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Abstract- Diagnosing cancer from medical imaging still
represents one of most complex jobs in clinical practice,
especially lung cancer and breast cancer, which had
more than 4.8 million new cases combined in 2022. Lung
cancer continues to have the highest mortality rate
because it is detected late, and breast cancer is the most
diagnosed cancer in women and requires accurate
diagnostic processes in a timely manner. Previously
established diagnostic workflows heavily utilize the
judgment of radiologists and pathologists on assessing
CT scans and the histopathology slides. The process is
time-consuming, subjective and often not possible in
resource poor settings.

Deep learning-based methods have been developed with
strong performance using underlying architectures (such
as VGG19, ResNet, DenseNet, Inception-based networks,
and EfficientNet). These models have performed
impressively well compared to the state-of-the-art
performance reported in the literature, while also
providing strong feature extraction capabilities.
However, many previous studies had some level of lack
of diversity in the dataset, overfitting due to low number
of datasets, insufficient cross-model comparisons and
standardized preprocessing pipelines. Further, a lot of
research only takes into account one model or dataset,
limiting the power of the reported results to be
meaningful for deployment in the real-world.

To fill these gaps, this study presented a full evaluation
framework model for automated cancer detection based
on eight state-of-the-art ImageNet pretrained CNN
architectures - VGG19, ResNet152V2, DenseNet201,
InceptionV3, InceptionResNetV2, Xception,
EfficientNetBl, and MobileNetV2. A consistent
framework was applied between two datasets - Lung
Cancer CT Scan dataset and BreaKHis Breast Cancer
Histopathology. The framework included consistency in
preprocessing, image augmentation, as well as using a
single classification head with a two stage training
process for all architectures of frozen training and fine-
tuning 35% of backbone layers. Performance was
measured with Accuracy, Precision, Recall, F1-score,
ROC-AUC, and PR-AUC metrics.The proposed

framework demonstrated high discriminative
performance across both domains. DenseNet201
achieved the highest accuracy (99.0%+) and ROC-AUC
(0.99+) for the classification of lung cancer, exceeding
several results in the current literature. In breast cancer
histopathology images, VGG19 was the top-performing
model with an accuracy of 90%, high precision, and a
ROC-AUC of 0.96. This provides a measure of
consistency with previous research emphasizing the
utility of deeper CNN backbones for texture-rich medical
images. The results support that a standardized multi-
model evaluation strategy enhances reliability, limits
bias from the datasets, and increases clarity in the
supporting the model choice for practical use cases.

I. INTRODUCTION

Cancer continues to be one of the leading causes of
global mortality, with lung cancer and breast cancer
comprising the highest proportion of global cancer
incidence. According to the World Health
Organization (WHO), in 2022, there were
approximately 2.5 million and 2.3 million new lung
cancer and breast cancer cases respectively,
accounting for around 12.4% and 11.6% of all new
cases of cancer globally. Lung cancer continues to be
the most fatal cancer modality, because most patients
are diagnosed after the cancer has progressed to a late
stage, while breast cancer remains the most frequently
diagnosed cancer among women internationally. The
diagnostic process is almost entirely reliant on
radiologists and pathologists manually interpreting CT
scans and histopathology images, which can take a
significant amount of time, is susceptible to human
subjectivity and it is often not available in low
resource environments. The demands on diagnostic
services are compounded as populations age,
incidence of risk factors change, and more cases go
undiagnosed  with  pressure on  specialized
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pathology/radiology capacity to meet demand,
particularly in low and middle income environments
where screening and timely diagnosis may not be
available. In consideration of these challenges, the
demand for automated, fast, and reliable Al
diagnostic-assist tools is warranted in order to improve
accuracy of early diagnosis and alleviate the pressure
on healthcare professionals in the clinic.

The growing capability of deep learning and medical
imaging has resulted in improvements to the accuracy
and trustworthiness of automated cancer diagnostics.
Convolutional Neural Networks (CNN) are now the
preferred method for many cancer-classification tasks
due to their ability to automatically learn hierarchical
spatial features of CT and histology images. New
architectures, such as EfficientNet, DenseNet, ResNet,
InceptionResNet, and VGG, are being utilized for
cancer classification tasks and have reported increased
accuracy by classifying images with more layers,
better feature reuse, and multi-scale receptive fields.
In regards to lung cancer, studies using CNNs based
on transfer-learning have been reported on CT
imaging and demonstrated increased sensitivity and
reduced false positives.

For example, Ahmed et al. found that EfficientNet and
ResNet152V2 achieved superior discriminative ability
on CT datasets for lung nodule detection, effectively
capturing multi-scale features [1]. Additionally, Tang
et al. showed that DenseNet models consistently
performed well in lung tumor classification tasks,
solely attributed to the benefits of dense connectivity
and efficient gradient propagation [2]. In breast cancer
histopathology,  state-of-the-art CNNs  have
demonstrated a strong capability to extract fine-
grained texture patterns from the high-resolution
biopsy images. Nawaz et al. introduced Resolution-
Adaptive CNN, outperforming classical CNNs on the
BreaKHis dataset [3], while Han et al. added hybrid
attention-augmented CNNs improved tumor region
localization and classification stability [4]. Recent
large-scale benchmarking studies have shown that
deeper architectures, such as VGG19, ResNet152V2,
and InceptionResNetV2, reliably outperform lighter
networks on histopathological datasets by achieving
greater than 90% accuracy [5]. Together, this body of
work establishes CNN-based models as the state-of-
the-art solution for automated cancer detection, and
our proposed PredictiX framework builds from this
evidence.

In this paper, we evaluate deep convolutional neural
networks for the automated identification of lung
carcinoma from CT imaging and breast cancer from
histopathology. We aim to address barriers in datasets
applied in prior studies including lack of diversity,
limited generalizability, and overfitting. Conducting
benchmarking procedures, we perform meticulous
evaluation on eight leading classification architectures
(VGGI19, DenseNet201, ResNet152V2, InceptionV3,
InceptionResNetV2, Xception, EfficientNetB1, and
MobileNetV2) that follow a robust transfer-learning
and fine-tuning methodology to overcome the
limitations of previous studies. Observing lung cancer
classification from CT images, our results showed that
DenseNet201 achieves near perfect discriminative
capabilities with 99.6% accuracy and 0.9996 ROC-
AUC performance, far exceeding previous reporting
of recent literature that applied EfficientNet and
ResNet for lung CT classification [6], [7]. Evaluating
breast cancer histopathology classification, results
showed that VGG19 performed superiorly with 90%
accuracy, 0.89 Fl-score, and 0.96 ROC-AUC,
indicating previous studies reported deep CNNs
trained on  histopathological images learnt
significantly better texture-level based cues from
images [8], [9]. These findings demonstrate that
contemporary CNNs can provide valid and reliable
classifications of medical images; thus validating the
utility of CNNs to potentially enhance the detection
and classification of early stage cancers.

II. RELATED WORK

2.1 Introduction to Related Work

Deep learning has changed the potential of
computational systems to detect cancer from
diagnostic imaging, especially in lung cancer CT
imaging examples and breast cancer histopathology.
Within the past decade, convolutional neural networks
(CNN ), transformer-based models, and hybrid deep
architectures have all shown remarkable ability to
extract discriminative features otherwise unnoticed by
interpretive analysis. Early works looked at shallow
CNN architectures for binary classification, but
subsequently, deeper models including VGGI19,
ResNet152V2, and DenseNet family models came
along that enhanced feature extraction ability
significantly. At the same time, with the advent of the
BreaKHis data set, breast cancer research received a
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substantial boost through advanced work with
magnification-adaptive ~ networks, dual-branch
attention models, and multi-scale networks. More
contemporarily, lighter model explanations and model
alternates have underscored the importance of
interpretability and clinical trustworthiness in CNNs.
This section provides a comparative studies table of 15
authorative studies logically sorted into the two
imaging areas pertaining to this research, that is lung
cancer studies and then the breast cancer studies, with
a summary of their design studies, modeled
architecture, datasets and key results that have
contributed to the gaps addressed by this study.

2.2 Prior Work on Lung Cancer Classification (CT
Imaging)

Hussein et al. [10] made one of the original
contributions to lung cancer Al analysis when they
developed TumorNet, a multi-views CNN architecture
for characterizing lung nodules. They demonstrated
that CNNs outperformed classical radiomics by
learning cues from shapes and textures. Their
preprocessing pipeline included segmentation, nodule
patch extraction, and contrast normalization to
improve prediction of malignant nodules. Building on
previous approaches, Salehi et al. [12] created a 3D
convolutional neural network that can learn
volumetric information in CT scans. They showed that
the model had increased sensitivity in identifying
multi-class lung cancer subtypes (adenocarcinoma,
squamous-cell carcinoma, large-cell carcinoma),
demonstrating that 3D spatial context improved the
differentiation of morphologically similar tumors.
Paul et al. [11] undertook one of the major
comparative studies of EfficientNet, ResNet152V2,
and VGG19 with CT images of lungs and reached the
conclusion that EfficientNet is the best trade-off
between accuracy and cost of computation, while
ResNet152V2 does exceptionally well when using
strong regularization. Their study confirmed that
transfer learning is a viable flexible approach to lung
cancer classification using CT. Zhu et al. [13]
introduced DeepLung- a dual-path network that
combined 3D feature extractors and a boosting
classifier to detect nodule malignancy. DeepLung
achieved radiologist-level performance on the LIDC—
IDRI dataset, and initiated paradigms for multi-view
CNNs. Shafi et al. [14] introduced a hybrid system of
deep feature extraction + support vector machine

(SVM), deep feature extraction + SVM can be
sufficiently good for lung CT classification. Their
work showed CNN features and classical ML
classifiers are usefully accurate with smaller data.
Recently, Rahman and colleagues [15] developed
XLLC-Net, a lightweight and explainable CNN for
lung cancer classification. The model attained ~99.6%
accuracy and utilized Grad-CAM to facilitate
interpretability, as concerns over "black-box" Al
systems have prompted researchers to consider
interpretability. Mohamed and colleagues [16]
developed a CNN mechanism that incorporated
optimized weight parameters via the EOSA (Ebola
Optimization Search Algorithm). This allowed the
method to improve classification accuracy to ~93%,
demonstrating the use of evolutionary algorithms to
improve medical deep learning frameworks.

2.3 Prior Work on Breast Cancer Classification
(Histopathology Imaging)

The pioneering research carried out by Spanhol et al.
[8] proposed the BreaKHis dataset and explored
various baseline CNNs across 40x, 100x, 200%, and
400x magnifications. Their results indicate that
variation in magnifications significantly impacted
model generalization, requiring deeper architectures to
classify the different texture patterns. Araujo et al [5]
also conducted considerable CNN-based classification
of histopathology images; their findings showed that
deeper models such as VGG19 and ResNetl152V2
outperformed lightweight CNNs that had a lower layer
depth due to the richer feature representation. Their
work laid the groundwork for the fine-tuning of larger
pre-trained models for breast cancer imaging.
Likewise, Nawaz et al. [9] proposed a resolution
adaptive CNN that dynamically adapted to different
magnification levels in BreaKHis, in addition to
considerable performance enhancements compared to
a conventional architecture using pre-trained CNNs.
Wakili et al. [17] developed DenTNet, a dual-
enhanced CNN showing the importance of multi-scale
feature extraction. The most notable work appeared in
Han et al. [4] who proposed a multi-class breast cancer
classifier built on a global-local attention based CNN,
implementing transformer principles. This particular
model saw a significant improvement in performance
due to the spatial attention capturing long-definite
tissue dependencies across a distance.
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In their study, Abbasniya et al. [ 18] investigated deep-
feature extraction from CNNs, combined with
ensemble learners based on gradient boosting such as
XGBoost, LightGBM, and CatBoost. They found that
when CNN features were combined with ensemble
learners, classification stability improved.
Srikantamurthy et al. [19] created a hybrid CNN-
LSTM network for 8-class subtype classification,
achieving ~92.5% multi-class accuracy. They
demonstrated the ability of sequential models to learn
microscopic textural progressions. Bejnordi et al. [20]
investigated stacked CNNs for the detection of whole-
slide breast carcinoma. Their architecture was able to
learn both cellular-level organization and global tissue
organization, achieving high AUC and outperforming
networks which only utilized patches.

1. METHODOLOGY

This section delineates the entire methodology
employed in the automated classification of lung and
breast cancer. The flow consists of six main phases:
data  collection, preprocessing, CNN feature
extraction, model training, evaluation and final output
report generation. The block diagram illustrating the
overall methodology is shown in Fig. 1.

Block Diagram Overview

The methodology starts with two different input
modalities: CT scan images for lung cancer and
histopathology biopsy images for breast cancer. These
images are preprocessed by resizing, normalizing, and
augmenting them to increase the robustness of the
model. Eight state-of-the-art pretrained CNN
backbones are used for feature extraction. A shared
classification head is connected to all the backbones to
maintain consistency during training. The models are
trained in two phases, which includes frozen training
and then fine-tuning. After training, all models are
evaluated on established performance metrics and the
model with the best performance is selected for the
final rounds of predictions and confidence scoring.
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Figure 1. Processing Pipeline

3.1 Data Acquisition

Two publicly available medical imaging datasets were

used:

1. Lung Cancer CT Scans
Lung CT images containing benign/malignant
labels were collected from Kaggle’s Lung Cancer
CT dataset. These images contain varying
resolutions and noise levels typical of real-world
radiological scans.

2. Breast Cancer Histopathology Images
(BreaKHis)
Breast tumor biopsy images captured at
magnifications of 40x—400x, containing benign
and malignant tissue categories.
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These datasets were selected due to their high
variability, diversity, and relevance to clinical
diagnostic scenarios.

3.2 Data Preprocessing

To start, the raw CT scans (lung cancer dataset) and
histopathology biopsy patches (breast cancer dataset)
needed to be preprocessed to account for their
heterogeneous resolutions and colors distributions.
Each image was resized to a standard input dimension
of 224x224 pixels, which aligns with the input
dimensions for each CNN architecture (e.g. VGG19,
ResNet, DenseNet, EfficientNet), and allows for
consistent computational methods across models [2],
[5]. Pixel intensity was normalized to the 0-1 floating
range with the goal of stabilizing gradient flows while
accelerating convergence [4], [8]. Normalization is
common in deep-learning medical pipelines and
greatly reduce brightness/contrast variability which
complicates feature extraction [4],[8].

3.2.1 Data Augmentation

Next, an online augmentation strategy was
implemented, which included rotations (+20°),
horizontal/flips, zoom variations, and small intensity
shifts to improve generalization and limit overfitting.
Medical  imaging studies  -particularly  on
histopathology images -highlight that there is a
massive amount of intra-class variation in the images
collected because of differening orientations,
magnifications, and color stains and that augmentation
improves robustness significantly [6], [9]. In CT
scans, augmentation similarly allows for robust minor
differences related to the patients positioning while
scanning. This data collection step aligns with
recommendations from previously highlighted
research studies where on-line augmentation
contributed to a significant increase in performance in
both of the lung cancer and breast cancer studies [3],
[10].

3.3 CNN-Based Feature Extraction

To extract spatial and textural features from images,
the research consists of eight leading CNN backbones
pretrained on ImageNet:

e VGGI19, ResNet152V2, InceptionV3,
InceptionResNetV2

e DenseNet201, Xception, EfficientNetB1,
MobileNetV2

These architectures were specifically selected because
they each belong to a distinct family of deep networks
(in terms of architectural structure); in terms of the
depth of model constructions, the models are
categorized as deep plain networks (VGG19), residual
networks (ResNet), densely connected networks
(DenseNet), and optimized compound-scaled
networks (EfficientNet). Previous medical imaging
studies have demonstrated that transfer-learning from
ImageNet virtually always improves diagnostic
accuracy when using small datasets [1], [4], [6].
DenseNet has been shown to benefit from feature
reuse and decreased gradient loss, and it is commonly
considered to provide superior performance on lung
CT classification tasks [3]. Models based on VGG19
and ResNet have shown outstanding classification
capability on histopathology images because of their
capability of using deep hierarchical filters to capture
micro-texture changes [5], [7].

3.4 Custom Classification Head

To unify the final prediction strategy across the

various backbones, we applied a common

classification head made up of:

e Global Average Pooling (GAP) to decrease the
number of parameters while preserving relevant
(spatial) activation.

e  Dense layer with 256 ReLU neurons, followed by
Batch Normalization to improve stability.

e Dropout (0.3) initiated to decrease co-adaptation
of neurons and reduce overfitting.

e A Sigmoid output layer to indicate binary
classification (cancer vs. normal).

Applying GAP and BatchNorm are well-established in

the literature of contemporary cancer-classification,

and improve convergence and reduce variance within

the deep networks [2], [6].

3.5 Two-Stage Training Procedure

A two-stage transfer learning strategy has been
developed that carefully implements the following
process:

Stage 1: Frozen Training

The first stage consists of keeping all pretrained
convolutional layers frozen, while the classification
head alone is trained for 8 epochs at a learning rate of
3x107.
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This allows the model to stabilize and the last layers to
become domain relevant to medical features while
leaving the pretrained knowledge untouched.

Stage 2: Fine-Tuning

In the second stage, about the top 35% of the backbone
layers are unfrozen and trained at a smaller learning
rate (1x107°) for 12 epochs.

Fine-tuning deeper layers has shown to effectively
improve accuracy with medical imaging tasks,
specifically if the datasets contain a high frequency of
diagnostic details such as juristic edges found in lung
nodules or patterns of histopathology [1, 7].

Training also implemented Early Stopping,
ReduceLROnPlateau, and Model Checkpointing,
which are standard techniques for preventing
overfitting and selecting the best weights.

3.6 Model Evaluation and Selection

All models are assessed based on the standard metrics:
e Accuracy, Precision, Recall, F1-Score

e ROC-AUC and PR-AUC

ROC-AUC is particularly useful for medical
applications, as it reflects the potential of a classifier
to identify cancer, even with imbalanced conditions
[3], [9]. PR-AUC, on the other hand, can provide an
understanding of sensitivity and false-positive
behavior, as these metrics can be exceptionally
important when screening for cancer at early stages.
Ultimately, the formal assessment determined that
DenseNet201 would be the best overall model for lung
cancer detection, and VGG19 would be the best
overall model for breast cancer classification based on
ROC-AUC, Fl-score, and the ability to perform
consistently throughout the experiments.

IV EXPERIMENTAL SETUP

4.1 Datasets

The study made use of two publicly available medical
imaging datasets to examine the efficacy of the deep
learning models. These datasets are as follows:

1) Lung Cancer CT-Scan Dataset (Kaggle)

A dataset consisting of thoracic CT scan slices that are
labeled as cancerous or non-cancerous. These images
show significant diversity in nodule shape, texture,
and intensity and are therefore a realistic depiction of
challenges relating to diagnosis. CT scans were taken
from a number of different patients, and the images
were resized to 224x224 prior to being fed into the

CNN models. Datasets like this have been used in prior
lung cancer classification studies [1], [6].

2) BreaKHis Breast Cancer Histopathology Dataset
(Kaggle Version)

The BreaKHis dataset consists of high-resolution
biopsy images that are sorted as benign and malignant
tumors. These images were written at varying levels of
magnification (40%, 100x, 200x, 400x), this adds
another layer of complication because of variations in
texture amongst the images. BreaKHis has been
widely used in the literature for benchmarking CNNs
for breast cancer diagnosis [4], [8]. All images were
resized to 224x224 to maintain compatibility across all
CNN architectures.Both datasets were split into
training (70%), validation (15%), and test (15%) while
maintaining class distribution. The data augmentation
techniques were only applied to the training dataset to
improve generalization.

4.2 Deep Learning Models

We assessed eight cutting-edge convolutional neural
networks (all pretrained on ImageNet):

1. VGG19

This is a deeper, uniform model architecture with 19
layers. It models nearly perfect texture learning,
allowing it to preserve useful texture information for
histopathology. VGG19 networks have demonstrated
superior performance on BreaKHis compared the
other evaluated methods.

2. ResNet152V2

Employs a deeper (152 layers) architecture, using skip
connections (residual blocks) to help avoid vanishing
gradient problems. It is an excellent option for
learning complex hierarchical features due to its depth.
ResNet152V2 architecture was also utilized in lung-
cancer CT research to capture multi-scale nodule
shapes found in the scans.

3. DenseNet201

Each layer contains dense connectivity to every other
layer. This superior gradient flow makes DenseNet201
highly effective on small data medical datasets. It also
yielded the highest accuracy of our evaluated
architectures in our lung cancer experiments.

4. InceptionV3
InceptionV3 employs the wuse of multi-scale
convolution modules. These modules can better
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capture fine-grained structural variations in CT scans
and histopathology.

5. InceptionResNetV2

This model architecture employs the use of Inception
modules combined with the use of Residual
connections. It was created with both high capacity
and high resolution in mind. It is particularly useful for
helping identify subtle cues of malignancy in the
image data.

6. Xception

This model utilizes depthwise separable convolutions,
which makes it computationally efficient. It performed
particularly well on our datasets with high texture
variability, such as biopsy images.

7. EfficientNetB1

EfficientNetB1 systematically scales depth, width, and
resolution as a way to reduce computational resource
requirements. While being lightweight,
EfficientNetB1 is a fast and powerful architecture.
Therefore, it was chosen for clinical deployment
purposes and evaluation.

8. MobileNetV2

MobileNetV2 is a lightweight architecture optimized
for mobile and edge (Al deployment devices). Our
reason for utilizing MobileNetV2, in addition to it
being a leading architecture in medical imaging
analysis, was to evaluate micro- and low-footprint
model sizes (as in a low-resource hospital setting).

For feature extraction and training, all eight CNN
architectures (VGG19, ResNet152V2, DenseNet201,
InceptionV3, InceptionResNetV2, Xception,
EfficientNetB1, and MobileNetV2) were used with
ImageNet-pretrained weights and a similar fully
connected classification head, allowing for a
standardized and unbiased approach to comparing
backbones.

Training was conducted in two phases. In the first
phase, all convolutional layers were frozen and the
custom classification head was trained for eight
epochs with the Adam optimizer, a learning rate of
3e—4 and label smoothing (0.05) to mitigate mild
overconfidence in the early learning stages. In the
second phase, the top 30 to 35% of layers in each

backbone were unfrozen to be fine-tuned for twelve
additional epochs with a decreased learning rate of
le—35.

This fine-tuning strategy allowed the higher-level
features to change with respect to the domain-specific
patterns of CT and histopathology images, but
prevented catastrophic forgetting when layers were
unfrozen in the earlier phase. To inform training
methods, callbacks were put in place for each model
including Early Stopping, ReduceLROnPlateau, and
Model Checkpointing.

4.3 Performance Metrics

To rigorously evaluate the performance of the CNN

models for lung cancer CT-scan classification and

breast cancer histopathology classification, six widely

accepted clinical and machine-learning metrics were

used. These metrics quantify different aspects of

diagnostic performance, especially sensitivity and

precision, which are critical in cancer detection.

Let:

e TP = True Positives (model correctly predicts
cancer)

e TN = True Negatives (model correctly predicts
non-cancer)

e FP = False Positives (model predicts cancer but
patient is healthy)

e FN = False Negatives (model misses cancer)

1. Accuracy
Accuracy measures the proportion of total correctly
classified samples among all samples.

TP +TN

TP+TN +FP +FN

Accuracy =

Interpretation:

How often the model is correct overall. Although
useful, accuracy alone can be misleading in
imbalanced datasets like cancer images where
negative cases may dominate.

2. Precision
Precision indicates how many of the images predicted
as cancer are actually cancer.

TP

p P - -
recision TP + FP

Clinical meaning:
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Higher precision means fewer false alarms and
reduces the risk of unnecessary biopsies or follow-up
scans.

3. Recall (Sensitivity)
Recall measures the proportion of actual cancer cases
that the model successfully detects.

TP

p . . - -
recision TP + FN

Clinical meaning:

This is the most important metric in cancer diagnosis
because missing a cancer case (FN) can be life-
threatening. High recall = fewer missed tumors.

4. F1-Score
The F1 score is the harmonic mean of precision and
recall.

Precision * Recall
F1 Score = 2 %

Precision + Recall

Clinical meaning:

Balances avoiding false positives (precision) and false
negatives (recall), especially useful when classes are
imbalanced.

5. ROC-AUC (Receiver Operating Characteristic —
Area Under Curve)
ROC-AUC the
distinguish between cancer and non-cancer across
different thresholds.

ROC Curve: Plots True Positive Rate (TPR) vs.
False Positive Rate (FPR)

evaluates model’s ability to

TP
TPR = ——
TP+ FN
FPR = —————
FP+TN

e AUC: Measures the area under this curve (0.5 =
random, 1.0 = perfect)

Meaning:

A higher ROC-AUC indicates stronger discriminative
capability independent of threshold setting.

6. PR-AUC (Precision—Recall Area Under Curve)
For imbalanced datasets (like cancer images where
positive samples are fewer), PR-AUC is more
informative than ROC-AUC.

e PR Curve: Plots Precision vs. Recall
e AUC: Integrates the area under this curve
Meaning:

Higher PR—AUC implies that the model continues to
maintain recall and precision when there is less
cancer case data.

ROC—AUC measured global separation between
positive and negative classes, while PR—AUC gave an
indication of performance on skewed distributions in
terms of disproportionately high positive predictions.
For each model, confusion matrices and ROC/PR
curves were created and inspected to analyze different
patterns of error and threshold behavior. In light of all
this analysis, the best performing model for each
cancer was identified- DenseNet201 for lung cancer,
and VGG19 for breast cancer- and both of these
models made sense given their discriminative ability
and demonstrating higher stability across all metrics
and overall confidence.
performed on Google Colab GPUs to ensure their
benefit of accelerated training time, and everything
was analyzed, logged, visualized, and statically
compared to ensure final decisions were reliable
before decided on the final selections.

All  experiments were

V.RESULTS AND ANALYSIS

5.1 Model Performance on Lung Cancer CT-Scan Dataset
Table 1. Model Performance on Lung Cancer CT Dataset

Model Accuracy Precision Recall F1 Score ROC-AUC PR-AUC
DenseNet201 0.99 1.00 0.98 0.99 0.99 0.99
InceptionResNetV2 0.99 1.00 0.98 0.99 0.99 0.99
Xception 0.99 0.98 0.98 0.98 0.99 0.99
ResNet152V2 0.98 0.94 0.94 0.96 0.99 0.99
InceptionV3 0.98 0.98 0.94 0.96 0.99 0.98
VGG19 0.97 0.88 0.98 0.92 0.99 0.99
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0.99
0.95

0.99
0.92

0.85
0.97

0.98
0.77

0.91
0.86

MobileNetV2
EfficientNetB1

0.96
0.95

Table 1 presents a summary of the performance
metrics from the eight CNN models tested on the Lung
Cancer CT Scan dataset. DenseNet201,
InceptionResNetV2, and Xception distinguished
themselves as the best performing architectures, each
achieving an overall accuracy of 99%, with excellent
precision (0.98-1.00) and recall (0.98). Of these,
DenseNet201 achieved the highest overall F1l-score
(0.99), demonstrating very stable performance overall
with consideration to sensitivity and precision.
Although models including ResNet152V2
InceptionV3 also provided excellent performance

efficiency model variants of EfficientNetBl and
MobileNetV2—achieved slightly lower accuracy of
95% and 96%, respectively. Further, high ROC-AUC
scores and PR—AUC scores (0.98-0.99 for most
models) indicated excellent separability between
cancerous and non-cancerous lung images; moreover,
the discrimination robustness of the model was
maintained, even in borderline image sample cases
that were difficult to classify.

The near-perfect AUC values confirm that the models
and generalized reliably, which is further supported by
stable training—validation curves showing minimal
overall with an accuracy of 98%, the lighter models overfitting.
which were less complex in their architecture—
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Figure 2 (a-h): Training vs. Validation Accuracy (Lung Cancer models)

demonstrating successful feature learning. Training
and validation curves are very similar, suggesting that
the models generalize well and do not appear to overfit

Figure 2 displays training and validation accuracy
curves for all eight CNN architectures. Accuracy rises
steadily with the number of epochs for each model,
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significantly. DenseNet201, InceptionResNetV2, and
Xception converge quickly because of superior skip-
connections and feature reuse, while convergence for

DenseNet201 (finetune) - Loss

— tain_loss

InceptionResNetV2 (finetune) - Loss 0.40

MobileNetV2 is slow because it was designed to be
lightweight.
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Figure 3(a-h): Training vs. Validation Loss (Lung Cancer models)

The training and validation loss values over epochs are
illustrated in Figure 3. The loss values decrease
smoothly and monotonically, indicating a stable
optimization and successful fine-tuning of the models.
DenseNet201 and InceptionResNetV2 result in the
final loss suggesting  strong
discriminative learning. EfficientNetBl results in
slight upwards and downwards oscillations to the
validation loss value throughout the epochs due to its
sensitivity to a small number of training samples, and

lowest values,

MobileNetV2 exhibits an early plateau in its training
and validation curves in light of its comparatively
lower final accuracy value.

The above plots (Figure 2(a-h) & 3(a-h)) show the
training and validation accuracy and loss, respectively,
for each CNN architecture used for the lung cancer
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classification task. These plots illustrate the learning
dynamics for each model as training progresses and
are useful for establishing stability, convergence and
generalization performance. DenseNet201,
InceptionResNetV2 and ResNet152V2 demonstrate
smooth curves with a increasing accuracy trend, and
both the training and validation curves of these three
models near a final training and validation accuracy of
0.99 in the last epoch demonstrating that the learning
was consistent, stable, and did not suffer significant
overfitting. The relatively small gap between the
training and validation accuracies of these three
models correspond to the equally high overall testing
statistic accuracies that these models achieved (0.996-
0.987; as presented in Table 1).
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The ROC curves show that all models exhibit strong
discriminatory power, with AUC values between 0.95
and 0.99. DenseNet201, InceptionResNetV2, and
Xception had curves that neared the top-left corner,
validating their superiority for early lung cancer
detection. The AUC for the EfficientNetB1 model was
slightly lower than other models due to its lower recall.

5.2 Breast Cancer Dataset — Model Performance

The PR-AUC curves show that DenseNet201,
InceptionResNetV2, and Xception outperformed other
models, with AUC values near 0.99, which is
particularly important for imbalanced datasets. A high
PR-AUC indicates that the models maintain high
precision as recall increases, meaning they can be
converted into clinical use, where it will be important
to minimize negative false positives.

Table 2. Model Performance on Breast Cancer Histopathology Dataset

Model Accuracy Precision Recall F1 Score ROC-AUC PR-AUC
VGGI19 0.90 0.89 0.89 0.89 0.96 0.93
DenseNet201 0.88 0.87 0.86 0.86 0.94 0.90
InceptionV3 0.87 0.84 0.86 0.85 0.93 0.87
Xception 0.85 0.82 0.85 0.83 0.93 0.86
ResNet152V2 0.85 0.82 0.83 0.83 0.91 0.86
EfficientNetB1 0.84 0.81 0.82 0.82 0.90 0.84
InceptionResNetV2 0.83 0.81 0.81 0.81 0.90 0.82
MobileNetV2 0.76 0.74 0.77 0.75 0.85 0.72

Among the models evaluated, VGG19 had the best
overall performance with an accuracy of 0.90,
precision of 0.89, recall of 0.89, and F1-score of 0.89,
and the ROC-AUC and PR-AUC were 0.96 and 0.93,
respectively. These metrics show that VGG19 has the
highest sensitivity and reliability for discrimination

High
strong

between benign
performance
generalizability to unseen data.

Similar results were obtained from DenseNet201,
which had an accuracy of 0.88 and a ROC AUC of
0.94, indicating the model's ability to learn rich
hierarchical feature representations from its dense
connectivity pattern. InceptionV3 and Xception

achieved high accuracy scores as well, at 0.87 and

and malignant
represents

cases.

across metrics

0.85, respectively, reinforcing the benefit of multiple
scales in medical image feature extraction.
Moderately lower accuracies were provided by
EfficientNetB1 and InceptionResNetV2, with ~0.83-
0.84, while MobileNetV2 performed poorly with an
accuracy of 0.76, as a lighter-weight model, it was
designed for low-cost mobile inference rather than
large-scale medical image application.
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The performance comparison indicated that deeper
architectures with larger receptive fields, such as
VGG19 and DenseNet201, achieved greater
performance assessing for histopathological texture
learning, while both lighter and hybrid models were
not far behind. The experiment explicitly demonstrates
that VGG19 achieved the best balance between each
of the precision, recall, and overall classification
confidence, receiving selection as the final model in
the  system—PredictiX—specifically = for  the
prediction of breast cancer images.

The ROC-AUC curves show that VGG19 achieves the
highest AUC of 0.96, highlighting excellent class
separability. DenseNet201 and InceptionV3 also
maintain strong AUC values above 0.93, reflecting
consistent performance. MobileNetV2 demonstrates
the lowest AUC (0.85), aligning with its lower
accuracy and recall.

The PR—AUC curves reinforce the earlier findings,
with VGG19 achieving the highest PR-AUC of 0.93.
This demonstrates its ability to maintain precision
even under varying recall levels, crucial for clinical
screening where minimizing false positives is
essential.
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Figure 4(a—h) Training and Validation Accuracy
curves for CNN models on BreaKHis dataset.

The presented training and validation curves above for
the breast cancer histopathology experiments assist in
visualizing the learning dynamics of each of the eight
CNN models assessed, throughout this study. Just as
they did in the training accuracy, all models' training
accuracy presents a steady rate of positive growth,
indicating that the networks were able to progressively
learn the discriminative tissue-level features from the
BreaKHis dataset. The validation accuracies appear to
show similar trends in learning capabilities and
indicate significant generalization ability, as well as
limited overfitting, in the initial training stages.
Among all models, VGGI9 and DenseNet201
achieved the higher validation at
approximately 0.90 and 0.88, respectively, which is in
line with overall results from the last evaluation
metrics.

accuracies
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The training and validation loss curves depicted above
reveal that, similar to deep convolutional networks
trained with fine-tuned ImageNet weights, the training
loss increases rapidly in the earlier epochs, then
slowly. The validation loss curve moves smoothly
downward, rather than showing sudden increases or
decreases, to indicate that the models are learning
representative features rather than simply memorizing
training samples. VGG19 demonstrates the most
pattern the
fluctuation in validation loss, indicating its future
ability to learn high-level textures represented in
histopathology images. On the other hand, the
lightweight models, such as MobileNetV2, showed
higher validation loss and a consistent amount of
fluctuation, indicating difficulty learning complex
microscopic structures and a greater rule to underfit.

consistent convergence and least
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Figure 5(a-h). Training and Validation Loss curves for CNN models on BreaKHis dataset.

The comparison of the performance of all eight CNNs
trained and evaluated on breast cancer histopathology
images is summarized in Table 5. VGG19 produces
the best overall performance, achieving the best
accuracy (0.90), precision (0.89), and recall (0.89).
This is consistent with prior literature which indicates
that VGG19 has been successful on high-resolution

5.3 Comparison With State-of-the-Art Studies (SOTA)
Table 3: Comparison of Proposed Models With Existing State-

texture images. The DenseNet201 and InceptionV3
produced accurate rates of 0.88 and 0.87, respectively.
In contrast, models like the EfficientNetB1 and
MobileNetV2 produced lower performance scores due
to the complexity and variability of cellular structures
present in histology, which requires deeper networks
to learn optimally.

of-the-Art Research

Study / Model | Dataset Type Model Used Reported Other Key Metrics Remarks / Comparison
Accuracy (%)

Proposed Work | CT Scans DenseNet201 | 99% Precision: 1.00, Recall: | Highest accuracy among

(Lung Cancer) 0.98, ROC-AUC: 0.99 compared models

Paul et al,, CT Scans ResNet152V2 | 97-98% High sensitivity, strong | Our DenseNet201

2020 [6] transfer learning surpasses their ResNet

Ahmed et al., CT Scans EfficientNet 95-97% Good parameter Proposed work performs

2023 [7] efficiency better by 2-4%

Salehi et al., CT Scans 3D CNN 93-95% Strong subtype Our 2D CNN outperforms

2017 [12] classification 3D CNN on accuracy

Rahmanetal.,, | CT Scans XLLC-Net 99.6% Explainability Slightly higher, but
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2024 [15] (Explainable

CNN)
Zhu et al., CT Scans DeepLung 95-96%
2018 [13]
Proposed Work | Histopatholo | VGG19 90%
(Breast gy
Cancer) (BreaKHis)
Spanhol etal., | BreaKHis Classical 82-85%
2016 [8] CNN
Araujo et al., BreaKHis VGG19/ 86-90%
2017 [5] ResNet152V2
Nawaz et al., BreaKHis Resolution- 90-92%
2019 [9] Adaptive

CNN
Han et al., BreaKHis Attention- 92%
2022 [4] Based CNN
Abbasniya et BreaKHis CNN + 88-90%
al., 2022 [18] XGBoost
Wakili et al., BreaKHis Enhanced 86-88%
2022 [17] CNN

The analysis demonstrates through comparison with
existing pre-prints and publications that the proposed
models yield competitive and in many cases superior
performance compared to popular state-of-the-art
methods. In particular, for lung cancer CT-scan
classification, the DenseNet201 model achieves 99%
accuracy that exceeds most peer-reviewed studies
(Paul et al., 2020; Ahmed et al., 2023) that report an
accuracy range of 95-98%. While marginally higher
accuracy was reported at around 99.4% accuracy by
Rahman et al. (2024) with the XLLC-Net model, it
was validated with supported smaller dataset,
rendering our model more robust in generalisation. For
breast cancer histopathological classification, the
proposed VGG19 model accuracy reached 90% and
offered accuracies on par with the advanced-resolution
adaptive networks proposed by Nawaz et al. (2019)
and attention-based CNN by Han et al. (2022) which
found accuracies around 90-92%. Compared to the
baseline BreaKHis CNN benchmarks (Spanhol et al.,
2016), our model improved performance by 5-8%,
showing the advantages transfer learning and fine-
tuning produce.

This comparison establishes that the proposed
framework not only matches existing SOTA
performance but also delivers greater classification
stability across multiple architectures and datasets.

5.5 Discussion — Why Our Models Perform Well

The enhanced performance of DenseNet201 and
InceptionResNetV2 on lung cancer CT scans is a

IJIRT 187941

integrated dataset smaller

SOTA CAD system Proposed work still
achieves higher accuracy
Comparable to top CNN
systems

Precision: 0.89, Recall:
0.89, ROC-AUC: 0.96
Baseline dataset paper Proposed system shows
+5-8% improvement
Our VGG19 falls in top
performance range

Our results align closely
with theirs

Strong feature
extraction
High texture awareness

Best multi-class Attention networks

performance outperform classical
CNNs

Better stability Our performance is
similar

Multi-scale features Our VGG19 outperforms
by 2-4%

result of their dense connections and residual
connections enhancing feature reuse and gradient flow
when learning edges, textures, and shapes of tumors in
the images. In the case of breast cancer histopathology
images, VGG19 performed best because of its deep
and thorough architecture, which works very well
when learning and recording fine and subtle textures
and morphology of the tissue. Data augmentation
enhances generalization of the models. The two-phase
training design (frozen + fine-tuning) prevented
overfitting while at the same time improving model
stability. High ROC-AUC and PR-AUC values
provide additional evidence of distance in the study
population and that models can be relied on to
maintain classification even when the decision
threshold was diminished from perfect to acceptable
standard thresholds across the board.

V.CONCLUSION

This investigation illustrates the effectiveness of deep
convolutional neural networks for the automated
detection of lung cancer from CT scans and breast
cancer from histopathology images. By systematically
investigating eight contemporary architectures,
pretrained on ImageNet (VGG19, ResNetl152V2,
DenseNet201, InceptionResNetV2, InceptionV3,
Xception, EfficientNetB1, and MobileNetV2) using a
common transfer-learning and fine-tuning approach,
the findings indicate that new CNNs can learn highly
discriminative spatial and texture features, which are
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critical to medical diagnosis. For lung cancer,
DenseNet201 achieved the best classification
performance, with 99% accuracy and 0.99 ROC-AUC
metrics, exceeding comparable results reported in
several recent investigations of CT-based models. For
breast cancer histopathology, VGG19 achieved the
best overall performance in the investigation, with
90% accuracy and 0.96 ROC-AUC metrics,
reaffirming that deeper networks with strong
representational ability consistently outperform other
models, especially, for complex patterns at the tissue-
level.

Evaluations across two different imaging modalities
demonstrate that there may not be a single model
architecture that performs best across all applications;
only the type of dataset and the level of texture and
variability induced by that dataset will determine how
the model will perform. The integration of thorough
preprocessing, data augmentation, two-stage fine-
tuning, and consistent evaluation procedures improved
models' robustness and generalizability across
datasets. The proposed models also demonstrated
similar or improved performance compared to existing
state-of-the-art literature without needing excessively
complex and computationally expensive model
architectures.

Overall, this work provides a strong basis for robust
Al-assisted cancer diagnosis and clearly indicates
steps forward towards future multimodal screening.
Furthermore, performance on both radiological and
histopathological data illustrates the potential of CNN-
based pipelines for early cancer detection, diagnostic
burden reduction, and decision support in clinical
applications.
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