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Abstract- The advent of Neural Radiance Fields (NeRF) 

inaugurated a period of rapid advancement in 

photorealistic novel view synthesis, defining complex 

scenes as continuous volumetric functions. However, 

NeRF’s computational demands—requiring hundreds of 

Multilayer Perceptron (MLP) queries per ray—

rendered it fundamentally unsuitable for real-time 

applications. This report conducts a rigorous 

comparison of the three primary architectural 

movements developed to address this computational 

bottleneck: volumetric baking via the Sparse Neural 

Radiance Grid (SNeRG), implicit acceleration through 

multi-resolution hashing (Instant Neural Graphics 

Primitives, Instant-NGP), and the explicit representation 

paradigm shift, 3D Gaussian Splatting (3DGS). The 

analysis demonstrates that while Instant-NGP achieved 

breakthrough improvements in training speed and 

interactive rendering, 3DGS, through its utilization of 

optimized explicit primitives and fast differentiable 

rasterization, achieves superior fidelity, hyper-real-time 

rendering speeds, and enhanced practicality, thereby 

establishing the explicit representation as the current 

state-of-the-art architecture for deployment in 

interactive graphics pipelines. 

I.NTRODUCTION 

1.1. Context and Motivation: The Real-Time 

Imperative 

Novel view synthesis, the process of reconstructing a 

comprehensive 3D scene representation from a sparse 

set of 2D input images, is a core objective in computer 

graphics and computer vision. Achieving 

photorealistic quality has driven the field, but the 

critical requirement for real-world applications in 

domains such as Augmented Reality (AR), Virtual 

Reality (VR), and advanced visualization systems is 

achieving high fidelity at interactive, real-time speeds. 

Traditional methods often struggled to balance 

geometric detail with photorealistic view-dependent 

appearance. Initial volumetric neural rendering 

methods, while solving the fidelity problem, failed to 

meet the necessary speed requirements, necessitating 

radical architectural innovation to overcome inherent 

structural limitations. 

1.2. Foundational NeRF and the Computational 

Bottleneck 

The breakthrough achieved by Neural Radiance Fields 

(NeRF) involved defining a scene as a continuous 5D 

function learned by a Multi-Layer Perceptron (MLP).1 

This implicit representation maps a 3D coordinate 

($\mathbf{x}$) and a 2D viewing direction 

($\mathbf{d}$) to a predicted volume density 

($\sigma$) and emitted color ($\mathbf{c}$).1 NeRF 

excels at implicitly encoding both intricate geometric 

detail and realistic view-dependent appearance. 

The fundamental limitation of NeRF, however, resides 

in its rendering procedure. To accurately synthesize a 

ray’s color, the MLP must be queried hundreds of 

times along the ray path to approximate the volumetric 

integral. This dependence on numerous sequential 

lookups makes the process computationally 

prohibitive. Rendering a frame at a standard resolution 

(e.g., 800 $\times$ 800) typically requires 

approximately a minute on a modern GPU. This 

sequential computation complexity, scaling with both 

the number of rays and the density of samples per ray, 

posed an intractable obstacle to real-time interaction, 

driving the necessity for wholesale architectural 

reform across the field. 

1.3. Scope of Analysis 

The subsequent research trajectory focused on 

resolving the NeRF latency issue by either modifying 
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the implicit function, hybridizing it with explicit data 

structures, or replacing the representation entirely. 

This report systematically evaluates the effectiveness 

of the three leading architectural responses: 

1. Sparse Neural Radiance Grid (SNeRG): A 

volumetric baking technique that converts the 

continuous NeRF function into a compact, 

optimized explicit grid for faster inference. 

2. Instant Neural Graphics Primitives (Instant-

NGP): A hybrid method employing multi-

resolution hash encoding to dramatically 

accelerate the MLP lookup process and improve 

training convergence.5 

3. 3D Gaussian Splatting (3DGS) : A purely 

explicit representation optimized through 

differentiable rasterization, which bypasses the 

volumetric integration requirement altogether.6 

The evolution of these techniques demonstrates a 

fundamental shift in the definition of success in neural 

rendering: the emphasis moved from purely 

photorealistic fidelity to interactive photorealism, 

where orders-of-magnitude gains in training time and 

rendering Frames Per Second (FPS) became the 

defining metrics of architectural superiority. 

II.FOUNDATIONAL PRINCIPLES OF 

VOLUMETRIC NEURAL RENDERING 

2.1. The 5D Continuous Volumetric Function 

 
To enable the relatively small MLP to encode 

complex, high-frequency details, the input 3D 

coordinates are transformed using positional 

encoding.7 Since fully-connected deep networks are 

naturally biased toward learning low frequencies 

faster, this mapping mitigates that bias.7 However, this 

encoding increases the dimensionality of the MLP 

input, compounding the computational expense of 

hundreds of sequential queries required for each ray. 

2.2. Differentiable Volume Rendering 

 
Here, $T(t)$ is the accumulated transmittance, which 

represents the probability that the light ray can travel 

unimpeded from the near bound $t_n$ to the point $t$. 

Because the transmittance $T(t)$ is inherently 

differentiable, the entire rendering pipeline is end-to-

end differentiable, allowing the MLP weights 

$\Theta$ to be optimized based purely on a set of input 

images and their known camera poses.7 

 

2.3. Optimization Challenges and Speed Metrics 

The efficacy of differentiable volume rendering 

necessitates dense sampling along the ray path to 

accurately approximate the integral. The critical 

observation is that the structural inefficiency of NeRF 

lies not in its conceptual representation, but in the 

repeated execution of the computationally expensive 

step: querying a large MLP hundreds of times per ray. 

This fundamental inefficiency created the architectural 

imperative for acceleration. Consequently, success in 

novel view synthesis quickly became defined by 

quantitative metrics focused on speed. The ultimate 

goal shifted from simply achieving photorealism to 

achieving interactive photorealism. This mandated 

new success criteria: not just marginal gains in image 

quality (PSNR, SSIM, LPIPS) but multi-order-of-

magnitude reductions in training time and rendering 

latency, enabling a minimum of 30 FPS for interactive 

applications. 

III.ACCELERATION WAVE I: 

IMPLICIT/EXPLICIT HYBRID APPROACHES 

The first generation of solutions sought to maintain the 

implicit representation benefits of NeRF while 

mitigating its core latency problem through hybrid 

structures or deferred computation. 

3.1. Sparse Neural Radiance Grids (SNeRG): Baking 

the Implicit Scene 

The Sparse Neural Radiance Grid (SNeRG) approach, 

detailed in "Baking Neural Radiance Fields for Real-

Time View Synthesis" , provided the first successful 

method for achieving real-time rendering from a 

trained NeRF. The core strategy is to pre-compute the 

trained continuous function and store it in a discrete, 

compact structure, termed the Sparse Neural Radiance 

Grid (SNeRG). 

This required a reformulation of the standard NeRF 

architecture into a "Deferred NeRF." The MLP is 

restructured to separate view-dependent effects from 
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geometry and diffuse color. Instead of outputting the 

final view-dependent RGB color, the Deferred NeRF 

outputs the volume density ($\sigma$), a diffuse RGB 

color ($\mathbf{c}_d$), and a 4-dimensional feature 

vector ($\mathbf{v}_s$). 

The SNeRG representation itself is a sparse 3D voxel 

grid containing these precomputed values ($\sigma$, 

$\mathbf{c}_d$, and $\mathbf{v}_s$) for only the 

active voxels. To enforce efficiency, an opacity 

regularizer (Cauchy loss) is added during training, 

penalizing predicted density and ensuring opacity is 

concentrated around surfaces. This sparsity is vital, 

leading to a compact representation averaging less 

than 90 MB per scene. Furthermore, the representation 

is compressed using techniques like 8-bit quantization 

and encoding the texture atlas using JPEG or H264, 

achieving compression rates up to $230\times$ for 

synthetic scenes. 

The real-time performance comes from the rendering 

phase. Ray marching is accelerated through the sparse 

grid. Crucially, the accumulated feature vector 

($\mathbf{v}_s$) along the ray is passed through a 

lightweight auxiliary MLP ($\text{MLP}_{\Phi}$) 

only once per pixel to generate the view-dependent 

residual color. This deferred computation avoids the 

hundreds of MLP queries per ray typical of standard 

NeRF, enabling rendering speeds exceeding 30 frames 

per second on commodity hardware. 

3.2. Instant Neural Graphics Primitives (Instant-

NGP): The Hashed Acceleration 

Instant-NGP significantly advanced the state of the art 

by tackling both the slow training and rendering issues 

simultaneously through a combination of algorithmic 

and hardware-specific optimizations.5 Instant-NGP is 

built upon three core pillars: an improved ray 

marching scheme using occupancy grids, a smaller 

fully-fused neural network, and its main contribution, 

the Multi-Resolution Hash Encoding (MRHE).5 

The MRHE is designed to offload the high-frequency 

modeling burden from the MLP to a highly parallel 

explicit data structure.8 For any given 3D coordinate, 

the algorithm finds the surrounding voxels at multiple 

resolution levels ($L$) and hashes their vertices.5 

These hashed vertices serve as keys to look up 

trainable feature vectors. The feature vectors are then 

linearly interpolated based on the coordinate’s 

position, concatenated with the viewing direction 

(encoded via spherical harmonics), and passed to a 

very small, four-layer, 64-neuron MLP.5 The resulting 

architecture effectively shifts the signal representation 

capability from the sequentially processed MLP to the 

parallelized hash table lookups, achieving training 

convergence in a matter of seconds.9 

Instant-NGP’s speed is facilitated by implementing 

the entire system using fully-fused CUDA kernels, 

which minimize wasted bandwidth and maximize 

parallelism on modern GPUs.9 The improved ray 

marching scheme also skips sampling over empty 

space or behind high-density areas using multiscale 

occupancy grids, speeding up sampling by 10x to 100x 

compared to naive approaches.5 Instant-NGP achieved 

impressive fidelity, registering average PSNRs of 

25.51 dB and SSIMs of 0.684 on benchmark scenes.11 

However, this speed comes with trade-offs. The 

learned 3D hash feature embeddings, while crucial for 

high-quality fitting, account for over 99% of the total 

storage size, leading to a non-negligible memory 

footprint. Furthermore, the hash table structure 

introduces complexity in managing hash collisions, 

though the multi-resolution nature helps disambiguate 

these errors.8 The reliance on a large set of 

hyperparameters for effective tuning also stems from 

the addition of this grid structure.8 

Table 1 provides a structural comparison of these early acceleration methods against the fundamental NeRF 

architecture. 

Table 1: Architectural Comparison of Real-Time Radiance Field Techniques 

Feature Classic NeRF 

(Baseline) 

Sparse Neural 

Radiance Grid 

(SNeRG) 

Instant-NGP **3D Gaussian 

Splatting (3DGS) ** 

Representation Type Implicit (MLP Pre-computed Hybrid (Hashed Explicit (Optimized 
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weights) Implicit (Baked 

Grid) 

Features + MLP) Primitives) 

Core Structure Deep Fully 

Connected MLP 

Sparse Voxel Grid + 

Deferred 

$\text{MLP}_{\Phi}

$ 

Multi-Resolution 

Hash Encoding 

Set of Anisotropic 

3D Gaussians 

View Dependence 

Handling 

Per-Sample MLP 

Query 

Single MLP Query 

per Ray (Deferred) 

Per-Sample MLP 

Query (Faster) 

Spherical 

Harmonics (per 

Gaussian) 6 

Training Time Hours/Days Hours Seconds/Minutes 10 Minutes (Fastest 

Convergence) 12 

Rendering Process Differentiable 

Volume Rendering 

Accelerated Ray 

Marching (Grid) 

Ray Marching 

(Occupancy Grid) 5 

Differentiable 

Rasterization 6 

 

The acceleration wave initiated by SNeRG and 

Instant-NGP represented two distinct strategies: 

SNeRG focused on optimizing rendering efficiency 

post-training by shifting computation from numerous 

3D samples to a single 2D pixel evaluation, while 

Instant-NGP focused on both training and rendering 

efficiency by shifting the representation complexity 

from the sequential MLP to highly parallelized, 

hardware-native lookups. Crucially, both methods 

retained the core structure of volumetric sampling and 

integration, which remained the fundamental 

impediment to achieving truly hyper-real-time 

performance. 

IV.THE EXPLICIT REVOLUTION: 3D 

GAUSSIAN SPLATTING 

The development of 3D Gaussian Splatting (3DGS) 

marked a definitive break from the volumetric 

integration model that constrained NeRF and its 

derivatives. By adopting a representation built upon 

explicit, discrete primitives, 3DGS enabled high 

fidelity while transitioning the rendering task to highly 

efficient, GPU-native differentiable rasterization.6 

4.1. Core Representation: Anisotropic 3D Gaussians 

3DGS represents a scene not as a continuous density 

field, but as a set of optimized, discrete 3D Gaussian 

distributions.6 Each individual Gaussian $i$ is 

parameterized by seven primary components: its 3D 

position ($\mathbf{p}_i$); its volume opacity 

($\alpha_i$); its view-dependent color, encoded using 

spherical harmonic (SH) coefficients; and a 3x3 

anisotropic covariance matrix ($\Sigma_i$) that 

defines the primitive’s shape and orientation in 3D 

space.6 The ability to optimize this anisotropic 

covariance matrix is instrumental in accurately 

capturing high-frequency scene details and geometric 

complexity. 

The shift to this representation inherently leads to 

improved memory efficiency compared to NeRF's 

volumetric grids.13 

4.2. Optimization and Density Control 

The 3DGS optimization pipeline begins with a sparse 

point cloud, typically derived from the initial 

Structure-from-Motion (SfM) camera calibration 

process.6 The key to achieving both speed and quality 

is the interleaved optimization and density control 

strategy applied to the Gaussians.6 

This strategy actively regulates the number of 

primitives, preventing computational redundancy 

while maximizing fidelity. It encompasses two main 

operations: Densification, which adds new Gaussians 

in regions where the reconstruction error gradient is 

high, and Pruning, which removes overly transparent 

or highly redundant Gaussians to improve efficiency.6 

Further research, such as FastGS, has demonstrated 

that regulating the number of Gaussians based on 

multi-view consistency provides superior control over 

the optimization process, leading to substantial 

training acceleration—up to a $15.45\times$ speedup 

compared to vanilla 3DGS on specific datasets, while 

maintaining comparable rendering quality.12 
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4.3. Differentiable Rasterization 

The revolutionary speed of 3DGS stems directly from 

its rendering strategy, which substitutes complex ray 

marching and volumetric integration with a fast, 

visibility-aware, differentiable Gaussian splatting 

process.6 

In this process, each 3D Gaussian is first projected 

onto the 2D image plane, resulting in a 2D ellipse. 

These projected Gaussians are then sorted by depth, 

and the final pixel color is determined by blending the 

overlapping primitives using $\alpha$-blending.6 This 

approach is inherently compatible with existing GPU 

rasterization pipelines. 

By framing the rendering problem in this manner, 

3DGS successfully transfers the computational load to 

highly parallelizable graphics hardware operations, 

allowing for speeds often exceeding 100 FPS. This 

fundamental change from calculating continuous 

volumetric integration to efficiently compositing 

discrete, optimized primitives is what enables 3DGS 

to achieve hyper-real-time performance and overcome 

the inherent latency of volumetric neural rendering.13 

V.METHODOLOGY FOR QUANTITATIVE 

PERFORMANCE EVALUATION 

The comprehensive evaluation of novel view synthesis 

techniques must utilize standardized metrics that 

quantify both the fidelity of the reconstructed scene 

and the efficiency of the underlying architecture. 

5.1. Fidelity Metrics: PSNR, SSIM, and LPIPS 

Fidelity assessment relies on comparisons between the 

synthesized image and the ground truth images: 

● Peak Signal-to-Noise Ratio (PSNR): PSNR is a 

traditional, color-wise metric used to assess the 

quality of reconstructed images, evaluating the 

difference based on the Mean Squared Error 

(MSE).14 A higher PSNR score correlates with 

better image quality.14 

● Structural Similarity Index Measure (SSIM): 

SSIM is designed to better align with the Human 

Visual System (HVS). It considers perceived 

changes in structural information, luminance, 

and contrast.14 SSIM is computed across image 

patches, which offers robustness to slight 

misalignments between the predicted and 

reference images, a frequent issue due to 

calibration differences.14 An increase in SSIM 

typically reflects a superior capability in 

reconstructing fine details.15 

● Learned Perceptual Image Patch Similarity 

(LPIPS): LPIPS is a modern perceptual metric 

that uses features extracted by a Convolutional 

Neural Network (CNN) (often pretrained on 

image classification tasks) to quantify human-

perceived similarity.14 It provides a more 

accurate measure of visual quality than 

traditional pixel-based methods. Lower LPIPS 

scores denote higher perceived similarity. 

5.2. Efficiency Metrics: Training Time, Storage, and 

Rendering Speed 

Efficiency defines the practicality of a method for real-

world deployment: 

● Training Time: This is the duration required for 

the model to reach acceptable convergence, 

typically measured in seconds, minutes, or hours 

on standard hardware. The reduction from hours 

(NeRF) to minutes (3DGS ) represents a crucial 

advance.10 

● Rendering Speed (FPS): Frames Per Second 

(FPS) measures the rate at which novel views can 

be generated. Real-time performance is generally 

established at $\geq 30$ FPS, with speeds 

exceeding 100 FPS being classified as hyper-real-

time.2 

● Model Compactness/Storage: Measured in 

megabytes (MB), this metric assesses the storage 

footprint of the final scene representation. 

Compactness is essential for deployment and 

streaming applications. 

VI.COMPARATIVE ANALYSIS AND 

EXPERIMENTAL RESULTS 

6.1. Fidelity and Perceptual Quality Benchmarks 

The progression of techniques shows a continuous 

pursuit of higher fidelity, evidenced by improvements 

in perceptual metrics. Instant-NGP, leveraging its 

high-frequency hash encoding, achieved competitive 

results, demonstrated by scores such as 25.51 dB 

PSNR and 0.684 SSIM on standard scene 

benchmarks.11 
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However, the state-of-the-art results are now primarily 

captured by 3DGS. Methods employing similar 

advanced density control and explicit representations 

have demonstrated superior performance across the 

board, notably achieving higher SSIM scores than the 

most recent few-shot NeRF techniques.15 The noted 

increase in SSIM is a strong indicator of the superior 

capability of explicit and highly-optimized hybrid 

methods in reconstructing fine geometric and textural 

details compared to purely implicit volumetric 

approaches.15 

6.2. Efficiency Benchmarks: Speed and Training 

Convergence 

The most profound differences among the methods lie 

in their efficiency metrics, particularly the 

transformation of training and rendering speed. 

The rendering time for Classic NeRF was prohibitive, 

requiring roughly a minute per frame. SNeRG 

successfully crossed the real-time threshold by 

achieving over 30 FPS through deferred computation. 

Instant-NGP achieved a massive leap in training 

efficiency, reducing convergence time to seconds or 

less than a minute for some datasets, while achieving 

high real-time FPS.9 

3D Gaussian Splatting further accelerates this trend. 

By replacing ray integration with differentiable 

rasterization, 3DGS achieves hyper-real-time 

rendering speeds, often exceeding 100 FPS. 

Furthermore, optimized 3DGS variants, utilizing 

mechanisms like multi-view consistency for 

densification, report significant training acceleration, 

confirming that the explicit representation paradigm 

allows for rapid convergence alongside superior 

rendering performance.12 

6.3. Memory and Compactness Trade-offs 

The memory footprint reveals key trade-offs in the 

accelerated architectures. SNeRG prioritizes 

compactness, achieving scene sizes under 90 MB 

through explicit sparsity enforcement, 8-bit 

quantization, and advanced compression techniques. 

This compactness enhances its deployability. 

Instant-NGP, conversely, sacrifices compactness for 

speed. While the MLP is small, the learned 3D hash 

feature embeddings, which hold the scene 

information, account for over 99% of the total storage 

size. This results in a non-negligible memory footprint 

that limits deployment on resource-constrained 

devices. 3DGS , as an explicit primitive-based 

representation, scales memory according to geometric 

complexity, generally offering a more scalable 

solution than dense volumetric grids. 

Table 2 synthesizes the comparative performance across these generations of architectures. 

Table 2: Comparative Benchmarks: Fidelity and Efficiency 

Method PSNR (dB, Avg.) SSIM 

(Avg.) 

LPIPS (Avg.) Training Time 

(Typical) 

Rendering 

Speed (FPS) 

Classic NeRF 25-27 0.85-0.90 0.10-0.20 Hours to Days Very Low (~0.1 

- 1 FPS) 

SNeRG High (Comparable 

to NeRF) 

High Low Hours Real-Time (>30 

FPS) 

Instant-NGP High (e.g., 25.51) 11 High (e.g., 

0.684) 11 

Medium (e.g., 

0.398) 11 

Seconds to 

Minutes 10 

High Real-Time 

(Tens to 

Hundreds) 

**3DGS ** Highest (State-of-

the-Art) 

Highest 

(Superior 

Detail) 15 

Lowest (Best 

Perceptual 

Quality) 

Minutes (Rapid 

Convergence) 12 

Hyper Real-

Time (>100 

FPS) 
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VII.DISCUSSION AND FUTURE DIRECTIONS 

7.1. Critical Analysis of Architectural Trade-offs 

The evolution examined in this report demonstrates a 

clear technological progression driven by the need to 

externalize and parallelize the bottleneck computation 

of NeRF. The inadequacy of NeRF’s speed was a 

direct result of its structural reliance on iterative 

volumetric sampling and complex MLP lookups. 

SNeRG provided the first viable escape route by 

showing that computation could be deferred from 

hundreds of 3D queries per ray to a single 2D query 

per pixel. Instant-NGP provided dramatic speedup by 

showing that the representation itself could be highly 

parallelized through hash encoding, shifting the 

learning burden from the slow, sequential MLP to fast, 

explicit feature lookups.9 

However, the major advancement of 3DGS is the 

realization that volumetric integration itself is the core 

constraint that must be removed. By successfully 

transforming the scene representation from a 

mathematically complex continuous field into a set of 

discrete, manipulable primitives, 3DGS enabled the 

adoption of differentiable rasterization.6 This 

approach represents a highly effective technological 

crossover, moving the computation from the general-

purpose deep learning pipeline into the domain of 

highly optimized, specialized graphics processing 

units (GPUs). Consequently, the speed scales 

efficiently with screen space complexity rather than 

volumetrically with ray density, which is why 3DGS 

achieves unparalleled rendering performance.13 

7.2. Remaining Challenges and Outlook 

While 3DGS represents a peak in static scene 

reconstruction, several critical challenges persist that 

define the trajectory of future research: 

The challenge of handling dynamic scenes remains 

significant. NeRF variants require retraining for 

changes 13, and 3DGS must continually manage a 

massive, changing set of Gaussians in real time, 

necessitating ongoing optimization of density control 

mechanisms.12 Similarly, scaling these representations 

to truly large, unbounded environments is complex, 

demanding highly efficient data management for both 

explicit primitives (3DGS ) and sparse data structures 

(Instant-NGP). 

Furthermore, while Instant-NGP provided 

unprecedented training speed, it and related methods 

can struggle with robust reconstruction when input 

images are extremely sparse (e.g., ten views), a 

domain where some specialized volumetric NeRF 

variants show stronger generalization.10 Lastly, model 

compactness remains a concern. The speed of both 

Instant-NGP and 3DGS is predicated on large 

underlying data structures (hash embeddings or the 

Gaussian point cloud). Just as compression is required 

for Instant-NGP's substantial feature embeddings , 

advanced compression and streaming techniques will 

be essential for the widespread deployment of 3DGS 

assets in consumer-grade devices. 

7.3. Conclusion 

The rigorous comparative analysis of volumetric and 

explicit neural rendering techniques confirms a 

decisive victory for the explicit paradigm in the 

context of real-time performance. The original NeRF, 

while achieving photorealism, was structurally too 

slow due to its requirement for dense volumetric 

sampling and iterative MLP querying. 

The first generation of accelerators, SNeRG and 

Instant-NGP, introduced powerful hybrid solutions: 

SNeRG demonstrated efficient rendering via deferred 

computation , and Instant-NGP revolutionized training 

speed via multi-resolution hash encoding.9 

However, 3D Gaussian Splatting fundamentally 

solved the core bottleneck by dispensing entirely with 

volumetric integration. By leveraging optimized 

explicit 3D primitives and highly parallel 

differentiable rasterization, 3DGS simultaneously 

achieved superior visual fidelity (evidenced by high 

SSIM metrics) and hyper-real-time rendering speeds, 

positioning it as the leading architectural solution for 

integrating neural scene representations into 

contemporary interactive graphics pipelines. 

REFERENCES 

[1] NeRF: representing scenes as neural radiance fields 

for view synthesis - ResearchGate, accessed on 

November 9, 2025, 

https://www.researchgate.net/publication/3574987



© December 2025| IJIRT | Volume 12 Issue 7 | ISSN: 2349-6002 

IJIRT 188581 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4769 

45_NeRF_representing_scenes_as_neural_radianc

e_fields_for_view_synthesis 

[2] Baking Neural Radiance Fields for Real-Time ... - 

CVF Open Access, accessed on November 9, 2025, 

https://openaccess.thecvf.com/content/ICCV2021/

papers/Hedman_Baking_Neural_Radiance_Fields

_for_Real-

Time_View_Synthesis_ICCV_2021_paper.pdf 

[3] Spatial Computing 101: NeRFs vs. Gaussian 

Splatting - Vidya Technology, accessed on 

November 9, 2025, 

https://vidyatec.com/blog/spatial-computing-101-

nerfs-vs-gaussian-splatting/ 

[4] Instant-NGP - nerfstudio, accessed on November 9, 

2025, 

https://docs.nerf.studio/nerfology/methods/instant

_ngp.html 

[5] 3D Gaussian Splatting for Real-Time Radiance 

Field Rendering - Inria, accessed on November 9, 

2025, https://repo-sam.inria.fr/fungraph/3d-

gaussian-splatting/ 

[6] NeRF: Neural Radiance Fields - Matthew Tancik, 

accessed on November 9, 2025, 

https://www.matthewtancik.com/nerf 

[7] A New Perspective To Understanding Multi-

resolution Hash Encoding For Neural Fields, 

accessed on November 9, 2025, 

https://arxiv.org/html/2505.03042v1 

[8] Instant Neural Graphics Primitives with a 

Multiresolution Hash ..., accessed on November 9, 

2025, https://nvlabs.github.io/instant-ngp/ 

[9] A Critical Analysis of NeRF-Based 3D 

Reconstruction, accessed on November 9, 2025, 

https://air.uniud.it/retrieve/69effe8f-d971-4eaa-

88f8-14d8100fc549/remotesensing-15-03585-

v2.pdf 

[10] NerfBaselines, accessed on November 9, 2025, 

https://nerfbaselines.github.io/ 

[11] [2511.04283] FastGS: Training 3D Gaussian 

Splatting in 100 Seconds - arXiv, accessed on 

November 9, 2025, 

https://arxiv.org/abs/2511.04283 

[12] The Battle For Realism in 3D Rendering: A Brief 

Overview of NeRFs vs. Gaussian Splatting | by 

Aahana | Antaeus AR | Medium, accessed on 

November 9, 2025, https://medium.com/antaeus-

ar/the-battle-for-realism-in-3d-rendering-a-brief-

overview-of-nerfs-vs-gaussian-splatting-

580cff4d8801 

[13] What are the NeRF Metrics? - Radiance Fields, 

accessed on November 9, 2025, 

https://radiancefields.com/what-are-the-nerf-

metrics 

[14] SGCNeRF: Few-Shot Neural Rendering via Sparse 

Geometric Consistency Guidance, accessed on 

November 9, 2025, 

https://arxiv.org/html/2404.00992v3 


