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Abstract—Floating architecture is emerging as a viable
response to flooding, land scarcity, and rising water
levels, but its performance depends on decisions far
beyond conventional architecture. This research
evaluates floating buildings through four architectural
parameters: buoyant structural systems, material
behavior, MEP adaptation, and construction
methodology. Using literature review, system
classification, case studies, and interviews, the study
compares pontoon, modular grid, amphibious, VLFS,
and hybrid systems in relation to stability, massing,
environmental context, and service integration. Material
analysis highlights the trade-offs between concrete
stability, steel precision, composite modularity, and
hybrid durability. Case studies-from small floating
houses to large districts-reveal that mass distribution,
prefabrication, flexible utility routing, and context-
specific mooring fundamentally shape architectural
form and usability. Interview insights further emphasize
that height, weight, and layout are dictated by
hydrostatics, not aesthetics. The study concludes that
architectural success on water requires early
interdisciplinary coordination and system-led design
thinking.

Index  Terms—Floating  Architecture; Buoyancy
Systems; Materials; MEP Integration; Architectural
Design

I. AIM

To evaluate how buoyant systems, materials, MEP,
and construction directly shape floating architecture.

II. OBJECTIVES

e To analyze how structural, material, and service
systems influence the form, stability, and
performance of floating buildings.

e To identify architectural principles derived from
global case studies, assessing feasibility across
different water environments.
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III. SCOPE

This study reviews permanent and semi-permanent
floating buildings such as houses, public buildings,
mixed-use platforms, and floating districts. It
evaluates buoyant structural systems, material
suitability, MEP adaptations, and construction
strategies that influence architectural design. The
scope includes lakes, rivers, sheltered coastal zones,
and flood-prone landscapes, excluding offshore
industrial structures and naval engineering platforms.

IV. LIMITATION

The study excludes hydrodynamic simulations, naval-
architecture-level calculations, offshore industrial
platforms, and detailed cost modelling. Case-study
data is limited to available documentation and
interviews.

V. INTRODUCTION
Floating buildings challenge conventional
architectural assumptions because buoyancy, stability,
and mass distribution define form, height, and spatial
organization. As rising water levels affect urban and
riverine settlements, floating systems-from pontoons
to modular grids and amphibious foundations-offer
alternatives that merge architectural intent with marine
engineering. However, architecture on water is
constrained by materials, movement, utilities, and
long-term maintenance. This study addresses these
gaps by classifying floating systems, analyzing
materials, comparing built precedents, and
incorporating professional insights to identify how
architectural design must adapt when the ground itself
is no longer fixed. (Rabin Chakrabortty 1, 2025)
(Tejonmayam, 2024) (Anushiya J, 2024)
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VI. METHODOLOGY

LITERATURE REVIEW SYSTEM CLASSFICATION | | CASE STUDIES INTERVIEWS SYNTHESIS
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Figure 1: Methodology (Source — Author)

The methodology combines a structured literature
review with system-based analysis and case-study
evaluation. It first examines buoyancy systems,
material choices, MEP adaptations, and construction
methods, followed by a classification of pontoon,
modular, amphibious, VLFS, and hybrid systems
based on their architectural relevance. Medium- and
district-scale projects were then studied to understand
how materials, stability, and service strategies shape
spatial and structural decisions. Expert interviews
provided additional insight into massing, durability,
regulation, and long-term maintenance considerations.
These layers of analysis were finally synthesized to
derive architectural principles that link system
behavior to spatial design.

VII. HISTORY OF FLOATING ARCHITECTURE

Floating architecture has progressed through distinct
phases. In prehistoric and ancient periods,
communities created stilt houses and reed platforms as
basic responses to wetland ecosystems. From 1000-
1800, organized floating villages emerged in regions
like Lake Titicaca and Tonlé Sap, developing
communal layouts and water-based circulation. The
19th century introduced industrial materials such as
steel and engineered timber, enabling larger pontoons
and early engineered buoyancy systems. Between
1900-1970, houseboats and naval research improved
mooring and hydrostatics but remained vessel-driven.
By the late 20th century, reinforced concrete pontoons
and modular utilities allowed purpose-built floating
neighborhoods, particularly in the Netherlands and
Japan. From 20002015, floating architecture shifted
toward climate-responsive design with modular
platforms and amphibious systems. Since 2015,
advancements in hybrid materials, scalable modules,
and VLFS technologies have supported the rise of
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floating districts like Schoonschip, positioning water-
based urbanism as a credible response to climate risk
and land scarcity.(Moonl, 2018) (Wang C. M., 2011)
(Guimaraes, 2014)

VIII. PROFESSIONAL ROLES IN FLOATING
BUILDING PROJECTS

Floating architecture requires a coordinated team
because every design choice affects buoyancy,
stability, and safety. Architects, naval and structural
engineers, MEP specialists, and regulatory bodies
must work together to avoid technical or legal failure.
(Gupta, 2025) (Dhanuskar, 2025)

Architects shape space on buoyant foundations, while
engineers manage load paths, movement, and
resilience. These projects only succeed when all
disciplines operate as one system.(Preamble, 2025)
(About civil engineering, n.d.)

IX. TYPOLOGY AND ARCHITECTURAL
Classification of Floating Structural Systems
e

Figure 2: Typology and architectural classification of
floating (Source — Author)

1. Architecturally Dominant Systems
1.1." Pontoon-System

Figure 3: Professional Roles and What They
Contribute (Source — Ruukki)
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Pontoon systems use wide, shallow concrete, steel, or
HDPE pontoons that directly support architectural
loads. Built through precast caissons or welded
modules, they work best in lakes, canals, reservoirs,
estuaries, and other sheltered waters at depths of
roughly 1.5-20 m. They remain the most economical
option for small- to medium-scale buildings and offer
moderate design freedom, though the footprint is
fixed. Services typically run through under-deck
corridors with articulated joints. Key forces include
hydrostatic buoyancy, wave uplift, and wind or current
loads. (Icho SEIMOKOMOH Igwe, 2020) (El-Shihy,
2019) (Chayka, 2024)

1.1. Modular Floating System

Figure 4: Modular floating building (Source- adsttc)

These systems link concrete, steel, or HDPE units into
interconnected grids that allow expandable and
reconfigurable layouts. Factory-made modules are
joined with engineered connectors and perform well in
lakes, calm rivers, and protected coastal bays,
generally between 2-30 m depth. Costs fall in the
medium range and rise with module count, but they
offer high design liberty and urban-scale adaptability.
Services plug in across modules, and forces are
governed by connector shear, torsion, and wave-
induced modular motion.(Huimin Yang, Analysis of
floating city design solutions in the context of carbon
neutrality-focus on Busan Oceanix City, 2002) (EL-
Shihy, 2024) (Wang S. , Analytical solutions for the
dynamic analysis of a modular floating structure for
urban expansion, 2022)
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1.1. Amphibious / Buoyant Foundation Systems

Figure 5: Amphibious floating building (Source-
ResearchGate)

Amphibious systems keep buildings on land under
normal conditions but lift them during floods using
buoyant bases made from timber composites, HDPE
blocks, or concrete tubs, guided by steel posts. They
suit floodplains, wetlands, and river edges where water
may rise up to about 10 m. This is one of the most
economical strategies for flood adaptation, though
architectural freedom stays close to standard land-
based forms. Services rely on flexible loops and
elevated risers. Forces stem from vertical buoyancy,
guidepost friction, and flood hydrodynamics.(Nopia,
2021) (Hope Ameh *ORCID, 2024)

2. Engineering-Dominant Systems
2.1. Semi-Submersible System

Figure 6: Amphibious floating building (Source-
Wikimedia)

Semi-submersible platforms use submerged columns
to reduce wave impact, adapted from offshore
engineering. Their deep draft and complex mechanics
make them hard to use in shallow bays and complicate
access and services, leaving architects with limited
design freedom.

(Semisubmersibles, 2021) (Kabir Sadeghi, 2019)
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2.2. Span System
Lo

Figure 7: spar platforms (Source- Wikimedia)

Spar systems use deep-draft cylindrical floats tethered
vertically in the water. Built for offshore energy, they
offer very little usable area and difficult service access,
making them impractical for almost any architectural
program and giving architects minimal design
flexibility.(Spar Platforms, 2018) (Kim)

2.3. Tension Leg Platforms (Tlp) System

Figure 8: Tension Leg Platforms (TLP) System
(Source- Marine insight)

Tension Leg Platforms (TLPs) use buoyant decks
anchored to the seabed with wvertical tensioned
tendons, creating a stiff platform with very limited
vertical movement. Although stable, they are costly,
require deep-water moorings, and demand constant
tendon maintenance. These technical and financial
constraints make TLPs difficult for most architectural
applications.

(M. Jameel) (Yipin Wang, 2025)
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3. Shared Systems (Architecture + Engineering)
3.1. Large Public Buildings On VLFS

Figure 9: Large public buildings on VLFS (Source-
Springer nature)

VLFS are mega-scale platforms such as runways,
terminals, or stadiums that behave as hydroelasticity
slabs. Built from prestressed concrete, steel mega-
pontoons, or composite caissons, they rely on post-
tensioned decks, precast mega-modules, and
engineered mooring grids. They perform best in
sheltered seas, deep bays, and calm coastal zones at
depths of roughly 10-60 m. Although expensive, they
are still cheaper than land reclamation and offer very
high design freedom, including large uninterrupted
floorplates. Services run through central spines and
integrated caisson networks. Key forces involve
hydroelasticity bending, long-period waves, and
mooring tension.(Amouzadrad, 2024) (C.M. Wang)
(Miguel Lamas-Pardo)

3.2. Floating Districts and Urban Modules
- = N—‘-‘-’I 2 G:ti

Figure 10: Floating districts and urban modules
(Source- Bluebeam)

These systems use interconnected concrete, steel, or
composite caissons to create neighborhood-scale
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floating urban blocks. Mass-produced modules are
assembled on water, enabling scalable and adaptable
layouts. They suit lakes, estuaries, harbors, and
sheltered seas at depths of around 5-50 m. Costs sit in
the moderate-to-high range but become efficient for
long-term urban expansion. They offer high design
liberty and flexible planning. Services move through
shared MEP corridors, hubs, and bridges. Structural
behavior is shaped by coupled hydrodynamics,
mooring stresses, and wind loads.(Huimin Yang,
Analysis of floating city design solutions in the
context of carbon neutrality-focus on Busan Oceanix
City, 2022) (Wang S. , Analytical solutions for the
dynamic analysis of a modular floating structure for
urban expansion, 2022) (Dr. Swati Agrawal, 2025)

3.3. Hybrid Marine
Architectural Systems

J—

Figure 11: Hybrid marine-architectural systems
(Source- Architectural digest)

Hybrid systems combine vessel engineering with
architectural programming to create floating eco-piers,
mixed-use decks, and landscape interfaces. They use
steel hulls, concrete platforms, composites, and
marine-grade timber, built through shipbuilding
techniques topped with architectural superstructures.
They perform well in harbors, estuaries, and protected
coastlines at depths of roughly 5-40 m. Costs fall in
the mid-to-high range due to ecological and technical
complexity but offer extremely high design flexibility.
Services are delivered through a mix of marine piping
and architectural utility grids. Forces include vessel-
like motion, buoyancy variation, and torsion between
hybrid elements.(Adnan, 2020) (Amouzadrad, 2024)
(Miguel Lamas-Pardo)
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X. MATERIAL-BASED TYPOLOGY +
ARCHITECTURAL SUITABILITY

1. Concrete - Heaviness, Stability, Long Life
Concrete platforms feel closest to land because their
weight reduces motion, making them suitable for
public buildings and heavy programs. Their main
drawback is corrosion, so marine-grade mixes and
regular inspections are essential. Use when:
permanence, stability, heavy programs matter. (VSL
INTERNATIONAL LTD.) (D.L. (Dil) Tirimanna)

2. Steel - Precision, Speed, Corrosion Management
Steel offers slim profiles, clean detailing, and fast
prefabrication, which benefits modular and expressive
designs. However, in saline environments it needs
strict corrosion protection and ongoing maintenance.
Use when: speed, slenderness and modularity matter
more than low-maintenance longevity. (Abunassar,
2022)

3. Hdpe / Composite - Light, Modular, Corrosion-
Free

HDPE and composite pontoons are light, modular, and
resistant to harsh water chemistry. They work well for
quick-build neighborhoods and small public decks,
though long-term UV performance depends on
fabrication quality. Use when: modularity, low
maintenance and rapid deployment matter most.
(HDPE Floating Pontoon — 5 Practical Applications
and Benefits You Should Know, 2025)

4. Timber /Bamboo - Sustainable But Scale-Limited
Timber and bamboo create warm, low-carbon
architecture and suit small pavilions or community
projects. Their limits are decay and load capacity
unless paired with protective treatments or hybrid
reinforcement. Use when: small-scale, community or
culturally rooted projects are the priority. (Abdel,
2022)

5. Hybrid Material Systems - Balancing
Contradictions

Hybrid platforms blend concrete, steel, and

composites to achieve durability, strength, and

reduced maintenance. They offer more control over

form and internal space while giving engineers

predictable structural behavior. Use when: the brief
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demands long life + controlled motion + expressive
architecture. (Weikang Gong, 2025)

6. Material Selection for Superstructure

Material choice for the superstructure must balance
durability, weight, and compatibility with the floating
platform. Timber and engineered wood are light and
warm but need proper marine treatment. Steel
provides precision and long spans but requires
aggressive corrosion control. Composites offer
lightweight, low-maintenance construction yet must
be checked for UV and fatigue performance. Off-site
fabrication improves quality, and fire safety must be
planned early due to platform movement and limited
evacuation routes. Ultimately, the superstructure’s
mass must match the platform’s stiffness heavier
finishes demand rigid pontoons, while lighter steel or
composite frames support more flexible and modular
designs. (Top 10 Principles of Architectural Material
Selection: Choosing the Right Surface for Every
Space, 2025)

(Shoji Yoshida, n.d.) (Xiaowei Zang, 2024) (Yan-Kun
Zhang, 2024)

XI. CASE STUDY

1. Floating Hotel — Sabbagh Arquitectos (Chile)

8}

Figure 12: Floating Hotel — Sabbagh Arquitectos
(Chile) (Source- Adsttc)

Architect: Sabbagh Arquitectos Location: Aysén
Fjords, Chile Climate: Cold, humid, sub-polar
maritime Water Body: Protected coastal fjord Area:
~2,000-3,000 m? (adjust if you have exact data)
Floating System: Modular reinforced-concrete caisson
platform Materials: Concrete caissons, galvanized-
steel superstructure, timber interiors, marine glazing.
Built for cold maritime fjord conditions, this project
uses modular concrete caissons for stability, paired
with a steel-and-timber superstructure to keep the
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center of gravity low. Prefabricated modules were
assembled off-site and floated into position, improving
precision. Technical demands include strict inspection
of concrete caissons, joint fatigue control, and reliable
anchoring under strong regional winds.(F., n.d.)

2. Brockholes Visitor

B b s L AR s
Figure 13: Brockholes Visitor (Source- visit Preston)

Architect: Adam Khan Architects Location:
Lancashire, United Kingdom Climate: Temperate
maritime (cool, wet, high seasonal rainfall) Water
Body: Restored wetland lake system Area: ~2,000 m?
(adjust if you have exact figures) Floating System:
Hybrid marine—architectural timber pontoon system
Materials: Glulam timber frames, timber cladding,
steel connectors, composite flotation pontoons,
ecological reed-bed edges.

Adam Khan Architects developed this 2,860 m?
floating cluster on a nature-reserve lake using a hybrid
pontoon system with concrete/steel flotation and a
lightweight glulam timber superstructure. The design
reduces site impact and supports sensitive ecology, but
its hybrid configuration required careful regulation,
services integration, and long-term durability
planning. (BROCKHOLES VISITOR CENTRE,
LANCASHIRE, n.d.)

3. Maasbommel Amphibious Houses (Netherlands)

Figure 16: Maasbommel Amphibious Houses
(Netherlands) (Source- encrypted-tbn0.gstatic)
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Architect: Factor Architecten Location: Maasbommel,
Netherlands Climate: Temperate maritime Water
Body: River Maas (floodplain) Area: ~100—120 m? per
unit (varies) Floating System: Amphibious system-
hollow concrete buoyant base on vertical steel guide
posts Primary Materials: Hollow concrete hull,
lightweight timber superstructure, flexible utility
connections

The Maasbommel development by Factor Architecten
and Dura Vermeer is a temperate-climate housing
project along the Maas River, where each 85-100 m?
home is designed to float during floods. The units rest
on hollow concrete hulls that rise up to 5.5 m along
steel guideposts, while timber superstructures keep
weight low and stability high. Although the houses
follow conventional residential layouts, their buoyant
foundations and flexible utility connections allow
them to function as fully amphibious structures. The
project remains a benchmark for practical,
community-scale  flood - resilient housing.
(Amphibious homes, Maasbommel, The Netherlands,
n.d.) (Project review: Floating Homes 'De Gouden
Kust') (Amphibious housing in Maasbommel, the
Netherlands, 2020)

Residential

4. Schoonschip
(Amsterdam)

Community

4 S\ G
Figure 18: Schoonschip Residential Community
(Amsterdam) (Source- Archivibe)

Architect: Space & Matter Location: Buiksloterham,
Amsterdam, Netherlands Climate: Temperate
maritimeWater ~ Body:  Buiksloterham  Canal
BasinArea: 46 floating homes (varies per unit; overall
district scale)Floating System: Concrete pontoon
based floating platforms with interconnected jetties
Primary Materials: Concrete pontoons, prefabricated
timber superstructures, photovoltaic systems, water-
source heat pumps, circular/recycled materials
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Designed by Space & Matter, Schoonschip consists of
46 homes (about 100-140 m? each) built on concrete
pontoon modules in a temperate maritime canal
setting. The neighbourhood operates on a shared
microgrid with circular water and energy systems,
while strict buoyancy and weight limits shape each
home’s form. Its biggest challenge is coordination -
shared utilities and collective governance across
multiple floating units.(Cutieru, 2021) (Schoonschip:
A sustainable floating neighborhood, n.d.)
(Schoonschip, 2021) (Tracy Metz, 2020)

5. Case-Study-Derived Principles

Across all case studies, several principles remain

consistent:

1. Hydrostatics dictate massing - every successful
project respect buoyancy and center of gravity.

2. Prefabrication is essential - on-water construction
is slow, risky, and expensive.

3. Modularity equals resilience - scalable units
outperform monolithic forms.

4. Environmental context shapes the form - calm
lakes allow expressive architecture; tidal or river
systems limit it.

5. Service integration is not secondary - waste,
energy, and moisture define the usability of
floating buildings.

XII. INSIGHTS FROM INTERVIEWS

Professionals repeatedly pointed to the same realities:

e  Materials are dictated by durability, maintenance,
and project scale-not design preference.

e Building height is not an aesthetic choice; it’s a
stability calculation.

e Architects must be obsessive about proportion,
center of mass, and balance.

o  Still water environments (lakes, protected basins)
are the safest and most feasible.

e Form freedom exists, but only when buoyancy
and load distribution are respected.

e Structural stability is about balancing buoyant
force with total mass distribution-not “foundation
strength.”

XII. RESULT

The study finds that architectural design on water is
controlled by system choice, not stylistic preference.
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Pontoons offer stability for small-medium programs;
modular grids support urban expansion; amphibious
systems provide flood resilience; VLFS enable large
public buildings; and hybrids integrate ecological or
civic programs. Material performance strongly
influences durability - concrete for stability, steel for
precision, composites for modularity, and hybrids for
balance. Case studies show that prefabrication,
flexible services, mass control, and context-driven
mooring are essential. Interviews confirm that
building height, weight, and form are constrained by
hydrostatics, maintenance access, and environmental
conditions.
XIV. CONCLUSION

Floating architecture is feasible only when
architectural intentions align with buoyant behavior,
materials, and service integration. Successful projects
prioritize low mass, controlled centers of gravity,
modular construction, and early architect engineer
collaboration. Case studies and interviews show that
systems, not aesthetics, determine form and limits. As
water-based environments become more common,
architects must adopt performance-driven design
thinking rather than treating floating buildings as
extensions of land-based typologies.
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