy of early diagnosis and alleviate the pressure 

on healthcare professionals in the clinic. 

The growing capability of deep learning and medical 

imaging has resulted in improvements to the accuracy 

and trustworthiness of automated cancer diagnostics. 

Convolutional Neural Networks (CNN) are now the 

preferred method for many cancer-classification tasks 

due to their ability to automatically learn hierarchical 

spatial features of CT and histology images. New 

architectures, such as EfficientNet, DenseNet, ResNet, 

InceptionResNet, and VGG, are being utilized for 

cancer classification tasks and have reported increased 

accuracy by classifying images with more layers, 

better feature reuse, and multi-scale receptive fields.  

In regards to lung cancer, studies using CNNs based 

on transfer-learning have been reported on CT 

imaging and demonstrated increased sensitivity and 

reduced false positives. 

For example, Ahmed et al. found that EfficientNet and 

ResNet152V2 achieved superior discriminative ability 

on CT datasets for lung nodule detection, effectively 

capturing multi-scale features [1]. Additionally, Tang 

et al. showed that DenseNet models consistently 

performed well in lung tumor classification tasks, 

solely attributed to the benefits of dense connectivity 

and efficient gradient propagation [2]. In breast cancer 

histopathology, state-of-the-art CNNs have 

demonstrated a strong capability to extract fine-

grained texture patterns from the high-resolution 

biopsy images. Nawaz et al. introduced Resolution-

Adaptive CNN, outperforming classical CNNs on the 

BreaKHis dataset [3], while Han et al. added hybrid 

attention-augmented CNNs improved tumor region 

localization and classification stability [4]. Recent 

large-scale benchmarking studies have shown that 

deeper architectures, such as VGG19, ResNet152V2, 

and InceptionResNetV2, reliably outperform lighter 

networks on histopathological datasets by achieving 

greater than 90% accuracy [5]. Together, this body of 

work establishes CNN-based models as the state-of-

the-art solution for automated cancer detection, and 

our proposed PredictiX framework builds from this 

evidence. 

In this paper, we evaluate deep convolutional neural 

networks for the automated identification of lung 

carcinoma from CT imaging and breast cancer from 

histopathology. We aim to address barriers in datasets 

applied in prior studies including lack of diversity, 

limited generalizability, and overfitting. Conducting 

benchmarking procedures, we perform meticulous 

evaluation on eight leading classification architectures 

(VGG19, DenseNet201, ResNet152V2, InceptionV3, 

InceptionResNetV2, Xception, EfficientNetB1, and 

MobileNetV2) that follow a robust transfer-learning 

and fine-tuning methodology to overcome the 

limitations of previous studies. Observing lung cancer 

classification from CT images, our results showed that 

DenseNet201 achieves near perfect discriminative 

capabilities with 99.6% accuracy and 0.9996 ROC-

AUC performance, far exceeding previous reporting 

of recent literature that applied EfficientNet and 

ResNet for lung CT classification [6], [7]. Evaluating 

breast cancer histopathology classification, results 

showed that VGG19 performed superiorly with 90% 

accuracy, 0.89 F1-score, and 0.96 ROC–AUC, 

indicating previous studies reported deep CNNs 

trained on histopathological images learnt 

significantly better texture-level based cues from 

images [8], [9]. These findings demonstrate that 

contemporary CNNs can provide valid and reliable 

classifications of medical images; thus validating the 

utility of CNNs to potentially enhance the detection 

and classification of early stage cancers. 

 

II. RELATED WORK 

 

2.1 Introduction to Related Work 

Deep learning has changed the potential of 

computational systems to detect cancer from 

diagnostic imaging, especially in lung cancer CT 

imaging examples and breast cancer histopathology. 

Within the past decade, convolutional neural networks 

(CNNs), transformer-based models, and hybrid deep 

architectures have all shown remarkable ability to 

extract discriminative features otherwise unnoticed by 

interpretive analysis. Early works looked at shallow 

CNN architectures for binary classification, but 

subsequently, deeper models including VGG19, 

ResNet152V2, and DenseNet family models came 

along that enhanced feature extraction ability 

significantly. At the same time, with the advent of the 

BreaKHis data set, breast cancer research received a 
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substantial boost through advanced work with 

magnification-adaptive networks, dual-branch 

attention models, and multi-scale networks. More 

contemporarily, lighter model explanations and model 

alternates have underscored the importance of 

interpretability and clinical trustworthiness in CNNs. 

This section provides a comparative studies table of 15 

authorative studies logically sorted into the two 

imaging areas pertaining to this research, that is lung 

cancer studies and then the breast cancer studies, with 

a summary of their design studies, modeled 

architecture, datasets and key results that have 

contributed to the gaps addressed by this study. 

 

2.2 Prior Work on Lung Cancer Classification (CT 

Imaging) 

Hussein et al. [10] made one of the original 

contributions to lung cancer AI analysis when they 

developed TumorNet, a multi-views CNN architecture 

for characterizing lung nodules. They demonstrated 

that CNNs outperformed classical radiomics by 

learning cues from shapes and textures. Their 

preprocessing pipeline included segmentation, nodule 

patch extraction, and contrast normalization to 

improve prediction of malignant nodules. Building on 

previous approaches, Salehi et al. [12] created a 3D 

convolutional neural network that can learn 

volumetric information in CT scans. They showed that 

the model had increased sensitivity in identifying 

multi-class lung cancer subtypes (adenocarcinoma, 

squamous-cell carcinoma, large-cell carcinoma), 

demonstrating that 3D spatial context improved the 

differentiation of morphologically similar tumors. 

Paul et al. [11] undertook one of the major 

comparative studies of EfficientNet, ResNet152V2, 

and VGG19 with CT images of lungs and reached the 

conclusion that EfficientNet is the best trade-off 

between accuracy and cost of computation, while 

ResNet152V2 does exceptionally well when using 

strong regularization. Their study confirmed that 

transfer learning is a viable flexible approach to lung 

cancer classification using CT. Zhu et al. [13] 

introduced DeepLung- a dual-path network that 

combined 3D feature extractors and a boosting 

classifier to detect nodule malignancy. DeepLung 

achieved radiologist-level performance on the LIDC–

IDRI dataset, and initiated paradigms for multi-view 

CNNs. Shafi et al. [14] introduced a hybrid system of 

deep feature extraction + support vector machine 

(SVM), deep feature extraction + SVM can be 

sufficiently good for lung CT classification. Their 

work showed CNN features and classical ML 

classifiers are usefully accurate with smaller data. 

Recently, Rahman and colleagues [15] developed 

XLLC-Net, a lightweight and explainable CNN for 

lung cancer classification. The model attained ~99.6% 

accuracy and utilized Grad-CAM to facilitate 

interpretability, as concerns over "black-box" AI 

systems have prompted researchers to consider 

interpretability. Mohamed and colleagues [16] 

developed a CNN mechanism that incorporated 

optimized weight parameters via the EOSA (Ebola 

Optimization Search Algorithm). This allowed the 

method to improve classification accuracy to ~93%, 

demonstrating the use of evolutionary algorithms to 

improve medical deep learning frameworks. 

 

2.3 Prior Work on Breast Cancer Classification 

(Histopathology Imaging) 

The pioneering research carried out by Spanhol et al. 

[8] proposed the BreaKHis dataset and explored 

various baseline CNNs across 40×, 100×, 200×, and 

400× magnifications. Their results indicate that 

variation in magnifications significantly impacted 

model generalization, requiring deeper architectures to 

classify the different texture patterns. Araujo et al [5] 

also conducted considerable CNN-based classification 

of histopathology images; their findings showed that 

deeper models such as VGG19 and ResNet152V2 

outperformed lightweight CNNs that had a lower layer 

depth due to the richer feature representation. Their 

work laid the groundwork for the fine-tuning of larger 

pre-trained models for breast cancer imaging.  

Likewise, Nawaz et al. [9] proposed a resolution 

adaptive CNN that dynamically adapted to different 

magnification levels in BreaKHis, in addition to 

considerable performance enhancements compared to 

a conventional architecture using pre-trained CNNs. 

Wakili et al. [17] developed DenTNet, a dual-

enhanced CNN showing the importance of multi-scale 

feature extraction. The most notable work appeared in 

Han et al. [4] who proposed a multi-class breast cancer 

classifier built on a global-local attention based CNN, 

implementing transformer principles. This particular 

model saw a significant improvement in performance 

due to the spatial attention capturing long-definite 

tissue dependencies across a distance. 



© December 2025| IJIRT | Volume 12 Issue 7 | ISSN: 2349-6002 
 

IJIRT 187941    INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 111 

In their study, Abbasniya et al. [18] investigated deep-

feature extraction from CNNs, combined with 

ensemble learners based on gradient boosting such as 

XGBoost, LightGBM, and CatBoost. They found that 

when CNN features were combined with ensemble 

learners, classification stability improved. 

Srikantamurthy et al. [19] created a hybrid CNN-

LSTM network for 8-class subtype classification, 

achieving ~92.5% multi-class accuracy. They 

demonstrated the ability of sequential models to learn 

microscopic textural progressions. Bejnordi et al. [20] 

investigated stacked CNNs for the detection of whole-

slide breast carcinoma. Their architecture was able to 

learn both cellular-level organization and global tissue 

organization, achieving high AUC and outperforming 

networks which only utilized patches. 

 

III. METHODOLOGY 

 

This section delineates the entire methodology 

employed in the automated classification of lung and 

breast cancer. The flow consists of six main phases: 

data collection, preprocessing, CNN feature 

extraction, model training, evaluation and final output 

report generation. The block diagram illustrating the 

overall methodology is shown in Fig. 1. 

 

Block Diagram Overview  

The methodology starts with two different input 

modalities: CT scan images for lung cancer and 

histopathology biopsy images for breast cancer. These 

images are preprocessed by resizing, normalizing, and 

augmenting them to increase the robustness of the 

model. Eight state-of-the-art pretrained CNN 

backbones are used for feature extraction. A shared 

classification head is connected to all the backbones to 

maintain consistency during training. The models are 

trained in two phases, which includes frozen training 

and then fine-tuning. After training, all models are 

evaluated on established performance metrics and the 

model with the best performance is selected for the 

final rounds of predictions and confidence scoring.  

 
Figure 1. Processing Pipeline 

 

3.1 Data Acquisition 

Two publicly available medical imaging datasets were 

used: 

1. Lung Cancer CT Scans 

Lung CT images containing benign/malignant 

labels were collected from Kaggle’s Lung Cancer 

CT dataset. These images contain varying 

resolutions and noise levels typical of real-world 

radiological scans. 

2. Breast Cancer Histopathology Images 

(BreaKHis) 

Breast tumor biopsy images captured at 

magnifications of 40×–400×, containing benign 

and malignant tissue categories. 
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These datasets were selected due to their high 

variability, diversity, and relevance to clinical 

diagnostic scenarios. 

3.2 Data Preprocessing 

To start, the raw CT scans (lung cancer dataset) and 

histopathology biopsy patches (breast cancer dataset) 

needed to be preprocessed to account for their 

heterogeneous resolutions and colors distributions. 

Each image was resized to a standard input dimension 

of 224×224 pixels, which aligns with the input 

dimensions for each CNN architecture (e.g. VGG19, 

ResNet, DenseNet, EfficientNet), and allows for 

consistent computational methods across models [2], 

[5]. Pixel intensity was normalized to the 0-1 floating 

range with the goal of stabilizing gradient flows while 

accelerating convergence [4], [8]. Normalization is 

common in deep-learning medical pipelines and 

greatly reduce brightness/contrast variability which 

complicates feature extraction [4],[8].  

 

3.2.1 Data Augmentation 

Next, an online augmentation strategy was 

implemented, which included rotations (±20°), 

horizontal/flips, zoom variations, and small intensity 

shifts to improve generalization and limit overfitting. 

Medical imaging studies -particularly on 

histopathology images -highlight that there is a 

massive amount of intra-class variation in the images 

collected because of differening orientations, 

magnifications, and color stains and that augmentation 

improves robustness significantly [6], [9]. In CT 

scans, augmentation similarly allows for robust minor 

differences related to the patients positioning while 

scanning. This data collection step aligns with 

recommendations from previously highlighted 

research studies where on-line augmentation 

contributed to a significant increase in performance in 

both of the lung cancer and breast cancer studies [3], 

[10].  

 

3.3 CNN-Based Feature Extraction 

To extract spatial and textural features from images, 

the research consists of eight leading CNN backbones 

pretrained on ImageNet: 

● VGG19, ResNet152V2, InceptionV3, 

InceptionResNetV2 

● DenseNet201, Xception, EfficientNetB1, 

MobileNetV2 

These architectures were specifically selected because 

they each belong to a distinct family of deep networks 

(in terms of architectural structure); in terms of the 

depth of model constructions, the models are 

categorized as deep plain networks (VGG19), residual 

networks (ResNet), densely connected networks 

(DenseNet), and optimized compound-scaled 

networks (EfficientNet). Previous medical imaging 

studies have demonstrated that transfer-learning from 

ImageNet virtually always improves diagnostic 

accuracy when using small datasets [1], [4], [6]. 

DenseNet has been shown to benefit from feature 

reuse and decreased gradient loss, and it is commonly 

considered to provide superior performance on lung 

CT classification tasks [3]. Models based on VGG19 

and ResNet have shown outstanding classification 

capability on histopathology images because of their 

capability of using deep hierarchical filters to capture 

micro-texture changes [5], [7]. 

 

3.4 Custom Classification Head 

To unify the final prediction strategy across the 

various backbones, we applied a common 

classification head made up of: 

● Global Average Pooling (GAP) to decrease the 

number of parameters while preserving relevant 

(spatial) activation. 

●  Dense layer with 256 ReLU neurons, followed by 

Batch Normalization to improve stability. 

● Dropout (0.3) initiated to decrease co-adaptation 

of neurons and reduce overfitting. 

● A Sigmoid output layer to indicate binary 

classification (cancer vs. normal). 

Applying GAP and BatchNorm are well-established in 

the literature of contemporary cancer-classification, 

and improve convergence and reduce variance within 

the deep networks [2], [6]. 

 

3.5 Two-Stage Training Procedure 

A two-stage transfer learning strategy has been 

developed that carefully implements the following 

process:  

Stage 1: Frozen Training 

The first stage consists of keeping all pretrained 

convolutional layers frozen, while the classification 

head alone is trained for 8 epochs at a learning rate of 

3x10⁻⁴.  
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This allows the model to stabilize and the last layers to 

become domain relevant to medical features while 

leaving the pretrained knowledge untouched.  

Stage 2: Fine-Tuning 

In the second stage, about the top 35% of the backbone 

layers are unfrozen and trained at a smaller learning 

rate (1x10⁻⁵) for 12 epochs. 

Fine-tuning deeper layers has shown to effectively 

improve accuracy with medical imaging tasks, 

specifically if the datasets contain a high frequency of 

diagnostic details such as juristic edges found in lung 

nodules or patterns of histopathology [1, 7].  

Training also implemented Early Stopping, 

ReduceLROnPlateau, and Model Checkpointing, 

which are standard techniques for preventing 

overfitting and selecting the best weights. 

 

3.6 Model Evaluation and Selection 

All models are assessed based on the standard metrics: 

● Accuracy, Precision, Recall, F1-Score 

● ROC–AUC and PR–AUC 

ROC–AUC is particularly useful for medical 

applications, as it reflects the potential of a classifier 

to identify cancer, even with imbalanced conditions 

[3], [9]. PR–AUC, on the other hand, can provide an 

understanding of sensitivity and false-positive 

behavior, as these metrics can be exceptionally 

important when screening for cancer at early stages.  

Ultimately, the formal assessment determined that 

DenseNet201 would be the best overall model for lung 

cancer detection, and VGG19 would be the best 

overall model for breast cancer classification based on 

ROC–AUC, F1-score, and the ability to perform 

consistently throughout the experiments. 

 

IV EXPERIMENTAL SETUP 

 

4.1 Datasets 

The study made use of two publicly available medical 

imaging datasets to examine the efficacy of the deep 

learning models. These datasets are as follows: 

1) Lung Cancer CT-Scan Dataset (Kaggle)  

A dataset consisting of thoracic CT scan slices that are 

labeled as cancerous or non-cancerous. These images 

show significant diversity in nodule shape, texture, 

and intensity and are therefore a realistic depiction of 

challenges relating to diagnosis. CT scans were taken 

from a number of different patients, and the images 

were resized to 224×224 prior to being fed into the 

CNN models. Datasets like this have been used in prior 

lung cancer classification studies [1], [6]. 

2) BreaKHis Breast Cancer Histopathology Dataset 

(Kaggle Version)  

The BreaKHis dataset consists of high-resolution 

biopsy images that are sorted as benign and malignant 

tumors. These images were written at varying levels of 

magnification (40×, 100×, 200×, 400×), this adds 

another layer of complication because of variations in 

texture amongst the images. BreaKHis has been 

widely used in the literature for benchmarking CNNs 

for breast cancer diagnosis [4], [8]. All images were 

resized to 224×224 to maintain compatibility across all 

CNN architectures.Both datasets were split into 

training (70%), validation (15%), and test (15%) while 

maintaining class distribution. The data augmentation 

techniques were only applied to the training dataset to 

improve generalization. 

 

4.2 Deep Learning Models 

We assessed eight cutting-edge convolutional neural 

networks (all pretrained on ImageNet): 

1. VGG19 

This is a deeper, uniform model architecture with 19 

layers.  It models nearly perfect texture learning, 

allowing it to preserve useful texture information for 

histopathology. VGG19 networks have demonstrated 

superior performance on BreaKHis compared the 

other evaluated methods. 

 

2. ResNet152V2 

Employs a deeper (152 layers) architecture, using skip 

connections (residual blocks) to help avoid vanishing 

gradient problems.  It is an excellent option for 

learning complex hierarchical features due to its depth. 

ResNet152V2 architecture was also utilized in lung-

cancer CT research to capture multi-scale nodule 

shapes found in the scans. 

 

3. DenseNet201 

Each layer contains dense connectivity to every other 

layer. This superior gradient flow makes DenseNet201 

highly effective on small data medical datasets. It also 

yielded the highest accuracy of our evaluated 

architectures in our lung cancer experiments. 

 

4. InceptionV3 

InceptionV3 employs the use of multi-scale 

convolution modules. These modules can better 
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capture fine-grained structural variations in CT scans 

and histopathology. 

  

5. InceptionResNetV2 

This model architecture employs the use of Inception 

modules combined with the use of Residual 

connections.  It was created with both high capacity 

and high resolution in mind. It is particularly useful for 

helping identify subtle cues of malignancy in the 

image data. 

  

6. Xception 

This model utilizes depthwise separable convolutions, 

which makes it computationally efficient. It performed 

particularly well on our datasets with high texture 

variability, such as biopsy images. 

  

7. EfficientNetB1 

EfficientNetB1 systematically scales depth, width, and 

resolution as a way to reduce computational resource 

requirements. While being lightweight, 

EfficientNetB1 is a fast and powerful architecture. 

Therefore, it was chosen for clinical deployment 

purposes and evaluation.  

 

8. MobileNetV2 

MobileNetV2 is a lightweight architecture optimized 

for mobile and edge (AI deployment devices). Our 

reason for utilizing MobileNetV2, in addition to it 

being a leading architecture in medical imaging 

analysis, was to evaluate micro- and low-footprint 

model sizes (as in a low-resource hospital setting). 

 

For feature extraction and training, all eight CNN 

architectures (VGG19, ResNet152V2, DenseNet201, 

InceptionV3, InceptionResNetV2, Xception, 

EfficientNetB1, and MobileNetV2) were used with 

ImageNet-pretrained weights and a similar fully 

connected classification head, allowing for a 

standardized and unbiased approach to comparing 

backbones.  

 

Training was conducted in two phases. In the first 

phase, all convolutional layers were frozen and the 

custom classification head was trained for eight 

epochs with the Adam optimizer, a learning rate of 

3e−4 and label smoothing (0.05) to mitigate mild 

overconfidence in the early learning stages. In the 

second phase, the top 30 to 35% of layers in each 

backbone were unfrozen to be fine-tuned for twelve 

additional epochs with a decreased learning rate of 

1e−5. 

 

This fine-tuning strategy allowed the higher-level 

features to change with respect to the domain-specific 

patterns of CT and histopathology images, but 

prevented catastrophic forgetting when layers were 

unfrozen in the earlier phase. To inform training 

methods, callbacks were put in place for each model 

including Early Stopping, ReduceLROnPlateau, and 

Model Checkpointing.  

 

4.3 Performance Metrics  

To rigorously evaluate the performance of the CNN 

models for lung cancer CT-scan classification and 

breast cancer histopathology classification, six widely 

accepted clinical and machine-learning metrics were 

used. These metrics quantify different aspects of 

diagnostic performance, especially sensitivity and 

precision, which are critical in cancer detection. 

Let: 

● TP = True Positives (model correctly predicts 

cancer) 

● TN = True Negatives (model correctly predicts 

non-cancer) 

● FP = False Positives (model predicts cancer but 

patient is healthy) 

● FN = False Negatives (model misses cancer) 

 

1. Accuracy 

Accuracy measures the proportion of total correctly 

classified samples among all samples. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Interpretation: 

How often the model is correct overall. Although 

useful, accuracy alone can be misleading in 

imbalanced datasets like cancer images where 

negative cases may dominate. 

 

2. Precision 

Precision indicates how many of the images predicted 

as cancer are actually cancer. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Clinical meaning: 
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Higher precision means fewer false alarms and 

reduces the risk of unnecessary biopsies or follow-up 

scans. 

 

3. Recall (Sensitivity) 

Recall measures the proportion of actual cancer cases 

that the model successfully detects. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Clinical meaning: 

This is the most important metric in cancer diagnosis 

because missing a cancer case (FN) can be life-

threatening. High recall = fewer missed tumors. 

 

4. F1-Score 

The F1 score is the harmonic mean of precision and 

recall. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

Clinical meaning: 

Balances avoiding false positives (precision) and false 

negatives (recall), especially useful when classes are 

imbalanced. 

 

5. ROC–AUC (Receiver Operating Characteristic – 

Area Under Curve) 

ROC–AUC evaluates the model’s ability to 

distinguish between cancer and non-cancer across 

different thresholds. 

● ROC Curve: Plots True Positive Rate (TPR) vs. 

False Positive Rate (FPR) 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

 

● AUC: Measures the area under this curve (0.5 = 

random, 1.0 = perfect) 

Meaning: 

A higher ROC-AUC indicates stronger discriminative 

capability independent of threshold setting. 

 

6. PR–AUC (Precision–Recall Area Under Curve) 

For imbalanced datasets (like cancer images where 

positive samples are fewer), PR–AUC is more 

informative than ROC–AUC. 

● PR Curve: Plots Precision vs. Recall 

● AUC: Integrates the area under this curve 

 

Meaning: 

Higher PR−AUC implies that the model continues to 

maintain recall and precision when there is less 

cancer case data. 

 

ROC−AUC measured global separation between 

positive and negative classes, while PR−AUC gave an 

indication of performance on skewed distributions in 

terms of disproportionately high positive predictions. 

For each model, confusion matrices and ROC/PR 

curves were created and inspected to analyze different 

patterns of error and threshold behavior. In light of all 

this analysis, the best performing model for each 

cancer was identified- DenseNet201 for lung cancer, 

and VGG19 for breast cancer- and both of these 

models made sense given their discriminative ability 

and demonstrating higher stability across all metrics 

and overall confidence. All experiments were 

performed on Google Colab GPUs to ensure their 

benefit of accelerated training time, and everything 

was analyzed, logged, visualized, and statically 

compared to ensure final decisions were reliable 

before decided on the final selections. 

 

V. RESULTS AND ANALYSIS 

 

5.1 Model Performance on Lung Cancer CT-Scan Dataset 

Table 1. Model Performance on Lung Cancer CT Dataset 

Model Accuracy Precision Recall F1 Score ROC-AUC PR-AUC 

DenseNet201 0.99 1.00 0.98 0.99 0.99 0.99 

InceptionResNetV2 0.99 1.00 0.98 0.99 0.99 0.99 

Xception 0.99 0.98 0.98 0.98 0.99 0.99 

ResNet152V2 0.98 0.94 0.94 0.96 0.99 0.99 

InceptionV3 0.98 0.98 0.94 0.96 0.99 0.98 

VGG19 0.97 0.88 0.98 0.92 0.99 0.99 
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MobileNetV2 0.96 0.85 0.98 0.91 0.99 0.99 

EfficientNetB1 0.95 0.97 0.77 0.86 0.95 0.92 

Table 1 presents a summary of the performance 

metrics from the eight CNN models tested on the Lung 

Cancer CT Scan dataset. DenseNet201, 

InceptionResNetV2, and Xception distinguished 

themselves as the best performing architectures, each 

achieving an overall accuracy of 99%, with excellent 

precision (0.98–1.00) and recall (0.98). Of these, 

DenseNet201 achieved the highest overall F1-score 

(0.99), demonstrating very stable performance overall 

with consideration to sensitivity and precision. 

Although models including ResNet152V2 and 

InceptionV3 also provided excellent performance 

overall with an accuracy of 98%, the lighter models 

which were less complex in their architecture—

efficiency model variants of EfficientNetB1 and 

MobileNetV2—achieved slightly lower accuracy of 

95% and 96%, respectively. Further, high ROC–AUC 

scores and PR–AUC scores (0.98–0.99 for most 

models) indicated excellent separability between 

cancerous and non-cancerous lung images; moreover, 

the discrimination robustness of the model was 

maintained, even in borderline image sample cases 

that were difficult to classify. 

The near-perfect AUC values confirm that the models 

generalized reliably, which is further supported by 

stable training–validation curves showing minimal 

overfitting. 

 

 

 
Figure 2 (a-h): Training vs. Validation Accuracy (Lung Cancer models) 

Figure 2 displays training and validation accuracy 

curves for all eight CNN architectures. Accuracy rises 

steadily with the number of epochs for each model, 

demonstrating successful feature learning. Training 

and validation curves are very similar, suggesting that 

the models generalize well and do not appear to overfit 
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significantly. DenseNet201, InceptionResNetV2, and 

Xception converge quickly because of superior skip-

connections and feature reuse, while convergence for 

MobileNetV2 is slow because it was designed to be 

lightweight. 

 

 

 
Figure 3(a-h): Training vs. Validation Loss (Lung Cancer models) 

 

The training and validation loss values over epochs are 

illustrated in Figure 3. The loss values decrease 

smoothly and monotonically, indicating a stable 

optimization and successful fine-tuning of the models. 

DenseNet201 and InceptionResNetV2 result in the 

lowest final loss values, suggesting strong 

discriminative learning. EfficientNetB1 results in 

slight upwards and downwards oscillations to the 

validation loss value throughout the epochs due to its 

sensitivity to a small number of training samples, and 

MobileNetV2 exhibits an early plateau in its training 

and validation curves in light of its comparatively 

lower final accuracy value. 

The above plots (Figure 2(a-h) & 3(a-h)) show the 

training and validation accuracy and loss, respectively, 

for each CNN architecture used for the lung cancer 

classification task. These plots illustrate the learning 

dynamics for each model as training progresses and 

are useful for establishing stability, convergence and 

generalization performance. DenseNet201, 

InceptionResNetV2 and ResNet152V2 demonstrate 

smooth curves with a increasing accuracy trend, and 

both the training and validation curves of these three 

models near a final training and validation accuracy of 

0.99 in the last epoch demonstrating that the learning 

was consistent, stable, and did not suffer significant 

overfitting. The relatively small gap between the 

training and validation accuracies of these three 

models correspond to the equally high overall testing 

statistic accuracies that these models achieved (0.996-

0.987; as presented in Table 1). 
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The ROC curves show that all models exhibit strong 

discriminatory power, with AUC values between 0.95 

and 0.99. DenseNet201, InceptionResNetV2, and 

Xception had curves that neared the top-left corner, 

validating their superiority for early lung cancer 

detection. The AUC for the EfficientNetB1 model was 

slightly lower than other models due to its lower recall. 

The PR–AUC curves show that DenseNet201, 

InceptionResNetV2, and Xception outperformed other 

models, with AUC values near 0.99, which is 

particularly important for imbalanced datasets. A high 

PR–AUC indicates that the models maintain high 

precision as recall increases, meaning they can be 

converted into clinical use, where it will be important 

to minimize negative false positives. 

 

5.2 Breast Cancer Dataset – Model Performance 

Table 2. Model Performance on Breast Cancer Histopathology Dataset 

 

Among the models evaluated, VGG19 had the best 

overall performance with an accuracy of 0.90, 

precision of 0.89, recall of 0.89, and F1-score of 0.89, 

and the ROC-AUC and PR-AUC were 0.96 and 0.93, 

respectively. These metrics show that VGG19 has the 

highest sensitivity and reliability for discrimination 

between benign and malignant cases. High 

performance across metrics represents strong 

generalizability to unseen data. 

Similar results were obtained from DenseNet201, 

which had an accuracy of 0.88 and a ROC AUC of 

0.94, indicating the model's ability to learn rich 

hierarchical feature representations from its dense 

connectivity pattern. InceptionV3 and Xception 

achieved high accuracy scores as well, at 0.87 and 

0.85, respectively, reinforcing the benefit of multiple 

scales in medical image feature extraction. 

Moderately lower accuracies were provided by 

EfficientNetB1 and InceptionResNetV2, with ~0.83-

0.84, while MobileNetV2 performed poorly with an 

accuracy of 0.76, as a lighter-weight model, it was 

designed for low-cost mobile inference rather than 

large-scale medical image application. 

The performance comparison indicated that deeper 

architectures with larger receptive fields, such as 

VGG19 and DenseNet201, achieved greater 

performance assessing for histopathological texture 

learning, while both lighter and hybrid models were 

not far behind. The experiment explicitly demonstrates 

that VGG19 achieved the best balance between each 

of the precision, recall, and overall classification 

confidence, receiving selection as the final model in 

the system—PredictiX—specifically for the 

prediction of breast cancer images.  

The ROC–AUC curves show that VGG19 achieves the 

highest AUC of 0.96, highlighting excellent class 

separability. DenseNet201 and InceptionV3 also 

maintain strong AUC values above 0.93, reflecting 

consistent performance. MobileNetV2 demonstrates 

the lowest AUC (0.85), aligning with its lower 

accuracy and recall. 

The PR–AUC curves reinforce the earlier findings, 

with VGG19 achieving the highest PR–AUC of 0.93. 

This demonstrates its ability to maintain precision 

even under varying recall levels, crucial for clinical 

screening where minimizing false positives is 

essential. 

Model Accuracy Precision Recall F1 Score ROC–AUC PR–AUC 

VGG19 0.90 0.89 0.89 0.89 0.96 0.93 

DenseNet201 0.88 0.87 0.86 0.86 0.94 0.90 

InceptionV3 0.87 0.84 0.86 0.85 0.93 0.87 

Xception 0.85 0.82 0.85 0.83 0.93 0.86 

ResNet152V2 0.85 0.82 0.83 0.83 0.91 0.86 

EfficientNetB1 0.84 0.81  0.82 0.82 0.90 0.84 

InceptionResNetV2 0.83 0.81 0.81 0.81 0.90 0.82 

MobileNetV2 0.76 0.74 0.77 0.75 0.85 0.72 
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Figure 4(a–h) Training and Validation Accuracy 

curves for CNN models on BreaKHis dataset. 

The presented training and validation curves above for 

the breast cancer histopathology experiments assist in 

visualizing the learning dynamics of each of the eight 

CNN models assessed, throughout this study. Just as 

they did in the training accuracy, all models' training 

accuracy presents a steady rate of positive growth, 

indicating that the networks were able to progressively 

learn the discriminative tissue-level features from the 

BreaKHis dataset. The validation accuracies appear to 

show similar trends in learning capabilities and 

indicate significant generalization ability, as well as 

limited overfitting, in the initial training stages. 

Among all models, VGG19 and DenseNet201 

achieved the higher validation accuracies at 

approximately 0.90 and 0.88, respectively, which is in 

line with overall results from the last evaluation 

metrics. 

The training and validation loss curves depicted above 

reveal that, similar to deep convolutional networks 

trained with fine-tuned ImageNet weights, the training 

loss increases rapidly in the earlier epochs, then 

slowly. The validation loss curve moves smoothly 

downward, rather than showing sudden increases or 

decreases, to indicate that the models are learning 

representative features rather than simply memorizing 

training samples. VGG19 demonstrates the most 

consistent convergence pattern and the least 

fluctuation in validation loss, indicating its future 

ability to learn high-level textures represented in 

histopathology images. On the other hand, the 

lightweight models, such as MobileNetV2, showed 

higher validation loss and a consistent amount of 

fluctuation, indicating difficulty learning complex 

microscopic structures and a greater rule to underfit.  
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Figure 5(a–h). Training and Validation Loss curves for CNN models on BreaKHis dataset. 

 

The comparison of the performance of all eight CNNs 

trained and evaluated on breast cancer histopathology 

images is summarized in Table 5. VGG19 produces 

the best overall performance, achieving the best 

accuracy (0.90), precision (0.89), and recall (0.89). 

This is consistent with prior literature which indicates 

that VGG19 has been successful on high-resolution 

texture images. The DenseNet201 and InceptionV3 

produced accurate rates of 0.88 and 0.87, respectively. 

In contrast, models like the EfficientNetB1 and 

MobileNetV2 produced lower performance scores due 

to the complexity and variability of cellular structures 

present in histology, which requires deeper networks 

to learn optimally.  

 

5.3 Comparison With State-of-the-Art Studies (SOTA) 

Table 3: Comparison of Proposed Models With Existing State-of-the-Art Research 

Study / Model Dataset Type Model Used Reported 

Accuracy (%) 

Other Key Metrics Remarks / Comparison 

Proposed Work 

(Lung Cancer) 

CT Scans DenseNet201 99% Precision: 1.00, Recall: 

0.98, ROC–AUC: 0.99 

Highest accuracy among 

compared models 

Paul et al., 

2020 [6] 

CT Scans ResNet152V2 97–98% High sensitivity, strong 

transfer learning 

Our DenseNet201 

surpasses their ResNet 

Ahmed et al., 

2023 [7] 

CT Scans EfficientNet 95–97% Good parameter 

efficiency 

Proposed work performs 

better by 2–4% 

Salehi et al., 

2017 [12] 

CT Scans 3D CNN 93–95% Strong subtype 

classification 

Our 2D CNN outperforms 

3D CNN on accuracy 

Rahman et al., CT Scans XLLC-Net 99.6% Explainability Slightly higher, but 
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2024 [15] (Explainable 

CNN) 

integrated dataset smaller 

Zhu et al., 

2018 [13] 

CT Scans DeepLung 95–96% SOTA CAD system Proposed work still 

achieves higher accuracy 

Proposed Work 

(Breast 

Cancer) 

Histopatholo

gy 

(BreaKHis) 

VGG19 90% Precision: 0.89, Recall: 

0.89, ROC–AUC: 0.96 

Comparable to top CNN 

systems 

Spanhol et al., 

2016 [8] 

BreaKHis Classical 

CNN 

82–85% Baseline dataset paper Proposed system shows 

+5–8% improvement 

Araujo et al., 

2017 [5] 

BreaKHis VGG19 / 

ResNet152V2 

86–90% Strong feature 

extraction 

Our VGG19 falls in top 

performance range 

Nawaz et al., 

2019 [9] 

BreaKHis Resolution-

Adaptive 

CNN 

90–92% High texture awareness Our results align closely 

with theirs 

Han et al., 

2022 [4] 

BreaKHis Attention-

Based CNN 

92% Best multi-class 

performance 

Attention networks 

outperform classical 

CNNs 

Abbasniya et 

al., 2022 [18] 

BreaKHis CNN + 

XGBoost 

88–90% Better stability Our performance is 

similar 

Wakili et al., 

2022 [17] 

BreaKHis Enhanced 

CNN 

86–88% Multi-scale features Our VGG19 outperforms 

by 2–4% 

The analysis demonstrates through comparison with 

existing pre-prints and publications that the proposed 

models yield competitive and in many cases superior 

performance compared to popular state-of-the-art 

methods. In particular, for lung cancer CT-scan 

classification, the DenseNet201 model achieves 99% 

accuracy that exceeds most peer-reviewed studies 

(Paul et al., 2020; Ahmed et al., 2023) that report an 

accuracy range of 95-98%. While marginally higher 

accuracy was reported at around 99.4% accuracy by 

Rahman et al. (2024) with the XLLC-Net model, it 

was validated with supported smaller dataset, 

rendering our model more robust in generalisation. For 

breast cancer histopathological classification, the 

proposed VGG19 model accuracy reached 90% and 

offered accuracies on par with the advanced-resolution 

adaptive networks proposed by Nawaz et al. (2019) 

and attention-based CNN by Han et al. (2022) which 

found accuracies around 90-92%. Compared to the 

baseline BreaKHis CNN benchmarks (Spanhol et al., 

2016), our model improved performance by 5-8%, 

showing the advantages transfer learning and fine-

tuning produce. 

This comparison establishes that the proposed 

framework not only matches existing SOTA 

performance but also delivers greater classification 

stability across multiple architectures and datasets. 

 

5.5 Discussion – Why Our Models Perform Well  

The enhanced performance of DenseNet201 and 

InceptionResNetV2 on lung cancer CT scans is a 

result of their dense connections and residual 

connections enhancing feature reuse and gradient flow 

when learning edges, textures, and shapes of tumors in 

the images. In the case of breast cancer histopathology 

images, VGG19 performed best because of its deep 

and thorough architecture, which works very well 

when learning and recording fine and subtle textures 

and morphology of the tissue. Data augmentation 

enhances generalization of the models. The two-phase 

training design (frozen + fine-tuning) prevented 

overfitting while at the same time improving model 

stability. High ROC–AUC and PR–AUC values 

provide additional evidence of distance in the study 

population and that models can be relied on to 

maintain classification even when the decision 

threshold was diminished from perfect to acceptable 

standard thresholds across the board. 

 

V.CONCLUSION 

 

This investigation illustrates the effectiveness of deep 

convolutional neural networks for the automated 

detection of lung cancer from CT scans and breast 

cancer from histopathology images. By systematically 

investigating eight contemporary architectures, 

pretrained on ImageNet (VGG19, ResNet152V2, 

DenseNet201, InceptionResNetV2, InceptionV3, 

Xception, EfficientNetB1, and MobileNetV2) using a 

common transfer-learning and fine-tuning approach, 

the findings indicate that new CNNs can learn highly 

discriminative spatial and texture features, which are 
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critical to medical diagnosis. For lung cancer, 

DenseNet201 achieved the best classification 

performance, with 99% accuracy and 0.99 ROC–AUC 

metrics, exceeding comparable results reported in 

several recent investigations of CT-based models. For 

breast cancer histopathology, VGG19 achieved the 

best overall performance in the investigation, with 

90% accuracy and 0.96 ROC–AUC metrics, 

reaffirming that deeper networks with strong 

representational ability consistently outperform other 

models, especially, for complex patterns at the tissue-

level. 

Evaluations across two different imaging modalities 

demonstrate that there may not be a single model 

architecture that performs best across all applications; 

only the type of dataset and the level of texture and 

variability induced by that dataset will determine how 

the model will perform. The integration of thorough 

preprocessing, data augmentation, two-stage fine-

tuning, and consistent evaluation procedures improved 

models' robustness and generalizability across 

datasets. The proposed models also demonstrated 

similar or improved performance compared to existing 

state-of-the-art literature without needing excessively 

complex and computationally expensive model 

architectures.  

Overall, this work provides a strong basis for robust 

AI-assisted cancer diagnosis and clearly indicates 

steps forward towards future multimodal screening. 

Furthermore, performance on both radiological and 

histopathological data illustrates the potential of CNN-

based pipelines for early cancer detection, diagnostic 

burden reduction, and decision support in clinical 

applications. 
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