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Abstract- The advent of Neural Radiance Fields (NeRF)
inaugurated a period of rapid advancement in
photorealistic novel view synthesis, defining complex
scenes as continuous volumetric functions. However,
NeRF’s computational demands—requiring hundreds of
Multilayer Perceptron (MLP) queries per ray—
rendered it fundamentally unsuitable for real-time
applications. This report conducts a rigorous
comparison of the three primary architectural
movements developed to address this computational
bottleneck: volumetric baking via the Sparse Neural
Radiance Grid (SNeRG), implicit acceleration through
multi-resolution hashing (Instant Neural Graphics
Primitives, Instant-NGP), and the explicit representation
paradigm shift, 3D Gaussian Splatting (3DGS). The
analysis demonstrates that while Instant-NGP achieved
breakthrough improvements in training speed and
interactive rendering, 3DGS, through its utilization of
optimized explicit primitives and fast differentiable
rasterization, achieves superior fidelity, hyper-real-time
rendering speeds, and enhanced practicality, thereby
establishing the explicit representation as the current
state-of-the-art  architecture for deployment in
interactive graphics pipelines.

ILNTRODUCTION

1.1. Context and Motivation: The Real-Time
Imperative

Novel view synthesis, the process of reconstructing a
comprehensive 3D scene representation from a sparse
set of 2D input images, is a core objective in computer
graphics and computer vision.  Achieving
photorealistic quality has driven the field, but the
critical requirement for real-world applications in
domains such as Augmented Reality (AR), Virtual
Reality (VR), and advanced visualization systems is
achieving high fidelity at interactive, real-time speeds.
Traditional methods often struggled to balance
geometric detail with photorealistic view-dependent

IJIRT 188581

appearance. Initial volumetric neural rendering
methods, while solving the fidelity problem, failed to
meet the necessary speed requirements, necessitating
radical architectural innovation to overcome inherent
structural limitations.

1.2. Foundational NeRF and the Computational
Bottleneck

The breakthrough achieved by Neural Radiance Fields
(NeRF) involved defining a scene as a continuous 5D
function learned by a Multi-Layer Perceptron (MLP).!
This implicit representation maps a 3D coordinate
($\mathbf{x}$) and a 2D viewing direction
($\mathbf{d}$) to a predicted volume density
($\sigma$) and emitted color ($\mathbf{c}$).! NeRF
excels at implicitly encoding both intricate geometric
detail and realistic view-dependent appearance.

The fundamental limitation of NeRF, however, resides
in its rendering procedure. To accurately synthesize a
ray’s color, the MLP must be queried hundreds of
times along the ray path to approximate the volumetric
integral. This dependence on numerous sequential
lookups makes the process computationally
prohibitive. Rendering a frame at a standard resolution
(e.g., 800 S$\times$ 800) typically requires
approximately a minute on a modern GPU. This
sequential computation complexity, scaling with both
the number of rays and the density of samples per ray,
posed an intractable obstacle to real-time interaction,
driving the necessity for wholesale architectural
reform across the field.

1.3. Scope of Analysis

The subsequent research trajectory focused on
resolving the NeRF latency issue by either modifying
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the implicit function, hybridizing it with explicit data
structures, or replacing the representation entirely.
This report systematically evaluates the effectiveness
of the three leading architectural responses:

1. Sparse Neural Radiance Grid (SNeRG): A
volumetric baking technique that converts the
continuous NeRF function into a compact,
optimized explicit grid for faster inference.

2. Instant Neural Graphics Primitives (Instant-
NGP): A hybrid method employing multi-
resolution hash encoding to dramatically
accelerate the MLP lookup process and improve
training convergence.’

3. 3D Gaussian Splatting (3DGS) : A purely
explicit representation optimized through
differentiable rasterization, which bypasses the
volumetric integration requirement altogether.¢

The evolution of these techniques demonstrates a
fundamental shift in the definition of success in neural
rendering: the emphasis moved from purely
photorealistic fidelity to interactive photorealism,
where orders-of-magnitude gains in training time and
rendering Frames Per Second (FPS) became the
defining metrics of architectural superiority.

II.LFOUNDATIONAL PRINCIPLES OF
VOLUMETRIC NEURAL RENDERING

2.1. The 5D Continuous Volumetric Function

Fo : (x,d) > ((:, g)

To enable the relatively small MLP to encode
complex, high-frequency details, the input 3D
coordinates are transformed using positional
encoding.” Since fully-connected deep networks are
naturally biased toward learning low frequencies
faster, this mapping mitigates that bias.” However, this
encoding increases the dimensionality of the MLP
input, compounding the computational expense of
hundreds of sequential queries required for each ray.

2.2. Differentiable Volume Rendering
by
O(r) = / T(t)o (r(t))e(rx(t), d)dt
if?

Here, $T(t)$ is the accumulated transmittance, which
represents the probability that the light ray can travel
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unimpeded from the near bound $t_n$ to the point $t$.
Because the transmittance $T(t)$ is inherently
differentiable, the entire rendering pipeline is end-to-
end differentiable, allowing the MLP weights
$\Theta$ to be optimized based purely on a set of input
images and their known camera poses.7

2.3. Optimization Challenges and Speed Metrics

The efficacy of differentiable volume rendering
necessitates dense sampling along the ray path to
accurately approximate the integral. The critical
observation is that the structural inefficiency of NeRF
lies not in its conceptual representation, but in the
repeated execution of the computationally expensive
step: querying a large MLP hundreds of times per ray.
This fundamental inefficiency created the architectural
imperative for acceleration. Consequently, success in
novel view synthesis quickly became defined by
quantitative metrics focused on speed. The ultimate
goal shifted from simply achieving photorealism to
achieving interactive photorealism. This mandated
new success criteria: not just marginal gains in image
quality (PSNR, SSIM, LPIPS) but multi-order-of-
magnitude reductions in training time and rendering
latency, enabling a minimum of 30 FPS for interactive
applications.

III.ACCELERATION WAVE I:
IMPLICIT/EXPLICIT HYBRID APPROACHES

The first generation of solutions sought to maintain the
implicit representation benefits of NeRF while
mitigating its core latency problem through hybrid
structures or deferred computation.

3.1. Sparse Neural Radiance Grids (SNeRG): Baking
the Implicit Scene

The Sparse Neural Radiance Grid (SNeRG) approach,
detailed in "Baking Neural Radiance Fields for Real-
Time View Synthesis" , provided the first successful
method for achieving real-time rendering from a
trained NeRF. The core strategy is to pre-compute the
trained continuous function and store it in a discrete,
compact structure, termed the Sparse Neural Radiance
Grid (SNeRG).

This required a reformulation of the standard NeRF
architecture into a "Deferred NeRF." The MLP is
restructured to separate view-dependent effects from
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geometry and diffuse color. Instead of outputting the
final view-dependent RGB color, the Deferred NeRF
outputs the volume density ($\sigma$), a diffuse RGB
color ($\mathbf{c} d$), and a 4-dimensional feature
vector ($\mathbf{v} s$).

The SNeRG representation itself is a sparse 3D voxel
grid containing these precomputed values ($\sigma$,
$\mathbf{c} d$, and $\mathbf{v} s$) for only the
active voxels. To enforce efficiency, an opacity
regularizer (Cauchy loss) is added during training,
penalizing predicted density and ensuring opacity is
concentrated around surfaces. This sparsity is vital,
leading to a compact representation averaging less
than 90 MB per scene. Furthermore, the representation
is compressed using techniques like 8-bit quantization
and encoding the texture atlas using JPEG or H264,
achieving compression rates up to $230\times$ for
synthetic scenes.

The real-time performance comes from the rendering
phase. Ray marching is accelerated through the sparse
grid. Crucially, the accumulated feature vector
($\mathbf{v} s$) along the ray is passed through a
lightweight auxiliary MLP ($\text{MLP} {\Phi}$)
only once per pixel to generate the view-dependent
residual color. This deferred computation avoids the
hundreds of MLP queries per ray typical of standard
NeRF, enabling rendering speeds exceeding 30 frames
per second on commodity hardware.

3.2. Instant Neural Graphics Primitives (Instant-
NGP): The Hashed Acceleration

Instant-NGP significantly advanced the state of the art
by tackling both the slow training and rendering issues
simultaneously through a combination of algorithmic
and hardware-specific optimizations.® Instant-NGP is
built upon three core pillars: an improved ray
marching scheme using occupancy grids, a smaller

fully-fused neural network, and its main contribution,
the Multi-Resolution Hash Encoding (MRHE).®

The MRHE is designed to offload the high-frequency
modeling burden from the MLP to a highly parallel
explicit data structure.® For any given 3D coordinate,
the algorithm finds the surrounding voxels at multiple
resolution levels ($L$) and hashes their vertices.’
These hashed vertices serve as keys to look up
trainable feature vectors. The feature vectors are then
linearly interpolated based on the coordinate’s
position, concatenated with the viewing direction
(encoded via spherical harmonics), and passed to a
very small, four-layer, 64-neuron MLP.® The resulting
architecture effectively shifts the signal representation
capability from the sequentially processed MLP to the
parallelized hash table lookups, achieving training
convergence in a matter of seconds.’

Instant-NGP’s speed is facilitated by implementing
the entire system using fully-fused CUDA kernels,
which minimize wasted bandwidth and maximize
parallelism on modern GPUs.° The improved ray
marching scheme also skips sampling over empty
space or behind high-density areas using multiscale
occupancy grids, speeding up sampling by 10x to 100x
compared to naive approaches.’ Instant-NGP achieved
impressive fidelity, registering average PSNRs of
25.51 dB and SSIMs of 0.684 on benchmark scenes.!!

However, this speed comes with trade-offs. The
learned 3D hash feature embeddings, while crucial for
high-quality fitting, account for over 99% of the total
storage size, leading to a non-negligible memory
footprint. Furthermore, the hash table structure
introduces complexity in managing hash collisions,
though the multi-resolution nature helps disambiguate
8 The reliance on a large set of
hyperparameters for effective tuning also stems from
the addition of this grid structure.®

these errors.

Table 1 provides a structural comparison of these early acceleration methods against the fundamental NeRF

architecture.
Table 1: Architectural Comparison of Real-Time Radiance Field Techniques
Feature Classic NeRF Sparse Neural Instant-NGP **3D Gaussian
(Baseline) Radiance Grid Splatting (3DGS) **
(SNeRG)
Representation Type Implicit (MLP Pre-computed Hybrid (Hashed Explicit (Optimized
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$\text{MLP} {\Phi}
$

weights) Implicit (Baked Features + MLP) Primitives)
Grid)
Core Structure Deep Fully Sparse Voxel Grid + Multi-Resolution Set of Anisotropic
Connected MLP Deferred Hash Encoding 3D Gaussians

View Dependence Per-Sample MLP Single MLP Query Per-Sample MLP Spherical
Handling Query per Ray (Deferred) Query (Faster) Harmonics (per
Gaussian) °
Training Time Hours/Days Hours Seconds/Minutes ' Minutes (Fastest
Convergence) 12
Rendering Process Differentiable Accelerated Ray Ray Marching Differentiable
Volume Rendering Marching (Grid) (Occupancy Grid) * Rasterization °

The acceleration wave initiated by SNeRG and
Instant-NGP represented two distinct strategies:
SNeRG focused on optimizing rendering efficiency
post-training by shifting computation from numerous
3D samples to a single 2D pixel evaluation, while
Instant-NGP focused on both training and rendering
efficiency by shifting the representation complexity
from the sequential MLP to highly parallelized,
hardware-native lookups. Crucially, both methods
retained the core structure of volumetric sampling and
integration, which remained the fundamental
impediment to achieving truly hyper-real-time
performance.

IV.THE EXPLICIT REVOLUTION: 3D
GAUSSIAN SPLATTING

The development of 3D Gaussian Splatting (3DGS)
marked a definitive break from the volumetric
integration model that constrained NeRF and its
derivatives. By adopting a representation built upon
explicit, discrete primitives, 3DGS enabled high
fidelity while transitioning the rendering task to highly
efficient, GPU-native differentiable rasterization.®

4.1. Core Representation: Anisotropic 3D Gaussians

3DGS represents a scene not as a continuous density
field, but as a set of optimized, discrete 3D Gaussian
distributions.® Each individual Gaussian $i$ is
parameterized by seven primary components: its 3D
position ($\mathbf{p} i$); its volume opacity
($\alpha_i$); its view-dependent color, encoded using
spherical harmonic (SH) coefficients; and a 3x3
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anisotropic covariance matrix ($\Sigma i$) that
defines the primitive’s shape and orientation in 3D
space.® The ability to optimize this anisotropic
covariance matrix is instrumental in accurately
capturing high-frequency scene details and geometric
complexity.

The shift to this representation inherently leads to
improved memory efficiency compared to NeRF's
volumetric grids."

4.2. Optimization and Density Control

The 3DGS optimization pipeline begins with a sparse
point cloud, typically derived from the initial
Structure-from-Motion (SfM) camera calibration
process.® The key to achieving both speed and quality
is the interleaved optimization and density control
strategy applied to the Gaussians.®

This strategy actively regulates the number of
primitives, preventing computational redundancy
while maximizing fidelity. It encompasses two main
operations: Densification, which adds new Gaussians
in regions where the reconstruction error gradient is
high, and Pruning, which removes overly transparent
or highly redundant Gaussians to improve efficiency.®

Further research, such as FastGS, has demonstrated
that regulating the number of Gaussians based on
multi-view consistency provides superior control over
the optimization process, leading to substantial
training acceleration—up to a $15.45\times$ speedup
compared to vanilla 3DGS on specific datasets, while
maintaining comparable rendering quality. '
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4.3. Differentiable Rasterization

The revolutionary speed of 3DGS stems directly from
its rendering strategy, which substitutes complex ray
marching and volumetric integration with a fast,
visibility-aware, differentiable Gaussian splatting
process.®

In this process, each 3D Gaussian is first projected
onto the 2D image plane, resulting in a 2D ellipse.
These projected Gaussians are then sorted by depth,
and the final pixel color is determined by blending the
overlapping primitives using $\alpha$-blending.® This
approach is inherently compatible with existing GPU
rasterization pipelines.

By framing the rendering problem in this manner,
3DGS successfully transfers the computational load to
highly parallelizable graphics hardware operations,
allowing for speeds often exceeding 100 FPS. This
fundamental change from calculating continuous
volumetric integration to efficiently compositing
discrete, optimized primitives is what enables 3DGS
to achieve hyper-real-time performance and overcome
the inherent latency of volumetric neural rendering.'3

V.METHODOLOGY FOR QUANTITATIVE
PERFORMANCE EVALUATION

The comprehensive evaluation of novel view synthesis
techniques must utilize standardized metrics that
quantify both the fidelity of the reconstructed scene
and the efficiency of the underlying architecture.

5.1. Fidelity Metrics: PSNR, SSIM, and LPIPS

Fidelity assessment relies on comparisons between the
synthesized image and the ground truth images:

® Peak Signal-to-Noise Ratio (PSNR): PSNR is a
traditional, color-wise metric used to assess the
quality of reconstructed images, evaluating the
difference based on the Mean Squared Error
(MSE)."* A higher PSNR score correlates with
better image quality.'*

® Structural Similarity Index Measure (SSIM):
SSIM is designed to better align with the Human
Visual System (HVS). It considers perceived
changes in structural information, luminance,
and contrast."* SSIM is computed across image
patches, which offers robustness to slight
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misalignments between the predicted and
reference images, a frequent issue due to
calibration differences.'* An increase in SSIM
typically reflects a superior capability in
reconstructing fine details.!

® [Learned Perceptual Image Patch Similarity
(LPIPS): LPIPS is a modern perceptual metric
that uses features extracted by a Convolutional
Neural Network (CNN) (often pretrained on
image classification tasks) to quantify human-
perceived similarity.'"* It provides a more
accurate measure of visual quality than
traditional pixel-based methods. Lower LPIPS
scores denote higher perceived similarity.

5.2. Efficiency Metrics: Training Time, Storage, and
Rendering Speed

Efficiency defines the practicality of a method for real-
world deployment:

® Training Time: This is the duration required for
the model to reach acceptable convergence,
typically measured in seconds, minutes, or hours
on standard hardware. The reduction from hours
(NeRF) to minutes (3DGS ) represents a crucial
advance.'?

® Rendering Speed (FPS): Frames Per Second
(FPS) measures the rate at which novel views can
be generated. Real-time performance is generally
established at $\geq 30$ FPS, with speeds
exceeding 100 FPS being classified as hyper-real-
time.2

® Model Compactness/Storage: Measured in
megabytes (MB), this metric assesses the storage
footprint of the final scene representation.
Compactness is essential for deployment and
streaming applications.

VI.COMPARATIVE ANALYSIS AND
EXPERIMENTAL RESULTS

6.1. Fidelity and Perceptual Quality Benchmarks

The progression of techniques shows a continuous
pursuit of higher fidelity, evidenced by improvements
in perceptual metrics. Instant-NGP, leveraging its
high-frequency hash encoding, achieved competitive
results, demonstrated by scores such as 25.51 dB
PSNR and 0.684 SSIM on standard scene
benchmarks.'!
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However, the state-of-the-art results are now primarily
captured by 3DGS. Methods employing similar
advanced density control and explicit representations
have demonstrated superior performance across the
board, notably achieving higher SSIM scores than the
most recent few-shot NeRF techniques.!® The noted
increase in SSIM is a strong indicator of the superior
capability of explicit and highly-optimized hybrid
methods in reconstructing fine geometric and textural
details compared to purely implicit volumetric
approaches.!

6.2. Efficiency Benchmarks: Speed and Training
Convergence

The most profound differences among the methods lie
in their efficiency metrics, particularly the
transformation of training and rendering speed.

The rendering time for Classic NeRF was prohibitive,
requiring roughly a minute per frame. SNeRG
successfully crossed the real-time threshold by
achieving over 30 FPS through deferred computation.
Instant-NGP achieved a massive leap in training
efficiency, reducing convergence time to seconds or
less than a minute for some datasets, while achieving
high real-time FPS.’

3D Gaussian Splatting further accelerates this trend.

By replacing ray integration with differentiable
rasterization, 3DGS achieves hyper-real-time
rendering speeds, often exceeding 100 FPS.
Furthermore, optimized 3DGS variants, utilizing
mechanisms  like consistency  for
densification, report significant training acceleration,
confirming that the explicit representation paradigm
allows for rapid convergence alongside superior
rendering performance. '?

multi-view

6.3. Memory and Compactness Trade-offs

The memory footprint reveals key trade-offs in the
accelerated  architectures. SNeRG  prioritizes
compactness, achieving scene sizes under 90 MB
through explicit sparsity enforcement, 8-bit
quantization, and advanced compression techniques.
This compactness enhances its deployability.

Instant-NGP, conversely, sacrifices compactness for
speed. While the MLP is small, the learned 3D hash
feature embeddings, which hold the scene
information, account for over 99% of the total storage
size. This results in a non-negligible memory footprint
that limits deployment on resource-constrained
devices. 3DGS , as an explicit primitive-based
representation, scales memory according to geometric
complexity, generally offering a more scalable
solution than dense volumetric grids.

Table 2 synthesizes the comparative performance across these generations of architectures.

Table 2: Comparative Benchmarks: Fidelity and Efficiency

Method PSNR (dB, Avg.) SSIM LPIPS (Avg.) Training Time Rendering
(Avg.) (Typical) Speed (FPS)
Classic NeRF 25-27 0.85-0.90 0.10-0.20 Hours to Days Very Low (~0.1
- 1 FPS)
SNeRG High (Comparable High Low Hours Real-Time (>30
to NeRF) FPS)
Instant-NGP High (e.g., 25.51) !! High (e.g., Medium (e.g., Seconds to High Real-Time
0.684) 1 0.398) ! Minutes (Tens to
Hundreds)
**3DGS ** Highest (State-of- Highest Lowest (Best Minutes (Rapid Hyper Real-
the-Art) (Superior Perceptual Convergence) '? Time (>100
Detail) 13 Quality) FPS)
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VIL.DISCUSSION AND FUTURE DIRECTIONS
7.1. Critical Analysis of Architectural Trade-offs

The evolution examined in this report demonstrates a
clear technological progression driven by the need to
externalize and parallelize the bottleneck computation
of NeRF. The inadequacy of NeRF’s speed was a
direct result of its structural reliance on iterative
volumetric sampling and complex MLP lookups.

SNeRG provided the first viable escape route by
showing that computation could be deferred from
hundreds of 3D queries per ray to a single 2D query
per pixel. Instant-NGP provided dramatic speedup by
showing that the representation itself could be highly
parallelized through hash encoding, shifting the
learning burden from the slow, sequential MLP to fast,
explicit feature lookups.’

However, the major advancement of 3DGS is the
realization that volumetric integration itself is the core
constraint that must be removed. By successfully
transforming the scene representation from a
mathematically complex continuous field into a set of
discrete, manipulable primitives, 3DGS enabled the
adoption of differentiable rasterization.® This
approach represents a highly effective technological
crossover, moving the computation from the general-
purpose deep learning pipeline into the domain of
highly optimized, specialized graphics processing
units (GPUs). Consequently, the speed scales
efficiently with screen space complexity rather than
volumetrically with ray density, which is why 3DGS
achieves unparalleled rendering performance.'?

7.2. Remaining Challenges and Outlook

While 3DGS represents a peak in static scene
reconstruction, several critical challenges persist that
define the trajectory of future research:

The challenge of handling dynamic scenes remains
significant. NeRF variants require retraining for
changes 3, and 3DGS must continually manage a
massive, changing set of Gaussians in real time,
necessitating ongoing optimization of density control
mechanisms.'? Similarly, scaling these representations
to truly large, unbounded environments is complex,
demanding highly efficient data management for both
explicit primitives (3DGS ) and sparse data structures
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(Instant-NGP).

Furthermore, while Instant-NGP provided
unprecedented training speed, it and related methods
can struggle with robust reconstruction when input
images are extremely sparse (e.g., ten views), a
domain where some specialized volumetric NeRF
variants show stronger generalization.!'® Lastly, model
compactness remains a concern. The speed of both
Instant-NGP and 3DGS is predicated on large
underlying data structures (hash embeddings or the
Gaussian point cloud). Just as compression is required
for Instant-NGP's substantial feature embeddings ,
advanced compression and streaming techniques will
be essential for the widespread deployment of 3DGS
assets in consumer-grade devices.

7.3. Conclusion

The rigorous comparative analysis of volumetric and
explicit neural rendering techniques confirms a
decisive victory for the explicit paradigm in the
context of real-time performance. The original NeRF,
while achieving photorealism, was structurally too
slow due to its requirement for dense volumetric
sampling and iterative MLP querying.

The first generation of accelerators, SNeRG and
Instant-NGP, introduced powerful hybrid solutions:
SNeRG demonstrated efficient rendering via deferred
computation , and Instant-NGP revolutionized training
speed via multi-resolution hash encoding.’

However, 3D Gaussian Splatting fundamentally
solved the core bottleneck by dispensing entirely with
volumetric integration. By leveraging optimized
explicit 3D primitives and highly parallel
differentiable rasterization, 3DGS simultaneously
achieved superior visual fidelity (evidenced by high
SSIM metrics) and hyper-real-time rendering speeds,
positioning it as the leading architectural solution for
integrating neural scene representations into
contemporary interactive graphics pipelines.
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