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Abstract—Multimodal biometric systems enhance
person authentication by combining complementary
information from multiple traits to overcome the
limitations of unimodal systems such as noisy data,
spoof attacks, intra-class variations, and non-
universality [1][2]. In this work, a multi-algorithm
feature-level fusion framework is proposed using
fingerprint, iris, and palmprint modalities, where
multiple feature extractors per trait are integrated into
a common high-dimensional feature space [3][4]. To
address the dimensionality problem and improve
recognition accuracy, a basic Artificial Bee Colony
(ABC) algorithm is employed as a wrapper-based
feature selection method driven by a classification-
based fitness function [5]. The binary ABC mechanism,
employing employed bees, onlooker bees, and scout
bees’ phases, effectively identifies the most
discriminative  feature subsets while reducing
computational complexity [6]. Experimental evaluation
on publicly available CASIA, HIITD, and FVC
benchmark databases demonstrates that the proposed
ABC-based multi-algorithm system attains high
recognition accuracy (96.5% 97.5% with Euclidean
distance, 99% 99.4% with supervised classifiers) with
significantly reduced feature dimension (80% 89%
reduction) compared with PCA-only feature reduction
and non-optimized baselines [7]. The results confirm
that ABC-driven selection of discriminative features at
the fusion layer offers an effective balance between
accuracy, feature compactness, and computational
efficiency in real-time biometric person authentication.

Index Terms—Multimodal biometrics; multi-algorithm
fusion; feature-level fusion; artificial bee colony; feature
selection; wrapper method; fingerprint; iris; palmprint;
person authentication; biometric recognition; swarm
intelligence; optimization.
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I. INTRODUCTION

1.1 Background and Motivation

Reliable person authentication is a critical
requirement in a wide range of application domains,
including electronic commerce, automated banking,
law enforcement, border control, and smart device
security [1]. Biometric authentication systems
address this need by leveraging distinctive
physiological or behavioral characteristics such as
fingerprints, irises, and palmprints to establish or
verify individual identity [2]. Although unimodal
biometric systems, which rely on a single biometric
trait, offer advantages in terms of simplicity and
deployment cost, they are inherently constrained by
several fundamental limitations [3].

In practice, unimodal systems are susceptible to noisy
data arising from imperfect sensors, suboptimal
acquisition conditions, and environmental influences
[4]. Intra class variations further degrade recognition
performance, as biometric samples from the same
individual may differ due to rotation, translation,
pressure  variation, postural changes, sensor
interoperability issues, or aging effects [4]. Non
universality poses an additional challenge, as certain
users may be unable to provide reliable instances of
specific biometric traits because of physical
disabilities, injuries, or medical conditions [4].
Moreover, unimodal systems are more vulnerable to
spoofing attacks, wherein adversaries attempt to
forge or replicate a single biometric characteristic
particularly in the case of behavioral modalities [4].
Finally, limited distinctiveness in some biometric
traits can lead to overlapping feature representations
across individuals, thereby reducing discriminative
capability and increasing false matches [4].
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To overcome these limitations, multimodal biometric
systems integrate complementary information from
multiple biometric sources, including multiple traits
(multimodal), multiple samples or instances, and
multiple feature extraction algorithms per trait (multi-
algorithm) [2][5]. Among various fusion strategies,
feature-level fusion combines feature representations
at an early stage of the recognition pipeline,
preserving rich discriminatory information and often
yielding  superior  authentication  performance
compared to score-level or decision-level fusion
approaches [3]. However, direct concatenation of
heterogeneous feature vectors produces highly high-
dimensional fused feature spaces, which exacerbate
the curse of dimensionality. This results in increased
computational complexity, higher  memory
requirements, potential degradation in recognition
accuracy, and reduced suitability for real-time
authentication in large-scale biometric systems

[31[4]-

1.2 The Dimensionality Reduction Problem
Feature-level fusion in multimodal biometric systems
often results in high-dimensional feature spaces,
which pose several critical challenges to system
efficiency and  performance  [3][4].  First,
computational complexity increases significantly
with large feature vectors, leading to longer training
and testing times and limiting the feasibility of real-
time authentication in large-scale deployments [4].
Second, memory and storage requirements grow
substantially, increasing both storage costs and
communication bandwidth demands [4]. Third,
classification accuracy may deteriorate, as not all
features contribute equally to discriminatory power;
redundant or noisy features can negatively impact
classifier performance, particularly under the small
sample size (SSS) problem [3]. Finally, the curse of
dimensionality becomes prominent when the
dimensionality of the feature space is high relative to
the number of available training samples, resulting in
poor generalization and increased risk of overfitting
in pattern recognition systems [3].

To mitigate these issues, dimensionality reduction
techniques are commonly employed and can be
broadly categorized into two approaches [4]. Feature
extraction methods transform the original feature
space into a lower-dimensional representation, such
as Principal Component Analysis (PCA). Although
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effective in reducing dimensionality, these methods
often sacrifice the physical interpretability of features
and do not reduce feature acquisition or measurement
costs [4]. In contrast, feature selection techniques
identify and retain only the most informative subset
of the original features, thereby preserving their
physical meaning while simultaneously reducing
computational and acquisition overhead [4].

In this work, we adopt a feature selection strategy
based on the basic Artificial Bee Colony (ABC)
algorithm to optimize feature subsets at the feature-
level fusion stage in multi-algorithm, multimodal
biometric systems.

1.3 Contributions and Scope

The principal contributions of this work are

summarized as follows:

1. We propose a feature-level multi-algorithm,
multimodal biometric framework that integrates
fingerprint, iris, and palmprint modalities,
employing multiple feature extraction algorithms
per trait to enhance  complementary
discriminatory information [7].

2. We introduce a binary Artificial Bee Colony
(ABC)-based  wrapper  feature  selection
approach, tailored for discrete feature subset
optimization via binary encoding and sigmoid-
based thresholding, enabling effective
exploration of high-dimensional fused feature
spaces [6].

3. We conduct extensive experimental validation on
widely used benchmark datasets (CASIA, IITD,
and FVC), comparing the proposed ABC-based
feature selection method with  Principal
Component Analysis (PCA) and a no-selection
baseline using both distance-based matching
(Euclidean distance) and supervised classifiers
(C4.5, SMO, and Naive Bayes) [7].

4. Experimental results demonstrate substantial
dimensionality reduction (80% 89%) while
achieving consistently high recognition rates
(99% 99.4%), particularly with supervised
classifiers in multi-algorithm and multimodal
configurations, confirming the effectiveness and
scalability of the proposed approach.

1.4 Organization
The remainder of this paper is organized as follows.
Section 2 reviews related work on unimodal and
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multimodal biometric systems, feature-level fusion
strategies, and feature selection techniques. Section 3
presents the proposed system architecture, including
preprocessing, multi-algorithm feature extraction,
and feature-level fusion for fingerprint, iris, and
palmprint modalities. Section 4 details the proposed
methodology, describing the basic Artificial Bee
Colony (ABC) algorithm, problem formulation,
binary feature encoding, fitness function, and the
employed, onlooker, and scout bee phases. Section 5
outlines the experimental setup, benchmark
databases, baseline methods, and evaluation metrics.
Section 6 discusses comprehensive experimental
results and performance analysis for multi-
algorithmic and multimodal configurations. Finally,
Section 7 concludes the paper and outlines directions
for future research.

Il. LITERATURE REVIEW

2.1 Unimodal Biometric Systems

2.1.1 Fingerprint Recognition System

Fingerprints consist of distinctive ridge and valley
patterns formed on the fingertips, which are highly
individual-specific even among identical twins and
remain largely invariant over an individual’s lifetime
[4]1[8]. Owing to their permanence, uniqueness, and
ease of acquisition, fingerprint recognition systems
are extensively deployed in civilian applications,
forensic  investigations, and law enforcement
environments [4].

A typical fingerprint recognition system comprises
three fundamental stages [4][8]. Preprocessing aims
to improve fingerprint image quality and includes
segmentation to isolate the fingerprint region from
the background, normalization to reduce intensity
variations, and enhancement techniques to strengthen
ridge valley contrast. Feature extraction involves
deriving discriminative representations from the
processed image, which may be global features (e.g.,
singular points and orientation fields) or local
features such as minutiae points, including ridge
endings and bifurcations [4]. Among these, minutiae-
based (Level-2) features are most widely adopted in
automated fingerprint recognition systems due to
their strong discriminative capability and robustness
to common imaging variations [4]. Finally, matching
is performed by comparing the extracted features
with stored templates using correlation-based,
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minutiae-based, or ridge-based matching algorithms
to establish identity or verify a claimed identity [4].

2.1.2 Iris Recognition System

The iris is the annular, pigmented structure
surrounding the pupil and is characterized by highly
distinctive texture patterns such as furrows, crypts,
and pigment variations. These patterns are formed
through random developmental processes during
early life and remain remarkably stable over time
[4][8]. Owing to its high degree of uniqueness even
among identical twins and its strong resistance to
forgery without significant risk, the iris is considered
one of the most reliable biometric traits [4].

An iris recognition system typically involves three
key stages [4][8]. Preprocessing focuses on
accurately localizing the iris region between the pupil
and the limbic boundary, followed by normalization
to a fixed-size, dimensionless representation using
polar  coordinate  transformation,  commonly
implemented via Daugman’s rubber sheet model.
Image enhancement techniques are then applied to
improve contrast and highlight iris texture details [4].
Feature extraction captures the rich textural
information of the iris using phase-based approaches
such as Gabor or Log-Gabor filters, or alternatively
through statistical texture descriptors [4]. Finally,
matching is performed by comparing the generated
iris codes against enrolled templates using similarity
measures, most commonly the Hamming distance, to
determine identity or verify a claimed match [21].

2.1.3 Palmprint Recognition System

The palmprint refers to the inner surface of the
human hand and encompasses a rich set of distinctive
features, including principal lines, wrinkles, minutiae
points, and fine-grained texture patterns. Owing to
this diversity of structural and textural information,
palmprints provide high discriminative capability and
are well suited for reliable biometric recognition
[41[9].

A typical palmprint recognition system consists of
three main stages [4][9]. Preprocessing involves
binarization and contour extraction to delineate the
hand region, followed by key point detection using
tangent-based or bisector-based methods. Based on
these key points, a stable coordinate system is
established, enabling consistent extraction of a
Region of Interest (ROI) from the palmprint image
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[4]. Feature extraction derives discriminative
representations from the ROI and may include line-
based features obtained through edge detection of
principal creases, statistical descriptors such as Gabor
filters, wavelet coefficients, and Zernike moments,
appearance-based or subspace methods (e.g., PCA,
ICA, and LDA), as well as texture-based descriptors
including Local Binary Patterns (LBP) and Gabor-
based codes [4]. Finally, matching is performed by
computing similarity scores between extracted
palmprint features using appropriate distance
measures or supervised classifiers to determine
identity or verify a claimed match [4].

2.2 Limitations of Unimodal Systems

Despite their widespread adoption and demonstrated
reliability, unimodal biometric systems are subject to
several inherent limitations that can adversely affect
recognition performance and system robustness
[3][4]. Noisy data may arise from defective sensors
or unfavorable acquisition conditions, leading to
degraded feature quality. Intra-class variations occur
when biometric samples from the same individual
differ across acquisition sessions due to factors such
as pose, illumination, or physiological changes.
Limited distinctiveness is observed in certain
biometric modalities, where the extracted features
may not sufficiently discriminate genuine users from
imposters, particularly in large-scale systems. Non-
universality further constrains unimodal systems, as
some individuals may be unable to provide a usable
instance of a specific biometric trait. Additionally,
unimodal systems are inherently more vulnerable to
spoofing attacks, as adversaries may exploit the
reliance on a single biometric characteristic to
compromise system security [3][4].

2.3 Multimodal Biometric Systems

Multimodal biometric systems address the inherent
limitations of unimodal approaches by integrating
complementary information from multiple biometric
sources, thereby enhancing recognition accuracy,
robustness, and resistance to spoofing attacks [2][3].
Information fusion in multimodal systems can be
performed at several levels [3]. Sensor-level fusion
combines data acquired from multiple sensors
capturing the same biometric trait. Feature-level
fusion integrates feature vectors extracted from
different modalities or algorithms into a unified
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representation. Match-score-level fusion aggregates
similarity scores produced by multiple matchers,
while decision-level fusion combines the final
accept/reject decisions from individual classifiers.
Among these fusion strategies, feature-level fusion,
which is the focus of this work, performs integration
prior to classification and thus preserves richer
discriminatory information than score- or decision-
level fusion, often resulting in superior authentication
performance [3][4]. However, direct concatenation of
heterogeneous feature vectors leads to very high-
dimensional fused feature spaces, which in turn
introduces computational and statistical challenges.
Consequently, effective dimensionality reduction and
feature selection mechanisms are essential to fully
exploit the benefits of feature-level fusion in
multimodal biometric systems [3][4].

2.4 Feature Selection Approaches

Feature selection seeks to identify an optimal subset
of features that maximizes classification performance
while minimizing the dimensionality of the feature
space [4]. Based on the manner in which feature
relevance is evaluated, feature selection techniques
are broadly classified into three categories [4]. Filter
methods assess feature importance independently of
the learning algorithm and are typically employed for
baseline analysis, particularly in extremely high-
dimensional settings. Wrapper methods evaluate
candidate feature subsets by using a classifier as a
black box; although computationally more expensive,
they generally vyield superior performance by
explicitly accounting for classifier-dependent feature
interactions. Embedded methods perform feature
selection as part of the model training process, as
exemplified by decision tree-based algorithms and
regularization-based approaches [4].

In biometric recognition systems, wrapper-based
feature selection is often preferred because
recognition accuracy provides a direct and task-
relevant measure of feature subset quality, enabling
more effective capture of inter-feature dependencies
and classifier-specific discriminative characteristics

[4].

2.5 Evolutionary Computation in Feature Selection

Evolutionary computation (EC) algorithms are
population-based, nature-inspired metaheuristics that
are particularly well suited for feature selection
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problems involving large, complex, and non-convex
search spaces [4]. By iteratively evolving a
population of candidate solutions, EC methods
effectively balance exploration and exploitation,
enabling efficient discovery of near-optimal feature
subsets.

Several EC techniques have been widely applied to
feature selection [4]. Genetic Algorithms (GA)
simulate biological evolution through chromosome
encoding, selection, crossover, and mutation
operations. Particle Swarm Optimization (PSO) is
inspired by social behavior in bird flocks, where
particles traverse the solution space guided by their
personal best and global best positions. Artificial Bee
Colony (ABC) algorithms emulate honeybee foraging
behavior through the cooperative actions of
employed bees (local exploitation), onlooker bees

Fingerprint

(probabilistic selection of promising solutions), and
scout bees (global exploration and diversification)
[6]. Cuckoo Search (CS) is motivated by the brood
parasitism of cuckoo birds and employs Lévy flight
based random walks to enhance global search
capability.

Among these methods, ABC has demonstrated
competitive or superior performance in multimodal
biometric feature selection tasks, owing to its simple
structure, minimal parameter tuning requirements,
rapid convergence, and strong robustness across
diverse datasets [5][6][10]. Accordingly, this work
adopts the basic ABC algorithm based on the original
formulation by Karaboga and adapts it for discrete
binary feature subset selection in high-dimensional
feature-level fusion scenarios.
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Figure 1: System Architecture

I1l. SYSTEM ARCHITECTURE

3.1 Overall Multi-Algorithm, Multimodal Framework
Figure 1 illustrates the proposed multi-algorithm,
multimodal biometric recognition framework, which
integrates fingerprint, iris, and palmprint modalities,
with multiple feature extraction algorithms employed
for each biometric trait [20]. Biometric images
corresponding to the three modalities are acquired
from standard benchmark databases, including
CASIA, IITD, and FVC.

For each modality, trait-specific preprocessing is first
applied, encompassing segmentation, normalization,
and image enhancement to improve feature quality
and robustness.  Subsequently, multi-algorithm
feature extraction is performed independently for

IJIRT 189878

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY

each trait, where multiple complementary feature
extraction algorithms (e.g., two per modality) are
employed to capture diverse discriminatory
characteristics. The resulting feature vectors are then
combined through feature-level fusion via direct
concatenation, vyielding a high-dimensional fused
feature vector x € RP.

To address the resulting dimensionality and
redundancy, an Artificial Bee Colony (ABC)-based
feature selection mechanism is applied to identify an
optimal binary subset mask b*, producing a reduced
feature representation x,- . Finally, the selected
features are subjected to classification or matching
using either distance-based measures (e.g., Euclidean
distance) or supervised classifiers, resulting in a final
genuine or imposter decision.
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3.2 Preprocessing and Feature Extraction

3.2.1 Fingerprint Processing

Fingerprint processing begins with a sequence of
preprocessing steps designed to enhance image
quality and ensure reliable feature extraction [4].
Segmentation is first performed to isolate the
fingerprint region from the background, typically
using local ridge orientation  histograms.
Normalization follows to standardize pixel intensity
distributions and reduce illumination variations.
Enhancement techniques, such as Gabor filtering or
Fourier-domain filtering, are then applied to
strengthen ridge valley structures. To facilitate
reliable minutiae detection, thinning is employed to
reduce ridge width to a single pixel. Subsequently,
minutiae extraction identifies ridge endings and
bifurcations, which constitute Level-2 fingerprint
features. Finally, post-processing procedures are
applied to eliminate spurious minutiae using
structural and statistical constraints, thereby
improving feature reliability [4].

To capture complementary discriminatory
information, multi-algorithm feature extraction is
employed for the fingerprint modality [19]. The first
approach (Algorithm F1) is a minutiae-based method
that represents each fingerprint using the spatial
coordinates and orientations of detected minutiae

; P @) . pd®
points, resulting in a feature vector fz € R

where ds)z48 96[18]. The second approach
(Algorithm F2) is a texture-based method that
extracts features such as Gabor-filtered energy
responses or Local Binary Pattern (LBP) histograms,

producing a feature vector £ € R% where d? ~
64 128[18].

3.2.2 Iris Processing

Iris processing begins with a set of preprocessing
operations aimed at accurate localization and
enhancement of the iris texture [4][8]. Segmentation
is performed to precisely identify the iris region
between the pupil and the limbic boundary, typically
using circular edge detection techniques. To ensure
invariance to pupil dilation and image scale
variations, normalization maps the segmented iris
region to a fixed-size, dimensionless representation in
polar coordinates, commonly implemented using
Daugman’s rubber sheet model [4]. Subsequently,
image enhancement techniques are applied to
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improve contrast and highlight fine textural details
within the normalized iris image [4].

To exploit complementary discriminatory
information, multi-algorithm feature extraction is
employed for the iris modality [16]. The first
approach (Algorithm 11) is a phase-based method that
utilizes Gabor or Log-Gabor filters to encode local
phase information into a compact binary iris code,

L @
resulting in a feature vector fl(l) € R where d%l) ~

256 512[7]. The second approach (Algorithm 12)
extracts texture-based features from the normalized
iris image using Local Binary Patterns (LBP) or
statistical descriptors such as mean, variance, and

. @
energy, producing a feature vector fI(Z) e RY” where
d® ~ 128 256[7].

3.2.3 Palmprint Processing

Palmprint processing begins with a sequence of
preprocessing steps designed to ensure accurate
alignment and reliable feature extraction from the
hand image [4][9]. Binarization is first applied to
convert the grayscale image into a binary
representation  using  appropriate  thresholding
techniques. This is followed by contour extraction to
delineate the hand and palm boundaries. Key point
identification is then performed to detect anatomical
landmarks such as fingertips and inter-finger valleys,
commonly using tangent-based approaches. Based on
these landmarks, a stable coordinate system is
established to achieve consistent alignment across
samples. Finally, a central Region of Interest (ROI)
typically square-shaped is extracted from the palm
region to serve as the basis for subsequent feature
extraction [4].

To capture complementary structural and textural
information, multi-algorithm feature extraction is
employed for the palmprint modality [17]. The first
method (Algorithm P1) is a line-based approach that
extracts principal lines and wrinkles using edge
detection operators such as Canny or Sobel, resulting

in a feature vector £ € R%  where d$ ~ 64
128[7]. The second method (Algorithm P2) is
texture-based and derives features from the ROI
using Gabor filter energy responses or competitive

coding schemes, producing a feature vector f1§2) €

RY where d? ~ 128 256[15].
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3.3 Feature Level Fusion

After multi-algorithm feature extraction for each trait,
feature vectors are concatenated into a single fused
feature vector [7]:

1 2 1 2 1 2
x = [0 12 1D 162 ) £ 11 £87] € RP,

where || denotes concatenation and D =Y d©) =
800 2000 (depending on specific algorithm
implementations and database characteristics) [14].
This high dimensionality necessitates feature
selection to reduce computational complexity while
preserving discriminative information.

IV. ARTIFICIAL BEE COLONY BASED
FEATURE SELECTION

4.1 Problem Formulation
Feature Selection as Binary Optimization: Given a
fused feature vector x € RP, find a binary selection
mask

b = [by, by, ...,bp],b; € {0,1},
such that the selected feature subvector

maximizes a fitness function combining recognition
accuracy and feature subset size [6][7].

4.2 Fitness Function

The wrapper-based fitness function evaluates each
feature subset b by training a classifier on selected
features and measuring recognition accuracy [4][7]:
Ncorrect(b)

)

Acc(b) =
Ntotal
Where N, oo (b) is the number of correctly classified

training samples using features indicated by b, and
Nioia 1S the total number of training samples. Cross-
validation ensures unbiased accuracy estimation [4].
To balance accuracy and feature compactness, the
overall fitness is [6][7]:

YL b,
===

Fit(b) = a - Acc(b) — B

Where:

e a>»f>0(eg.,a=09p=0.1)6]

e  The first term prioritizes recognition accuracy.

e The second term penalizes larger feature subsets
to encourage compactness.

Higher Fit(b) indicates a better feature subset [6][7].
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4.3 Basic ABC Algorithm Core (Continuous
Formulation)
The original ABC algorithm (Karaboga) is
formulated for continuous optimization [6]. For
continuous problems, each candidate solution (food
source) is represented as x; = [Xi1, Xjz, -, Xip]. The
employed bee updates its food source using a
neighbor-based mechanism [6]:
Vi = Xy + &s(Xy; — X)),
Where:
e k=+#iis a randomly chosen food source index
[6].
e ¢ ~U(—1,1) is a random number controlling
neighbor exploration [6].
Onlooker bees select food sources with probability
[6]:
Fit;
Pi= ernN=1 Fitm'
Where SN is the number of food sources (population
size) [6].
Scout bees generate new random solutions for
abandoned food sources:[6]:

X ="+ (M = x™), i ~ U0, 1),

Where x]-mi“ and x;"** are the lower and upper bounds
of parameter j[6].

4.4 Binary ABC Adaptation for Feature Selection

To adapt ABC for discrete binary feature selection,

we employ a sigmoid-based transfer function [6][10]:

4.4.1 Neighbor Generation and Transfer

For each feature position j in food source i:

1. Generate continuous intermediate value using the
neighbor formula [6]:

vij = by + ¢y (by; — bygy),

where by;, by; € {0,1} and ¢y ~ U(—1,1)[6].
2. Apply sigmoid transfer function to map to
probability [6][10]:
1
S(Vij) = m
3. Threshold at probability 0.5 to obtain binary
value [6][10]:
bl = {1, s(vi]-) > 0.5,
Y 0, otherwise.
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This preserves the neighbor-based exploration
mechanism of basic ABC while mapping to discrete
binary values [6][10].

4.4.2 Greedy Selection

After generating a new candidate b;[6]:

e Evaluate Fit(bj).

e If Fit(bj) > Fit(b;) : accept b; « bj and reset
trial counter to 0.

o Else: reject the new candidate and increment trial
counter [6].

4.5 Basic ABC Algorithm Procedure
Algorithm 1: Binary ABC for Feature Selection
Input: Training data X with labels y, feature
dimension D,
parameters: SN (population size), MaxCycles (max
iterations),
limit (abandonment threshold), a, B (fitness weights)
Output: Optimal feature subset mask b*
/I Initialization
1. Fori=1toSN:
Generate random binary solution b_i € {0,1}*D
with P(b_ij=1)=0.5
Evaluate Fit(b_i) using cross-validated classifier
on selected features
Initialize trial_i=0
End For
Store b* = argmax_i Fit(b_i) // Best solution so far
/I Main Loop

2. For cycle = 1 to MaxCycles:
/l Employed Bee Phase
For each employed bee i = 1 to SN:
Randomly select neighbor index k # i
For each feature j=1to D:
Generate ¢_ij ~ U(-1, 1)
Compute v_ij =b_ij + ¢_ij(b_ij - b_kj)
Apply sigmoid: s(v_ij) = 1/(1 + exp(-v_ij))
Threshold: b'_ij = (s(v_ij) >0.5)?1:0
End For

Evaluate Fit(b' i)
If Fit(b'_i) > Fit(b_i):

bi=bi
trial_i=0
Else:
trial_i=trial_i+1
End If
IJIRT 189878

If Fit(b_i) > Fit(b*):
b*=b_i
End If
End For // End Employed Bee Phase

/I Onlooker Bee Phase
Compute selection probabilities: p_i = Fit(b_i) /X
Fit(b_m)

For each onlooker bee:
Select index i according to probability distribution
p
Repeat same neighbor generation and greedy
update as employed phase
Update b* if improved
End For // End Onlooker Bee Phase

// Scout Bee Phase
For each food source i = 1 to SN:
If trial i> limit:
Generate new random binary solution b_i
Evaluate Fit(b_i)
trial_i=0
If Fit(b_i) > Fit(b*):
b*=b_i
End If
End If
End For // End Scout Bee Phase

End For // cycle

3. Return b*

4.6 Algorithm Parameters and Implementation
Details

The principal parameters of the Artificial Bee Colony
(ABC) algorithm used in this study are summarized
as follows [6][7]. The population size (SN), which
corresponds to the number of food sources and
employed bees, controls the trade-off between
exploration capability and computational cost; typical
values range from 20 to 40, and in this work SN=30
[61[7]. The maximum number of cycles (MaxCycles)
defines the termination criterion of the algorithm and
is commonly set between 100 and 200 iterations;
here, MaxCycles=150 [6][7]. The abandonment limit
(limit) specifies the maximum number of consecutive
trials without improvement after which a food source
is abandoned and the corresponding employed bee
becomes a scout; values typically lie in the range of
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10 20, and a value of limit=15 is adopted in this study
[6][7]. To balance recognition performance and
subset compactness, the fitness function weights are
set to 0=0.9, emphasizing classification accuracy, and
$=0.1, imposing a mild penalty on feature subset size
[7].

Feature Subset Evaluation

For each candidate binary feature subset b, the
selected classifier (e.g., C4.5 or SMO) is trained
using only the corresponding features, and its
classification accuracy is estimated through 5-fold
cross-validation on the training set. This procedure
provides a reliable and unbiased assessment of
feature subset quality for fitness evaluation within the
ABC framework [4][7].

Integration into the Biometric Recognition System
The proposed ABC-based feature selection is
integrated into the multimodal biometric system as
follows [7]. First, training samples are collected for
all three biometric traits across the selected
benchmark databases. Multi-algorithm  feature
extraction is then performed for each modality,
followed by feature-level fusion to generate high-
dimensional training feature vectors xuain. The binary
ABC algorithm is subsequently applied to the fused
training data and corresponding labels to identify the
optimal feature subset mask b*. Both training and test
feature vectors are then reduced using this mask,
yielding Xtain+« and xwestp«. Finally, the chosen
classifier C4.5, SMO, or a Euclidean distance-based
matcher is trained on the reduced training features
and evaluated on the test set. System performance is
assessed using standard biometric metrics, including
recognition rate, false acceptance rate (FAR), false
rejection rate (FRR), and equal error rate (EER) [7].

V. EXPERIMENTAL SETUP
5.1 Biometric Databases and Multi-System Design

Table 1 summarizes the biometric databases used [7]:

Trait Database [Subjects |#Samples
Fingerprint CA'\:?DIA 1000 8000
. . FvC
Fingerprint 2002 110 880
IJIRT 189878

. CASIA
Iris V10 108 1080
Iris IITD Iris 224 896
Palmprint CASIA 600 7200
Palm
Palmprint IITD 235 2350
Palm

Multi-Algorithmic Systems: Single-trait systems with
multiple algorithms per trait (e.g., fingerprint using
minutiae + texture) [7].

Multimodal Systems: Virtual person construction
where each subject combines samples from different
trait modalities and/or different databases [7]. For
example, a virtual Fingerprint+Iris system combines
one person's fingerprint from CASIA-FP with
another person's iris from CASIA-Iris, creating
enlarged virtual person databases [7].

5.2 Training and Testing Protocols

A stratified random train test split is adopted, with
50% of the samples used for training and the
remaining 50% reserved for testing to ensure
balanced class representation [7]. During the ABC-
based feature selection process, 5-fold cross-
validation is performed exclusively on the training set
to estimate the classification accuracy Acc(b) for
each candidate feature subset, thereby preventing
information leakage and ensuring unbiased fitness
evaluation [4][7]. All recognition results are reported
at a fixed false acceptance rate (FAR) of 0.01, which
is a commonly used operating point in biometric
system evaluation [7].

5.3 Baseline Methods and Classifiers

To assess the effectiveness of the proposed approach,
several feature reduction baselines are considered [7].
The No Feature Selection (No FS) baseline uses the
full fused feature vector without dimensionality
reduction and serves as a lower bound reference.
Principal Component Analysis (PCA) is employed as
a classical feature extraction baseline, retaining 80
90% of the total variance. In addition, a basic ABC
based feature selection method from the literature is
included for comparative analysis.

Performance evaluation is carried out using a diverse
set of classifiers [7]. A Euclidean distance-based
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matcher is used as a simple reference baseline. The
C4.5 decision tree classifier is included due to its
ability to handle both discrete and continuous
features. Sequential Minimal Optimization (SMO),
implementing Support Vector Machines (SVMs), is
employed for its effectiveness in high-dimensional
feature spaces. Naive Bayes serves as a probabilistic
baseline classifier, while Random Forests, as an
ensemble learning method, are used to assess
robustness and the ability to capture feature
interactions.

5.4 Performance Metrics
System performance is evaluated using standard
biometric recognition metrics [7]. The Recognition
Rate (RR) denotes the percentage of test samples
correctly classified. The False Acceptance Rate
(FAR) measures the proportion of imposters
incorrectly accepted, while the False Rejection Rate
(FRR) quantifies the proportion of genuine users
incorrectly rejected. The Equal Error Rate (EER)
corresponds to the operating point where FAR equals
FRR, with lower EER values indicating superior
overall system performance. In addition, Receiver
Operating Characteristic (ROC) curves are plotted to
analyze the trade-off between FAR and the Genuine
Acceptance Rate (GAR = 1 — FRR).
To quantify dimensionality reduction effectiveness,
the feature reduction percentage is computed as
Reduction\% = (1 — £%) x 100.
where D is the dimensionality of the original fused
feature vector and bj indicates whether the j-th feature
is selected [7].
Finally, computational efficiency is assessed through
two metrics [7]. Training time corresponds to the
offline cost of running the ABC optimization during
system enrollment, while testing time per sample
measures the time required to classify an individual
test sample using the trained model, which is critical
for real-time biometric deployment.

VI. RESULTS AND DISCUSSION

6.1 Multi-Algorithmic Fingerprint Systems

Table 2 summarizes the feature dimensionality
reduction results for the multi-algorithmic fingerprint
systems under different feature reduction strategies
[7]. The baseline approach without feature selection
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(No FS) retains the full 512-dimensional fused
feature vector. Principal Component Analysis (PCA)
achieves a substantial dimensionality reduction of
approximately 90%, reducing the feature space to 51
dimensions. Both the basic ABC method and the
proposed ABC-based feature selection approach
reduce the feature dimensionality to 102 features,
corresponding to an 80% reduction.

Table 2 presents feature dimensionality reduction for
multi-algorithmic fingerprint systems

Initial Reduced Reduction
Method Dim Dim %
No FS 512 512 0%
PCA 512 51 90%
Basic
ABC 512 102 80%
ABC .
(proposed) 512 102 80%

Table 3 reports the recognition performance of multi-
algorithmic fingerprint systems using Euclidean
distance-based matching [7]. For both MA-Fingerl
and MA-Finger2 configurations, the proposed ABC-
based method vyields a marked improvement in
recognition accuracy, achieving rates exceeding 96%,
compared with approximately 84% for PCA and
around 81 83% for the No FS baseline.

Table 3 shows recognition accuracy (Euclidean
distance) for multi-algorithmic fingerprint

Svstem No FS PCA ABC
y (%) (%) (%)
MA.- 825 84.0 96.5

Fingerl
MA- 80.8 82.3 96.2

Finger2

These results demonstrate that, although PCA attains
a higher level of dimensionality reduction, the ABC-
based feature selection method consistently delivers
significantly superior recognition performance while
still achieving substantial feature space reduction.
This highlights the effectiveness of the proposed
ABC approach in identifying and retaining highly
discriminative fingerprint features, thereby enhancing
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matching accuracy without incurring prohibitive
dimensionality or computational costs [7].

Table 4 shows recognition accuracy with supervised
classifiers (C4.5, SMO)

PCA PCA+S | ABC+S
System | +CA4. 'Z‘%%;c): MO MO
5%) | Y | (%) (%)
MA- | 889 | 991 87,5 99.2
Fingerl
MA- | 569 | 99.0 86.2 99.1
Finger2

Table 4 presents the recognition performance of
multi-algorithmic ~ fingerprint ~ systems  using
supervised classifiers, specifically C4.5 decision trees
and SMO-based Support Vector Machines (SVMs)
[7]. When combined with PCA-based dimensionality
reduction, recognition accuracies range between
approximately 86% and 88% across both MA-
Fingerl and MA-Finger2 configurations. In contrast,
the proposed ABC-based feature selection
consistently  achieves  near-perfect recognition
performance, with accuracies of approximately 99%
for both classifiers and system configurations.

These results clearly indicate that ABC-selected
feature subsets are significantly more discriminative
than PCA-reduced features when wused with
supervised learning models. Unlike PCA, which
retains features based on variance alone, the ABC-
based wrapper approach explicitly optimizes
classification performance, enabling it to capture
complex, non-linear decision boundaries more
effectively. Consequently, the proposed method
demonstrates superior suitability for high-accuracy
fingerprint recognition in multi-algorithmic biometric
systems [7].

6.2 Multi-Algorithmic Iris Systems

Table 5 reports the feature dimensionality reduction
results for the multi-algorithmic iris systems under
different feature reduction strategies [7]. Without
feature selection (No FS), the full 640-dimensional
fused feature vector is retained. PCA achieves a 90%
reduction, compressing the feature space to 64
dimensions, while both the basic ABC method and
the proposed ABC-based approach reduce the
dimensionality to 128 features, corresponding to an
80% reduction.
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The recognition performance using Euclidean
distance-based matching is presented in Table 6 [7].
Across all multi-algorithmic iris configurations (MA-
Irisl to MA-Iris3), the proposed ABC-based feature
selection consistently delivers superior performance,
achieving recognition accuracies of approximately
97%, compared with 82 84% for PCA and 80 82%
for the No FS baseline.

Table 5 presents feature dimensionality reduction for

iris
Method Initial Reduced Reduction
Dim Dim %
No FS 640 640 0%
PCA 640 64 90%
Basic ABC 640 128 80%
ABC 640 128 80%
(proposed)

Table 6 shows recognition accuracy (Euclidean
distance) for multi-algorithmic iris

System | NoFS (%) | PCA (%) | ABC (%)
MA-Iris1 815 83.8 97.2
MA-Iris2 79.9 82.1 96.8
MA-Iris3 80.2 835 97.0

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY

Table 7 summarizes the recognition accuracies
obtained with supervised classifiers, namely C4.5 and
SMO (SVM), using PCA- and ABC-reduced feature
sets [7]. The ABC based method achieves
consistently high recognition rates in the range of
99.1% 99.4% across all system configurations and
classifiers. In contrast, PCA-based dimensionality
reduction results in substantially lower accuracies,
typically between 85% and 87%.

Table 7 shows recognition accuracy with supervised

classifiers

Syste | PCA+C | ABC+C4 | PCA+S ABC+S
m 45(%) | 5(%) | MO (%) | MO (%)
MA- 1 g6.9 99.3 86.5 99.4
Irisl
MA-"1 g52 99.2 85.8 99.3
Iris2
MA-"| g55 99.1 86.1 99.2
Iris3
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Overall, these results demonstrate that ABC-based
feature selection is highly effective for multi-
algorithmic iris recognition, achieving strong
discriminative performance with both distance-based
and supervised classifiers while maintaining
substantial feature space reduction. The consistently
high recognition rates indicate that the selected
feature subsets preserve critical iris texture
information and enable robust class separation in
high-dimensional fusion settings [7].

6.3 Multi-Modal Systems (Fingerprint + Iris +
Palmprint)

Table 8 summarizes the feature dimensionality
reduction results for the three-modal biometric
system that integrates fingerprint, iris, and palmprint
modalities [7]. The No FS baseline retains the full
1792-dimensional fused feature vector. PCA achieves
a 90% reduction, compressing the feature space to
180 dimensions, while both the basic ABC method
and the proposed ABC-based approach reduce the
dimensionality to 256 features, corresponding to an
86% reduction.

The recognition performance using Euclidean
distance-based matching for the three-modal system
is reported in Table 9 [7]. For both system
configurations, the ABC-based feature selection
method substantially outperforms PCA and the No
FS baseline, achieving recognition accuracies of
approximately 97%, compared with 84 86% for PCA
and 83 85% for the unreduced feature set.

Table 8 presents feature reduction for the 3-modal
system combining all three traits

Initial Reduced Reduction
Method | iy Dim %
No FS 1792 1792 0%
PCA 1792 180 90%
Basic o
ABC 1792 256 86%
ABC
(This 1792 256 86%
Work)
1JIRT 189878

Table 9 shows recognition accuracy (Euclidean
distance) for 3-modal systems

System No | pca | ABC

4 . FS
Configuration (%) (%) (%)

MM-

Finger+Iris+Palm1 84.5 85.9 971

MM-

Finger+Iris+Palm2 83.2 84.5 96.8

Table 10 presents the recognition accuracies obtained
with supervised classifiers, specifically C4.5 and
SMO (SVM), using PCA- and ABC-reduced feature
representations [7]. The proposed ABC-based
approach consistently attains recognition rates in the
range of 99.0% 99.4% across all multimodal
configurations and classifiers. In contrast, PCA-based
dimensionality reduction yields accuracies below
88%, underscoring its limited ability to preserve
class-discriminative information in highly fused
multimodal feature spaces.

Table 10 shows recognition accuracy with supervised

classifiers
svsem | PCA | ABC | PcA | ABC
Cg’nﬁ O | *Ca | +Ca | 4SM | 4sM
aion | S | 5 | o | ©
(%) (%) (%) (%)
MM-
Fingertl | o056 | 992 | 871 | 994
ris+Palm
1
MM-
Fingertl | g5 8 | 990 | 865 | 993
ris+Palm
2

These results confirm that the proposed ABC-based
feature selection effectively identifies complementary
and discriminative features across multiple biometric
traits, enabling robust and highly accurate recognition
in multimodal systems while maintaining substantial
dimensionality reduction. The consistently high
performance across both distance-based and
supervised classifiers highlights the scalability and
effectiveness of the proposed approach for large-
scale multimodal biometric authentication [7].
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6.4 Feature Reduction Summary

Table 11 provides a consolidated overview of feature
dimensionality  reduction achieved across all
evaluated biometric system configurations [7]. For
multi-algorithmic unimodal systems, PCA
consistently reduces the feature space by
approximately 88% 90%, while the proposed ABC-
based feature selection achieves reductions in the
range of 80% 82%. In multimodal configurations,
PCA attains feature reductions of around 87% 90%,
whereas ABC  reduces  dimensionality by
approximately 84% for two-modal systems and 86%
for the three-modal system.

Table 11 consolidates feature reduction across all

systems
System Initial PCA ABC
Type Dim Reduction Reduction
Multi-Algo | 59, 90% 80%
Finger
M“'f'?A'gc’ 640 90% 80%
ris
Multi-Algo | 764 88% 82%
Palm
2-Modal 1152 . .
(Any Pair) 1280 87% 84%
3-Modal o o
(All Traits) 1792 90% 86%

Several important observations can be drawn from
these results [7]. First, ABC-based feature selection
consistently achieves substantial dimensionality
reduction (80% 86%) across all unimodal, multi-
algorithmic, and multimodal systems. Second,
although PCA vyields slightly higher dimensionality
reduction, this advantage comes at the cost of
significantly degraded recognition performance, as
demonstrated in the preceding sections. Finally, the
proposed ABC-based approach offers a more
favorable accuracy efficiency trade-off, combining
moderate feature space reduction with consistently
superior recognition accuracy in the range of 97%
99.4%.

Overall, these findings confirm that wrapper-based
ABC feature selection is more effective than
variance-based PCA for high-dimensional feature-
level fusion in biometric systems, particularly when
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recognition accuracy is the primary performance
objective [7].

6.5 Computation Time Analysis

Table 12 compares the computational costs of
different feature reduction strategies in terms of
training time and testing time per sample [7]. The No
FS baseline requires approximately 5 minutes of
training and incurs a testing time of 15 ms per
sample. PCA significantly reduces the training time
to about 2 minutes and lowers the testing time to 8
ms per sample. In contrast, the proposed ABC-based
feature selection requires a substantially longer
training time of approximately 45 minutes, reflecting
the iterative nature of the evolutionary optimization
process.

Table 12 compares computation times

Training Test Time per
Method | rime (min) Sample (ms)
5 min
No FS (baseline) 15 ms
PCA 2 min 8 ms
ABC 45 min 5ms

Despite its higher training cost, the ABC-based
approach achieves the lowest testing time, requiring
only 5 ms per sample, owing to the substantial
reduction in feature dimensionality. This reduction
directly translates into faster classification during
system operation. From a practical standpoint, testing
time is the critical performance factor in real-world
biometric applications such as access control,
automated border control, and large-scale identity
verification, where rapid response is essential.
Importantly, the increased training time associated
with ABC-based feature selection is incurred only
once during the offline enrollment phase, making it
acceptable in practical deployments. The resulting
reduction in testing time enables efficient real-time
authentication, highlighting a favorable trade-off
between offline optimization cost and online system
performance. These results demonstrate that the
proposed ABC-based approach is well suited for
operational biometric systems where accuracy and
real-time responsiveness are paramount [7].
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VII. CONCLUSION AND FUTURE WORK

7.1 Conclusions

This work presented a comprehensive multi-
algorithm, multimodal biometric person
authentication framework that employs a basic
Artificial Bee Colony (ABC) based feature selection
strategy at the feature-level fusion stage [6][7]. By
jointly exploiting multiple biometric traits and
complementary feature representations, the proposed
approach  effectively addresses the inherent
limitations of unimodal biometric systems.

The major contributions and findings of this study

can be summarized as follows:

1. Multimodal, multi-algorithm system design: A
robust authentication framework integrating
fingerprint, iris, and palmprint modalities was
developed, with multiple feature extraction
algorithms applied to each trait to enhance
complementary discriminatory information.

2. Binary ABC-based feature selection: The basic
ABC algorithm was successfully adapted for
discrete binary feature subset optimization
using a sigmoid-based transfer function and
greedy selection, while preserving the core
neighborhood-based exploration and
exploitation mechanisms of the original
formulation [6][7].

3. Wrapper-based  fitness  formulation: A
classifier-driven fitness function was designed
to jointly optimize recognition accuracy and
feature subset compactness, ensuring that
selected features are directly aligned with
classification performance.

4. Extensive experimental validation: The
proposed method was evaluated on standard
benchmark databases (CASIA, IITD, and FVC)
using both distance-based matching (Euclidean
distance) and multiple supervised classifiers
(C4.5, SMO, Naive Bayes, and Random
Forest), consistently outperforming PCA-based
and baseline feature reduction approaches.

5. Strong performance outcomes:

e Recognition accuracies of 96.5% 97.5% using
Euclidean distance and 99.0% 99.4% using
supervised classifiers were achieved.
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e Feature space reduction of 80% 86% was
consistently obtained across unimodal, multi-
algorithmic, and multimodal systems.

e Testing time of approximately 5 ms per sample
enables real-time authentication.

e The proposed ABC-based approach
demonstrates a superior accuracy efficiency
trade-off compared with variance-based PCA
and unreduced feature sets.

e Practical relevance: The proposed framework
and ABC-based optimization procedure are well
suited for deployment in large-scale biometric
authentication systems, where high recognition
accuracy, computational efficiency, and real-
time responsiveness are critical requirements.

Overall, the results confirm that wrapper-based ABC

feature selection is highly effective for managing

high-dimensional feature-level fusion in multimodal
biometric systems, yielding both high recognition
performance and practical computational efficiency.

7.2 Future Work

Several promising directions can be explored to

further enhance the proposed framework:

e Advanced ABC variants: Investigating improved
ABC formulations with enhanced exploration
and convergence behavior, such as ®-ABC or
hybrid ABC-based models.

e Deep learning integration: Incorporating CNN-
based or transformer-based feature extraction
with ABC-driven feature selection for end-to-end
multimodal learning.

e Presentation attack detection: Extending the
framework to incorporate liveness detection and
spoof resistance at the feature or fusion level.

e Additional biometric traits: Expanding the
multimodal architecture to include face, voice,
vein, or gait biometrics.

e Cancelable biometrics: Developing revocable
and renewable feature representations to enhance
template  security and resilience against
compromise.

e Large-scale deployment: Evaluating scalability
on large, real-world biometric datasets involving
millions of users.

e Privacy-preserving authentication: Integrating
secure computation techniques, such as
homomorphic encryption or secure multi-party
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computation, to enable privacy-aware biometric https://doi.org/10.1109/TPAMI.2003.122798
matching. 1
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