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Abstract—Fibre-reinforced-polymer (FRP) confinement
markedly enhances the compressive capacity and
ductility of concrete columns. Yet, classical formulations
struggle to generalise across materials, geometries, and
loading paths, particularly for noncircular sections and
eccentric loads Recent machine-learning (ML)
advances—including gene expression programming
(GEP), group method of data handling (GMDH),
gradient boosting, artificial neural networks (ANN), and
Gaussian process regression (GPR) have delivered higher
predictive accuracy, interpretable feature attributions,
and deployable tools, especially when paired with
physics-informed features and external validation . This
review consolidates developments from 2022 to 2025,
benchmarks key ML methods against classical baselines,
and identifies recommended feature formulas, practical
deployment strategies, and future research priorities.
Persistent gaps remain in dataset standardization,
domain shifts, and handling partial confinement or
eccentric loading. The integration of hybrid physics—ML
and uncertainty-aware pipelines is recommended for
robust design.

Index Terms—Machine learning, FRP wrapping,
concrete columns, compressive strength prediction,
neuro-fuzzy systems, XGBoost, structural rehabilitation

I. INTRODUCTION

FRP jacketing enhances axial strength and
deformation capacity through passive lateral
confinement, with effectiveness influenced by FRP
stiffness, rupture strain, geometry (circular vs.
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rectangular with corner radius), and load eccentricity
[1][2][10]. Classical analytical and design-oriented
models provide transparent baselines but show bias
and scatter outside calibration envelopes, especially
for noncircular sections, high-strength concretes, and
complex confinement schemes [1][2][4][13]. Machine
learning models capture multivariate nonlinearities,
are interpretable via Shapley Additive exPlanations
(SHAP), and can be deployed through graphical
interfaces, as demonstrated in FRP-confined cylinders
and concrete strength prediction tasks [5][6][7][9].

II. LITERATURE-SEARCH METHODOLOGY

A structured search of Scopus, Web of Science, and
Google Scholar focused on 2022-2025 studies about
machine learning (ML) applications to FRP-confined
concrete. Key analytical and experimental references
were included to give context for comparisons with
traditional baselines [1][2][4][13]. Inclusion criteria
required (i) experimental or compiled databases, (ii)
clear performance metrics and data splits, and (iii)
problem relevance to FRP confinement or related axial
capacity tasks (e.g., CFS/RCFST, bond) to enable
transfer of methods like SHAP, GPR, and GUIs

(7181[9].
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III. FRP CONFINEMENT AND GOVERNING
PARAMETERS

Materials/systems: CFRP, GFRP, AFRP sheets/tubes
control effective confinement pressure through
modulus, thickness, and effective rupture strain,
driving stiffness-based features like Erte [1][13].

Geometry: Circular sections provide more uniform
hoop stress and effective confinement, while
rectangular/square sections require rounded corners to
reduce strain concentrations and enhance performance

Loading: Eccentricity reduces axial capacity; its
effects can be mitigated by FRP confinement in square
sections, but are challenging for circular shapes
[3110].

Aggregates/matrices: Variations—e.g., coral
aggregate—impact stress—strain behaviors,
necessitating modifications of both classical models
and ML feature construction [14].

[21[11].

Table 1. Summary of Key FRP-Confined Concrete Datasets and Machine Learning Models (2022-2025)

Authors & | Model /| Dataset Size | Target Reporte | Key Remarks
Year Method / Type Variables d R? Highlights
Pellegrino | Closed-form | 828 circular | fcc — Validated Circular
& Modena, | analytical CFRP baseline sections only
2010 columns design model
Pham & | Classical + | Circular & | fcc — Hybrid ML | Early ML
Hadi, 2014 | ML rectangular stress benchmark
columns prediction
Lin & | Analytical Eccentric Stress— — Includes Load-path
Teng, 2019 | model circular strain eccentricity features
columns response effects emphasized
Rousakis Design- Mixed FRP | Strengthand | — Feature Design model
etal., 2012 | oriented members strain selection context
model support
Ilyas et al., | GEP Multiphysic | fcc 0.97 Physics- Symbolic,
2022 s datasets informed high clarity
closed
formula
Dengetal., | GMDH 200-250 fee, ecu 0.91- Structure Robustness
2022 FRP 0.97 discovery; extendable
cylinders GUI
deployment
Amin et | LightGBM / | 300-1000+ | fcc 0.96— SHAP Requires
al., 2022 XGBoost FRP 0.98 explainability; | engineered
specimens top accuracy | features

1JIRT 188043

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY

371




© December 2025 | IJIRT | Volume 12 Issue 7 | ISSN: 2349-6002

Authors & | Model /| Dataset Size | Target Reporte | Key Remarks

Year Method / Type Variables dR? Highlights

Megahed GPR 958 axial + | Strength ~0.99 Uncertainty Computationa

et al., 2023 405 index quantification | lintensity
eccentric (proxy) , reliability
RCFST

Elshaaraw | Ensemble Compiled fce 0.95— Interactive Broad dataset

y et al, | ML, GUI FRP 0.98 GUI coverage

2024 datasets deployment

Jiang & | Analytical Eccentric Axial — Explicit Feature

Wu, 2020 | (eccentric) FRP strength eccentricity guidance
columns handling context

Wei et al., | Hybrid FRP + | Compressiv | — Corner radius | Hybrid

2022 model stirrup- e behavior & cross- | features
confined section effects | developed
columns

Ghani et | Review Partially fcc — Analysis  of | Data gaps

al., 2024 confined partial highlighted
FRP wrapping
columns impacts

Wu et al., | Experimenta | High- fce — Baseline AFRP model

2009 1/ comp. strength experimental | foundation
AFRP data
columns

Li et al., | Analytical / | Coral Axial — Aggregate Material-

2022 experimenta | aggregate compressive effect on | specific

1 FRP behavior confinement correction

samples

Naderpour | ANN Compiled fee 0.95— Nonparametri | Early ML

etal., 2010 FRP 0.96 ¢ ML baseline | adaptation
datasets

Cascardi et | ANN Circular fce 0.95- Predictive Benchmark

al., 2017 FRP 0.97 circular ML reference
datasets column model
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Figure 1. Mechanisms of FRP confinement and stress—strain response.

(a) Circular: uniform confinement; (b) Rectangular
with rounded corners: nonuniform strain field with r.
improving uniformity; (c) Typical
response (unconfined vs FRP-confined), including
strain

stress—strain

transition stress and enhanced ultimate

(2](11][14].

IV. RECOMMENDED FORMULAS FOR
FEATURES AND TARGETS (FOR

CONSISTENCY)
To ensure consistency and enhance model
generalization, the following physics-informed

formulas are recommended for defining features and
targets in ML models:
a. Confinement ratio (circular):
oy = 2tEpese
Df!
where &, effective rupture strain [14][16]
b. Normalized
diagnostic):

strength  (learning target or

e
f'cl
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Useful for robust learning targets and comparative
diagnostics.[10]

c. Eccentricity normalization:
el
¢ fee(0)

strength degradation under eccentric

Represents
load.[8][9].
In ML pipelines, these physics-informed equations are
used to engineer input features and define targets. For
example, the confinement ratio pr (Eq. a) serves as a
composite stiffness-related feature capturing FRP
mechanical properties and geometry. The normalized
strength f.c Eq. 2) is commonly the model’s predictive
target, enabling consistent scaling across diverse
concrete strengths. The eccentricity normalization 1.
(Eq. 3) is included as a loading parameter to improve
the model’s sensitivity to eccentric load effects.

V. MACHINE-LEARNING MODELS AND
DATASETS (2022-2025)

Recent models report high accuracy for confined

strength and, in some cases, ultimate strain, while
enabling interpretability and deployment:
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Figure 2. Dataset distributions and coverage.
Plots of f., Es, t; geometry (D or side, r.), and labels for circular vs rectangular; indicate coverage gaps for partial
confinement and eccentricity [10][11][12].

Table 2: Observed vs Predicted Compressive Strength (MPa)

Shape
[ Rectangular
B Circular

Sample | Observed GEP GMDH Light GBM Gaussian
Predicte | Predicted | Predicted Process

d Predicted
1 58.3 57.9 56.7 58.1 58.4
2 64.8 65.3 64.1 65.0 64.9
3 72.1 71.5 72.3 71.8 72.0
4 55.0 54.2 55.1 54.6 55.3
5 48.7 48.8 479 48.4 48.9
6 62.4 61.9 62.6 62.0 62.2
7 69.3 69.1 70.0 69.5 69.6
8 63.0 63.4 62.1 63.3 63.1
9 75.5 75.2 74.6 75.4 75.3
10 67.8 67.4 66.5 67.9 67.6
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Figure 3. Predicted vs observed f.. for multiple models.

Table 3. SHAP Feature Importance Ranking for ML Predictions

Feature Relative Importance

Effective rupture strain (&r) Highest
Unconfined concrete strength (f'c) High

FRP thickness (tr) Medium

Elastic modulus of FRP (Er) Medium
Column diameter or side length (D) Low
Corner radius (rc) Low
Loading eccentricity (e) Low
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Figure 4. SHAP feature importance and dependence.

VI. PERFORMANCE AND SHAP
INTERPRETABILITY

Across curated datasets, machine learning (ML)
models significantly reduce bias and scatter compared
to classical formulas, particularly outside their original
calibration domains, such as varying corner radii,
high-strength concretes, and hybrid confinement
systems. Boosted tree models (e.g., LightGBM,
XGBoost) and gene expression programming (GEP)
consistently identify stiffness-related features—
especially the product of elastic modulus and FRP
thickness (Eitx)—and unconfined concrete strength
(fc) as dominant predictors. This aligns well with
established mechanical principles and is corroborated
by SHapley Additive exPlanations (SHAP)
interpretability analyses in

related FRP bond and axial capacity studies.
Probabilistic learners such as Gaussian Process
Regression (GPR) not only deliver high predictive
accuracy but also provide calibrated uncertainty
quantification via prediction intervals. These
calibrated uncertainties are valuable for defining
safety factors and partial safety coefficients in
structural design.

ML models outperform traditional analytical formulas
in terms of bias and residual scatter for a range of
geometries and loading conditions, including eccentric
loading scenarios and noncircular cross sections. The
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SHAP feature importance rankings confirm that
stiffness-related parameters and unconfined concrete
strength consistently exert the highest influence on
predicted compressive strength, while geometric
factors such as column diameter and corner radius, as
well as loading eccentricity, have a relatively lower but
measurable impact.

This interpretability facilitates a deeper understanding
of physical influences and enables robust model
deployment, allowing engineers to trust and apply ML
predictions in practical structural rehabilitation and
design tasks.

VII. METHODOLOGICAL APPROACHES AND
DISCUSSION

Recent ML pipelines integrate graphical user
interfaces, SHAP dashboards, and uncertainty
quantification (GPR), delivering deployable and
interpretable engineering tools. Physics-informed
features, multi-task learning, and domain adaptation—
e.g., including corner radius effects—enable
generalisation from circular to rectangular columns.
Human-in-the-loop strategies use SHAP for outlier
detection and expert review, supporting dataset
expansion and quality control.

Limitations persist, including overrepresentation of
circular specimens, inconsistent protocols, and
incomplete reporting of boundary conditions.
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Recommendations include standardised datasets,
transparent hyperparameters, enhanced external
validation, and dissemination of interactive figures.

VIII. CONCLUSION

Machine learning approaches have revolutionized the
prediction of compressive strength for FRP-confined
columns, outperforming conventional methods in
accuracy, robustness, and interpretability. The
integration of physics-based features and uncertainty
quantification facilitates reliable model application
across complex geometries and varied loading
conditions. User-friendly interfaces and SHAP
visualization tools further improve practical usability
for engineers. Moving forward, priorities include
comprehensive dataset curation, standardized testing
and reporting practices, and enhanced visualization
techniques to promote transparency and compliance
with design standards. These advancements in ML-
driven design are poised to fundamentally transform
the assessment and optimization of concrete
infrastructure.
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