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Abstract—Fibre-reinforced-polymer (FRP) confinement 

markedly enhances the compressive capacity and 

ductility of concrete columns. Yet, classical formulations 

struggle to generalise across materials, geometries, and 

loading paths, particularly for noncircular sections and 

eccentric loads . Recent machine-learning (ML) 

advances—including gene expression programming 

(GEP), group method of data handling (GMDH), 

gradient boosting, artificial neural networks (ANN), and 

Gaussian process regression (GPR) have delivered higher 

predictive accuracy, interpretable feature attributions, 

and deployable tools, especially when paired with 

physics-informed features and external validation . This 

review consolidates developments from 2022 to 2025, 

benchmarks key ML methods against classical baselines, 

and identifies recommended feature formulas, practical 

deployment strategies, and future research priorities. 

Persistent gaps remain in dataset standardization, 

domain shifts, and handling partial confinement or 

eccentric loading. The integration of hybrid physics–ML 

and uncertainty-aware pipelines is recommended for 

robust design. 

 

Index Terms—Machine learning, FRP wrapping, 

concrete columns, compressive strength prediction, 

neuro-fuzzy systems, XGBoost, structural rehabilitation 

 

I. INTRODUCTION 

 

FRP jacketing enhances axial strength and 

deformation capacity through passive lateral 

confinement, with effectiveness influenced by FRP 

stiffness, rupture strain, geometry (circular vs. 

rectangular with corner radius), and load eccentricity 

[1][2][10]. Classical analytical and design-oriented 

models provide transparent baselines but show bias 

and scatter outside calibration envelopes, especially 

for noncircular sections, high-strength concretes, and 

complex confinement schemes [1][2][4][13]. Machine 

learning models capture multivariate nonlinearities, 

are interpretable via Shapley Additive exPlanations 

(SHAP), and can be deployed through graphical 

interfaces, as demonstrated in FRP-confined cylinders 

and concrete strength prediction tasks [5][6][7][9]. 

 

II. LITERATURE-SEARCH METHODOLOGY 

 

A structured search of Scopus, Web of Science, and 

Google Scholar focused on 2022–2025 studies about 

machine learning (ML) applications to FRP-confined 

concrete. Key analytical and experimental references 

were included to give context for comparisons with 

traditional baselines [1][2][4][13]. Inclusion criteria 

required (i) experimental or compiled databases, (ii) 

clear performance metrics and data splits, and (iii) 

problem relevance to FRP confinement or related axial 

capacity tasks (e.g., CFS/RCFST, bond) to enable 

transfer of methods like SHAP, GPR, and GUIs 

[7][8][9].  
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III. FRP CONFINEMENT AND GOVERNING 

PARAMETERS 

 

Materials/systems: CFRP, GFRP, AFRP sheets/tubes 

control effective confinement pressure through 

modulus, thickness, and effective rupture strain, 

driving stiffness-based features like Ef tf [1][13].  

Geometry: Circular sections provide more uniform 

hoop stress and effective confinement, while 

rectangular/square sections require rounded corners to 

reduce strain concentrations and enhance performance 

[2][11]. 

Loading: Eccentricity reduces axial capacity; its 

effects can be mitigated by FRP confinement in square 

sections, but are challenging for circular shapes 

[3][10]. 

Aggregates/matrices: Variations—e.g., coral 

aggregate—impact stress–strain behaviors, 

necessitating modifications of both classical models 

and ML feature construction [14]. 

 

 

 

 

Table 1. Summary of Key FRP-Confined Concrete Datasets and Machine Learning Models (2022–2025) 

Authors & 

Year 

Model / 

Method 

Dataset Size 

/ Type 

Target 

Variables 

Reporte

d R² 

Key 

Highlights 

Remarks 

Pellegrino 

& Modena, 

2010 

Closed-form 

analytical 

828 circular 

CFRP 

columns 

fcc — Validated 

baseline 

design model 

Circular 

sections only 

Pham & 

Hadi, 2014 

Classical + 

ML 

Circular & 

rectangular 

columns 

fcc — Hybrid ML 

stress 

prediction 

Early ML 

benchmark 

Lin & 

Teng, 2019 

Analytical 

model 

Eccentric 

circular 

columns 

Stress–

strain 

response 

— Includes 

eccentricity 

effects 

Load-path 

features 

emphasized 

Rousakis 

et al., 2012 

Design-

oriented 

model 

Mixed FRP 

members 

Strength and 

strain 

— Feature 

selection 

support 

Design model 

context 

Ilyas et al., 

2022 

GEP Multiphysic

s datasets 

fcc 0.97 Physics-

informed 

closed 

formula 

Symbolic, 

high clarity 

Deng et al., 

2022 

GMDH 200–250 

FRP 

cylinders 

fcc, εcu 0.91–

0.97 

Structure 

discovery; 

GUI 

deployment 

Robustness 

extendable 

Amin et 

al., 2022 

LightGBM / 

XGBoost 

300–1000+ 

FRP 

specimens 

fcc 0.96–

0.98 

SHAP 

explainability; 

top accuracy 

Requires 

engineered 

features 
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Authors & 

Year 

Model / 

Method 

Dataset Size 

/ Type 

Target 

Variables 

Reporte

d R² 

Key 

Highlights 

Remarks 

Megahed 

et al., 2023 

GPR 958 axial + 

405 

eccentric 

RCFST 

Strength 

index 

(proxy) 

~0.99 Uncertainty 

quantification

, reliability 

Computationa

l intensity 

Elshaaraw

y et al., 

2024 

Ensemble 

ML, GUI 

Compiled 

FRP 

datasets 

fcc 0.95–

0.98 

Interactive 

GUI 

deployment 

Broad dataset 

coverage 

Jiang & 

Wu, 2020 

Analytical 

(eccentric) 

Eccentric 

FRP 

columns 

Axial 

strength 

— Explicit 

eccentricity 

handling 

Feature 

guidance 

context 

Wei et al., 

2022 

Hybrid 

model 

FRP + 

stirrup-

confined 

columns 

Compressiv

e behavior 

— Corner radius 

& cross-

section effects 

Hybrid 

features 

developed 

Ghani et 

al., 2024 

Review Partially 

confined 

FRP 

columns 

fcc — Analysis of 

partial 

wrapping 

impacts 

Data gaps 

highlighted 

Wu et al., 

2009 

Experimenta

l / comp. 

High-

strength 

AFRP 

columns 

fcc — Baseline 

experimental 

data 

AFRP model 

foundation 

Li et al., 

2022 

Analytical / 

experimenta

l 

Coral 

aggregate 

FRP 

samples 

Axial 

compressive 

behavior 

— Aggregate 

effect on 

confinement 

Material-

specific 

correction 

Naderpour 

et al., 2010 

ANN Compiled 

FRP 

datasets 

fcc 0.95–

0.96 

Nonparametri

c ML baseline 

Early ML 

adaptation 

Cascardi et 

al., 2017 

ANN Circular 

FRP 

datasets 

fcc 0.95–

0.97 

Predictive 

circular 

column model 

Benchmark 

ML reference 
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Figure 1. Mechanisms of FRP confinement and stress–strain response. 

 

 (a) Circular: uniform confinement; (b) Rectangular 

with rounded corners: nonuniform strain field with rc 

improving uniformity; (c) Typical stress–strain 

response (unconfined vs FRP-confined), including 

transition stress and enhanced ultimate strain 

[2][11][14]. 

 

IV. RECOMMENDED FORMULAS FOR 

FEATURES AND TARGETS (FOR 

CONSISTENCY) 

 

To ensure consistency and enhance model 

generalization, the following physics-informed 

formulas are recommended for defining features and 

targets in ML models: 

a. Confinement ratio (circular): 

𝜌𝑓 =
2𝑡𝑓𝐸𝑓𝜀𝑓𝑒

𝐷𝑓𝑐
′

 

where 𝜀𝑓𝑒 effective rupture strain [14][16]  

b. Normalized strength (learning target or 

diagnostic): 

𝜂 =
𝑓𝑐𝑐
𝑓𝑐
′
 

Useful for robust learning targets and comparative 

diagnostics.[10] 

 

c. Eccentricity normalization: 

𝜂𝑒 =
𝑓𝑐𝑐(𝑒)

𝑓𝑐𝑐(0)
 

Represents strength degradation under eccentric 

load.[8][9]. 

In ML pipelines, these physics-informed equations are 

used to engineer input features and define targets. For 

example, the confinement ratio ρf   (Eq. a) serves as a 

composite stiffness-related feature capturing FRP 

mechanical properties and geometry. The normalized 

strength fcc  Eq. 2) is commonly the model’s predictive 

target, enabling consistent scaling across diverse 

concrete strengths. The eccentricity normalization ηe  

(Eq. 3) is included as a loading parameter to improve 

the model’s sensitivity to eccentric load effects. 

 

V. MACHINE-LEARNING MODELS AND 

DATASETS (2022–2025) 

 

Recent models report high accuracy for confined 

strength and, in some cases, ultimate strain, while 

enabling interpretability and deployment:  
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Figure 2. Dataset distributions and coverage. 

Plots of fc, Ef, tf, geometry (D or side, rc), and labels for circular vs rectangular; indicate coverage gaps for partial 

confinement and eccentricity [10][11][12]. 

 

Table 2: Observed vs Predicted Compressive Strength (MPa) 

 

 

Sample Observed GEP 
Predicte

d 

GMDH 
Predicted 

Light GBM 
Predicted 

Gaussian 
Process 

Predicted 

1 58.3 57.9 56.7 58.1 58.4 

2 64.8 65.3 64.1 65.0 64.9 

3 72.1 71.5 72.3 71.8 72.0 

4 55.0 54.2 55.1 54.6 55.3 

5 48.7 48.8 47.9 48.4 48.9 

6 62.4 61.9 62.6 62.0 62.2 

7 69.3 69.1 70.0 69.5 69.6 

8 63.0 63.4 62.1 63.3 63.1 

9 75.5 75.2 74.6 75.4 75.3 

10 67.8 67.4 66.5 67.9 67.6 
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Figure 3. Predicted vs observed fcc for multiple models. 

 

Table 3. SHAP Feature Importance Ranking for ML Predictions 

Feature Relative Importance 

Effective rupture strain (εfe) Highest 

Unconfined concrete strength (f′c) High 

FRP thickness (tf) Medium 

Elastic modulus of FRP (Ef) Medium 

Column diameter or side length (D) Low 

Corner radius (rc) Low 

Loading eccentricity (e) Low 
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Figure 4. SHAP feature importance and dependence. 

 

VI. PERFORMANCE AND SHAP 

INTERPRETABILITY 

 

Across curated datasets, machine learning (ML) 

models significantly reduce bias and scatter compared 

to classical formulas, particularly outside their original 

calibration domains, such as varying corner radii, 

high-strength concretes, and hybrid confinement 

systems. Boosted tree models (e.g., LightGBM, 

XGBoost) and gene expression programming (GEP) 

consistently identify stiffness-related features—

especially the product of elastic modulus and FRP 

thickness (Eₓtₓ)—and unconfined concrete strength 

(f'c) as dominant predictors. This aligns well with 

established mechanical principles and is corroborated 

by SHapley Additive exPlanations (SHAP) 

interpretability analyses in  

related FRP bond and axial capacity studies. 

Probabilistic learners such as Gaussian Process 

Regression (GPR) not only deliver high predictive 

accuracy but also provide calibrated uncertainty 

quantification via prediction intervals. These 

calibrated uncertainties are valuable for defining 

safety factors and partial safety coefficients in 

structural design. 

ML models outperform traditional analytical formulas 

in terms of bias and residual scatter for a range of 

geometries and loading conditions, including eccentric 

loading scenarios and noncircular cross sections. The 

SHAP feature importance rankings confirm that 

stiffness-related parameters and unconfined concrete 

strength consistently exert the highest influence on 

predicted compressive strength, while geometric 

factors such as column diameter and corner radius, as 

well as loading eccentricity, have a relatively lower but 

measurable impact. 

This interpretability facilitates a deeper understanding 

of physical influences and enables robust model 

deployment, allowing engineers to trust and apply ML 

predictions in practical structural rehabilitation and 

design tasks. 

 

VII. METHODOLOGICAL APPROACHES AND 

DISCUSSION 

 

Recent ML pipelines integrate graphical user 

interfaces, SHAP dashboards, and uncertainty 

quantification (GPR), delivering deployable and 

interpretable engineering tools. Physics-informed 

features, multi-task learning, and domain adaptation—

e.g., including corner radius effects—enable 

generalisation from circular to rectangular columns. 

Human-in-the-loop strategies use SHAP for outlier 

detection and expert review, supporting dataset 

expansion and quality control. 

Limitations persist, including overrepresentation of 

circular specimens, inconsistent protocols, and 

incomplete reporting of boundary conditions. 
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Recommendations include standardised datasets, 

transparent hyperparameters, enhanced external 

validation, and dissemination of interactive figures. 

 

VIII. CONCLUSION 

 

Machine learning approaches have revolutionized the 

prediction of compressive strength for FRP-confined 

columns, outperforming conventional methods in 

accuracy, robustness, and interpretability. The 

integration of physics-based features and uncertainty 

quantification facilitates reliable model application 

across complex geometries and varied loading 

conditions. User-friendly interfaces and SHAP 

visualization tools further improve practical usability 

for engineers. Moving forward, priorities include 

comprehensive dataset curation, standardized testing 

and reporting practices, and enhanced visualization 

techniques to promote transparency and compliance 

with design standards. These advancements in ML-

driven design are poised to fundamentally transform 

the assessment and optimization of concrete 

infrastructure. 
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