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Abstract—Multimodal biometric systems enhance 

person authentication by combining complementary 

information from multiple traits to overcome the 

limitations of unimodal systems such as noisy data, 

spoof attacks, intra-class variations, and non-

universality [1][2].  In this work, a multi-algorithm 

feature-level fusion framework is proposed using 

fingerprint, iris, and palmprint modalities, where 

multiple feature extractors per trait are integrated into 

a common high-dimensional feature space [3][4]. To 

address the dimensionality problem and improve 

recognition accuracy, a basic Artificial Bee Colony 

(ABC) algorithm is employed as a wrapper-based 

feature selection method driven by a classification-

based fitness function [5]. The binary ABC mechanism, 

employing employed bees, onlooker bees, and scout 

bees’ phases, effectively identifies the most 

discriminative feature subsets while reducing 

computational complexity [6]. Experimental evaluation 

on publicly available CASIA, IITD, and FVC 

benchmark databases demonstrates that the proposed 

ABC-based multi-algorithm system attains high 

recognition accuracy (96.5% 97.5% with Euclidean 

distance, 99% 99.4% with supervised classifiers) with 

significantly reduced feature dimension (80% 89% 

reduction) compared with PCA-only feature reduction 

and non-optimized baselines [7]. The results confirm 

that ABC-driven selection of discriminative features at 

the fusion layer offers an effective balance between 

accuracy, feature compactness, and computational 

efficiency in real-time biometric person authentication. 

 

Index Terms—Multimodal biometrics; multi-algorithm 

fusion; feature-level fusion; artificial bee colony; feature 

selection; wrapper method; fingerprint; iris; palmprint; 

person authentication; biometric recognition; swarm 

intelligence; optimization. 

 

 

 

I. INTRODUCTION 

 

1.1 Background and Motivation 

Reliable person authentication is a critical 

requirement in a wide range of application domains, 

including electronic commerce, automated banking, 

law enforcement, border control, and smart device 

security [1]. Biometric authentication systems 

address this need by leveraging distinctive 

physiological or behavioral characteristics such as 

fingerprints, irises, and palmprints to establish or 

verify individual identity [2]. Although unimodal 

biometric systems, which rely on a single biometric 

trait, offer advantages in terms of simplicity and 

deployment cost, they are inherently constrained by 

several fundamental limitations [3]. 

In practice, unimodal systems are susceptible to noisy 

data arising from imperfect sensors, suboptimal 

acquisition conditions, and environmental influences 

[4]. Intra class variations further degrade recognition 

performance, as biometric samples from the same 

individual may differ due to rotation, translation, 

pressure variation, postural changes, sensor 

interoperability issues, or aging effects [4]. Non 

universality poses an additional challenge, as certain 

users may be unable to provide reliable instances of 

specific biometric traits because of physical 

disabilities, injuries, or medical conditions [4]. 

Moreover, unimodal systems are more vulnerable to 

spoofing attacks, wherein adversaries attempt to 

forge or replicate a single biometric characteristic 

particularly in the case of behavioral modalities [4]. 

Finally, limited distinctiveness in some biometric 

traits can lead to overlapping feature representations 

across individuals, thereby reducing discriminative 

capability and increasing false matches [4]. 
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To overcome these limitations, multimodal biometric 

systems integrate complementary information from 

multiple biometric sources, including multiple traits 

(multimodal), multiple samples or instances, and 

multiple feature extraction algorithms per trait (multi-

algorithm) [2][5]. Among various fusion strategies, 

feature-level fusion combines feature representations 

at an early stage of the recognition pipeline, 

preserving rich discriminatory information and often 

yielding superior authentication performance 

compared to score-level or decision-level fusion 

approaches [3]. However, direct concatenation of 

heterogeneous feature vectors produces highly high-

dimensional fused feature spaces, which exacerbate 

the curse of dimensionality. This results in increased 

computational complexity, higher memory 

requirements, potential degradation in recognition 

accuracy, and reduced suitability for real-time 

authentication in large-scale biometric systems 

[3][4]. 

 

1.2 The Dimensionality Reduction Problem 

Feature-level fusion in multimodal biometric systems 

often results in high-dimensional feature spaces, 

which pose several critical challenges to system 

efficiency and performance [3][4]. First, 

computational complexity increases significantly 

with large feature vectors, leading to longer training 

and testing times and limiting the feasibility of real-

time authentication in large-scale deployments [4]. 

Second, memory and storage requirements grow 

substantially, increasing both storage costs and 

communication bandwidth demands [4]. Third, 

classification accuracy may deteriorate, as not all 

features contribute equally to discriminatory power; 

redundant or noisy features can negatively impact 

classifier performance, particularly under the small 

sample size (SSS) problem [3]. Finally, the curse of 

dimensionality becomes prominent when the 

dimensionality of the feature space is high relative to 

the number of available training samples, resulting in 

poor generalization and increased risk of overfitting 

in pattern recognition systems [3]. 

To mitigate these issues, dimensionality reduction 

techniques are commonly employed and can be 

broadly categorized into two approaches [4]. Feature 

extraction methods transform the original feature 

space into a lower-dimensional representation, such 

as Principal Component Analysis (PCA). Although 

effective in reducing dimensionality, these methods 

often sacrifice the physical interpretability of features 

and do not reduce feature acquisition or measurement 

costs [4]. In contrast, feature selection techniques 

identify and retain only the most informative subset 

of the original features, thereby preserving their 

physical meaning while simultaneously reducing 

computational and acquisition overhead [4]. 

In this work, we adopt a feature selection strategy 

based on the basic Artificial Bee Colony (ABC) 

algorithm to optimize feature subsets at the feature-

level fusion stage in multi-algorithm, multimodal 

biometric systems. 

 

1.3 Contributions and Scope 

The principal contributions of this work are 

summarized as follows: 

1. We propose a feature-level multi-algorithm, 

multimodal biometric framework that integrates 

fingerprint, iris, and palmprint modalities, 

employing multiple feature extraction algorithms 

per trait to enhance complementary 

discriminatory information [7]. 

2. We introduce a binary Artificial Bee Colony 

(ABC)-based wrapper feature selection 

approach, tailored for discrete feature subset 

optimization via binary encoding and sigmoid-

based thresholding, enabling effective 

exploration of high-dimensional fused feature 

spaces [6]. 

3. We conduct extensive experimental validation on 

widely used benchmark datasets (CASIA, IITD, 

and FVC), comparing the proposed ABC-based 

feature selection method with Principal 

Component Analysis (PCA) and a no-selection 

baseline using both distance-based matching 

(Euclidean distance) and supervised classifiers 

(C4.5, SMO, and Naive Bayes) [7]. 

4. Experimental results demonstrate substantial 

dimensionality reduction (80% 89%) while 

achieving consistently high recognition rates 

(99% 99.4%), particularly with supervised 

classifiers in multi-algorithm and multimodal 

configurations, confirming the effectiveness and 

scalability of the proposed approach. 

 

1.4 Organization 

The remainder of this paper is organized as follows. 

Section 2 reviews related work on unimodal and 
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multimodal biometric systems, feature-level fusion 

strategies, and feature selection techniques. Section 3 

presents the proposed system architecture, including 

preprocessing, multi-algorithm feature extraction, 

and feature-level fusion for fingerprint, iris, and 

palmprint modalities. Section 4 details the proposed 

methodology, describing the basic Artificial Bee 

Colony (ABC) algorithm, problem formulation, 

binary feature encoding, fitness function, and the 

employed, onlooker, and scout bee phases. Section 5 

outlines the experimental setup, benchmark 

databases, baseline methods, and evaluation metrics. 

Section 6 discusses comprehensive experimental 

results and performance analysis for multi-

algorithmic and multimodal configurations. Finally, 

Section 7 concludes the paper and outlines directions 

for future research. 

 

II. LITERATURE REVIEW 

 

2.1 Unimodal Biometric Systems 

2.1.1 Fingerprint Recognition System 

Fingerprints consist of distinctive ridge and valley 

patterns formed on the fingertips, which are highly 

individual-specific even among identical twins and 

remain largely invariant over an individual’s lifetime 

[4][8]. Owing to their permanence, uniqueness, and 

ease of acquisition, fingerprint recognition systems 

are extensively deployed in civilian applications, 

forensic investigations, and law enforcement 

environments [4]. 

A typical fingerprint recognition system comprises 

three fundamental stages [4][8]. Preprocessing aims 

to improve fingerprint image quality and includes 

segmentation to isolate the fingerprint region from 

the background, normalization to reduce intensity 

variations, and enhancement techniques to strengthen 

ridge valley contrast. Feature extraction involves 

deriving discriminative representations from the 

processed image, which may be global features (e.g., 

singular points and orientation fields) or local 

features such as minutiae points, including ridge 

endings and bifurcations [4]. Among these, minutiae-

based (Level-2) features are most widely adopted in 

automated fingerprint recognition systems due to 

their strong discriminative capability and robustness 

to common imaging variations [4]. Finally, matching 

is performed by comparing the extracted features 

with stored templates using correlation-based, 

minutiae-based, or ridge-based matching algorithms 

to establish identity or verify a claimed identity [4]. 

 

2.1.2 Iris Recognition System 

The iris is the annular, pigmented structure 

surrounding the pupil and is characterized by highly 

distinctive texture patterns such as furrows, crypts, 

and pigment variations. These patterns are formed 

through random developmental processes during 

early life and remain remarkably stable over time 

[4][8]. Owing to its high degree of uniqueness even 

among identical twins and its strong resistance to 

forgery without significant risk, the iris is considered 

one of the most reliable biometric traits [4]. 

An iris recognition system typically involves three 

key stages [4][8]. Preprocessing focuses on 

accurately localizing the iris region between the pupil 

and the limbic boundary, followed by normalization 

to a fixed-size, dimensionless representation using 

polar coordinate transformation, commonly 

implemented via Daugman’s rubber sheet model. 

Image enhancement techniques are then applied to 

improve contrast and highlight iris texture details [4]. 

Feature extraction captures the rich textural 

information of the iris using phase-based approaches 

such as Gabor or Log-Gabor filters, or alternatively 

through statistical texture descriptors [4]. Finally, 

matching is performed by comparing the generated 

iris codes against enrolled templates using similarity 

measures, most commonly the Hamming distance, to 

determine identity or verify a claimed match [21]. 

 

2.1.3 Palmprint Recognition System 

The palmprint refers to the inner surface of the 

human hand and encompasses a rich set of distinctive 

features, including principal lines, wrinkles, minutiae 

points, and fine-grained texture patterns. Owing to 

this diversity of structural and textural information, 

palmprints provide high discriminative capability and 

are well suited for reliable biometric recognition 

[4][9]. 

A typical palmprint recognition system consists of 

three main stages [4][9]. Preprocessing involves 

binarization and contour extraction to delineate the 

hand region, followed by key point detection using 

tangent-based or bisector-based methods. Based on 

these key points, a stable coordinate system is 

established, enabling consistent extraction of a 

Region of Interest (ROI) from the palmprint image 
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[4]. Feature extraction derives discriminative 

representations from the ROI and may include line-

based features obtained through edge detection of 

principal creases, statistical descriptors such as Gabor 

filters, wavelet coefficients, and Zernike moments, 

appearance-based or subspace methods (e.g., PCA, 

ICA, and LDA), as well as texture-based descriptors 

including Local Binary Patterns (LBP) and Gabor-

based codes [4]. Finally, matching is performed by 

computing similarity scores between extracted 

palmprint features using appropriate distance 

measures or supervised classifiers to determine 

identity or verify a claimed match [4]. 
 

2.2 Limitations of Unimodal Systems 

Despite their widespread adoption and demonstrated 

reliability, unimodal biometric systems are subject to 

several inherent limitations that can adversely affect 

recognition performance and system robustness 

[3][4]. Noisy data may arise from defective sensors 

or unfavorable acquisition conditions, leading to 

degraded feature quality. Intra-class variations occur 

when biometric samples from the same individual 

differ across acquisition sessions due to factors such 

as pose, illumination, or physiological changes. 

Limited distinctiveness is observed in certain 

biometric modalities, where the extracted features 

may not sufficiently discriminate genuine users from 

imposters, particularly in large-scale systems. Non-

universality further constrains unimodal systems, as 

some individuals may be unable to provide a usable 

instance of a specific biometric trait. Additionally, 

unimodal systems are inherently more vulnerable to 

spoofing attacks, as adversaries may exploit the 

reliance on a single biometric characteristic to 

compromise system security [3][4]. 
 

2.3 Multimodal Biometric Systems 

Multimodal biometric systems address the inherent 

limitations of unimodal approaches by integrating 

complementary information from multiple biometric 

sources, thereby enhancing recognition accuracy, 

robustness, and resistance to spoofing attacks [2][3]. 

Information fusion in multimodal systems can be 

performed at several levels [3]. Sensor-level fusion 

combines data acquired from multiple sensors 

capturing the same biometric trait. Feature-level 

fusion integrates feature vectors extracted from 

different modalities or algorithms into a unified 

representation. Match-score-level fusion aggregates 

similarity scores produced by multiple matchers, 

while decision-level fusion combines the final 

accept/reject decisions from individual classifiers. 

Among these fusion strategies, feature-level fusion, 

which is the focus of this work, performs integration 

prior to classification and thus preserves richer 

discriminatory information than score- or decision-

level fusion, often resulting in superior authentication 

performance [3][4]. However, direct concatenation of 

heterogeneous feature vectors leads to very high-

dimensional fused feature spaces, which in turn 

introduces computational and statistical challenges. 

Consequently, effective dimensionality reduction and 

feature selection mechanisms are essential to fully 

exploit the benefits of feature-level fusion in 

multimodal biometric systems [3][4]. 
 

2.4 Feature Selection Approaches 

Feature selection seeks to identify an optimal subset 

of features that maximizes classification performance 

while minimizing the dimensionality of the feature 

space [4]. Based on the manner in which feature 

relevance is evaluated, feature selection techniques 

are broadly classified into three categories [4]. Filter 

methods assess feature importance independently of 

the learning algorithm and are typically employed for 

baseline analysis, particularly in extremely high-

dimensional settings. Wrapper methods evaluate 

candidate feature subsets by using a classifier as a 

black box; although computationally more expensive, 

they generally yield superior performance by 

explicitly accounting for classifier-dependent feature 

interactions. Embedded methods perform feature 

selection as part of the model training process, as 

exemplified by decision tree-based algorithms and 

regularization-based approaches [4]. 

In biometric recognition systems, wrapper-based 

feature selection is often preferred because 

recognition accuracy provides a direct and task-

relevant measure of feature subset quality, enabling 

more effective capture of inter-feature dependencies 

and classifier-specific discriminative characteristics 

[4]. 
 

2.5 Evolutionary Computation in Feature Selection 

Evolutionary computation (EC) algorithms are 

population-based, nature-inspired metaheuristics that 

are particularly well suited for feature selection 
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problems involving large, complex, and non-convex 

search spaces [4]. By iteratively evolving a 

population of candidate solutions, EC methods 

effectively balance exploration and exploitation, 

enabling efficient discovery of near-optimal feature 

subsets. 

Several EC techniques have been widely applied to 

feature selection [4]. Genetic Algorithms (GA) 

simulate biological evolution through chromosome 

encoding, selection, crossover, and mutation 

operations. Particle Swarm Optimization (PSO) is 

inspired by social behavior in bird flocks, where 

particles traverse the solution space guided by their 

personal best and global best positions. Artificial Bee 

Colony (ABC) algorithms emulate honeybee foraging 

behavior through the cooperative actions of 

employed bees (local exploitation), onlooker bees 

(probabilistic selection of promising solutions), and 

scout bees (global exploration and diversification) 

[6]. Cuckoo Search (CS) is motivated by the brood 

parasitism of cuckoo birds and employs Lévy flight 

based random walks to enhance global search 

capability. 

Among these methods, ABC has demonstrated 

competitive or superior performance in multimodal 

biometric feature selection tasks, owing to its simple 

structure, minimal parameter tuning requirements, 

rapid convergence, and strong robustness across 

diverse datasets [5][6][10]. Accordingly, this work 

adopts the basic ABC algorithm based on the original 

formulation by Karaboga and adapts it for discrete 

binary feature subset selection in high-dimensional 

feature-level fusion scenarios. 

 

 
Figure 1: System Architecture 

 

III. SYSTEM ARCHITECTURE 

 

3.1 Overall Multi-Algorithm, Multimodal Framework 

Figure 1 illustrates the proposed multi-algorithm, 

multimodal biometric recognition framework, which 

integrates fingerprint, iris, and palmprint modalities, 

with multiple feature extraction algorithms employed 

for each biometric trait [20]. Biometric images 

corresponding to the three modalities are acquired 

from standard benchmark databases, including 

CASIA, IITD, and FVC. 

For each modality, trait-specific preprocessing is first 

applied, encompassing segmentation, normalization, 

and image enhancement to improve feature quality 

and robustness. Subsequently, multi-algorithm 

feature extraction is performed independently for 

each trait, where multiple complementary feature 

extraction algorithms (e.g., two per modality) are 

employed to capture diverse discriminatory 

characteristics. The resulting feature vectors are then 

combined through feature-level fusion via direct 

concatenation, yielding a high-dimensional fused 

feature vector x ∈ ℝD. 

To address the resulting dimensionality and 

redundancy, an Artificial Bee Colony (ABC)-based 

feature selection mechanism is applied to identify an 

optimal binary subset mask b∗, producing a reduced 

feature representation xb∗ . Finally, the selected 

features are subjected to classification or matching 

using either distance-based measures (e.g., Euclidean 

distance) or supervised classifiers, resulting in a final 

genuine or imposter decision. 
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3.2 Preprocessing and Feature Extraction 

3.2.1 Fingerprint Processing 

Fingerprint processing begins with a sequence of 

preprocessing steps designed to enhance image 

quality and ensure reliable feature extraction [4]. 

Segmentation is first performed to isolate the 

fingerprint region from the background, typically 

using local ridge orientation histograms. 

Normalization follows to standardize pixel intensity 

distributions and reduce illumination variations. 

Enhancement techniques, such as Gabor filtering or 

Fourier-domain filtering, are then applied to 

strengthen ridge valley structures. To facilitate 

reliable minutiae detection, thinning is employed to 

reduce ridge width to a single pixel. Subsequently, 

minutiae extraction identifies ridge endings and 

bifurcations, which constitute Level-2 fingerprint 

features. Finally, post-processing procedures are 

applied to eliminate spurious minutiae using 

structural and statistical constraints, thereby 

improving feature reliability [4]. 

To capture complementary discriminatory 

information, multi-algorithm feature extraction is 

employed for the fingerprint modality [19]. The first 

approach (Algorithm F1) is a minutiae-based method 

that represents each fingerprint using the spatial 

coordinates and orientations of detected minutiae 

points, resulting in a feature vector fF
(1)

∈ ℝdF
(1)

 

where dF
(1)

≈ 48  96[18]. The second approach 

(Algorithm F2) is a texture-based method that 

extracts features such as Gabor-filtered energy 

responses or Local Binary Pattern (LBP) histograms, 

producing a feature vector  fF
(2)

∈ ℝdF
(2)

 where dF
(2)

≈

64 128[18]. 

 

3.2.2 Iris Processing 

Iris processing begins with a set of preprocessing 

operations aimed at accurate localization and 

enhancement of the iris texture [4][8]. Segmentation 

is performed to precisely identify the iris region 

between the pupil and the limbic boundary, typically 

using circular edge detection techniques. To ensure 

invariance to pupil dilation and image scale 

variations, normalization maps the segmented iris 

region to a fixed-size, dimensionless representation in 

polar coordinates, commonly implemented using 

Daugman’s rubber sheet model [4]. Subsequently, 

image enhancement techniques are applied to 

improve contrast and highlight fine textural details 

within the normalized iris image [4]. 

To exploit complementary discriminatory 

information, multi-algorithm feature extraction is 

employed for the iris modality [16]. The first 

approach (Algorithm I1) is a phase-based method that 

utilizes Gabor or Log-Gabor filters to encode local 

phase information into a compact binary iris code, 

resulting in a feature vector fI
(1)

∈ ℝdI
(1)

 where dI
(1)

≈

256  512[7]. The second approach (Algorithm I2) 

extracts texture-based features from the normalized 

iris image using Local Binary Patterns (LBP) or 

statistical descriptors such as mean, variance, and 

energy, producing a feature vector fI
(2)

∈ ℝdI
(2)

 where 

dI
(2)

≈ 128 256[7]. 

 

3.2.3 Palmprint Processing 

Palmprint processing begins with a sequence of 

preprocessing steps designed to ensure accurate 

alignment and reliable feature extraction from the 

hand image [4][9]. Binarization is first applied to 

convert the grayscale image into a binary 

representation using appropriate thresholding 

techniques. This is followed by contour extraction to 

delineate the hand and palm boundaries. Key point 

identification is then performed to detect anatomical 

landmarks such as fingertips and inter-finger valleys, 

commonly using tangent-based approaches. Based on 

these landmarks, a stable coordinate system is 

established to achieve consistent alignment across 

samples. Finally, a central Region of Interest (ROI) 

typically square-shaped is extracted from the palm 

region to serve as the basis for subsequent feature 

extraction [4]. 

To capture complementary structural and textural 

information, multi-algorithm feature extraction is 

employed for the palmprint modality [17]. The first 

method (Algorithm P1) is a line-based approach that 

extracts principal lines and wrinkles using edge 

detection operators such as Canny or Sobel, resulting 

in a feature vector fP
(1)

∈ ℝdP
(1)

 where dP
(1)

≈ 64 

128[7]. The second method (Algorithm P2) is 

texture-based and derives features from the ROI 

using Gabor filter energy responses or competitive 

coding schemes, producing a feature vector fP
(2)

∈

ℝdP
(2)

 where dP
(2)

≈ 128 256[15]. 
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3.3 Feature Level Fusion 

After multi-algorithm feature extraction for each trait, 

feature vectors are concatenated into a single fused 

feature vector [7]: 
 

x = [fF
(1)

 ‖ fF
(2)

 ‖ fI
(1)

 ‖ fI
(2)

 ‖ fP
(1)

 ‖ fP
(2)

] ∈ ℝD, 
 

where ‖  denotes concatenation and D = ∑  d⋅
(⋅) ≈

800  2000 (depending on specific algorithm 

implementations and database characteristics) [14]. 

This high dimensionality necessitates feature 

selection to reduce computational complexity while 

preserving discriminative information. 

 

IV. ARTIFICIAL BEE COLONY BASED 

FEATURE SELECTION 

 

4.1 Problem Formulation 

Feature Selection as Binary Optimization: Given a 

fused feature vector x ∈ ℝD, find a binary selection 

mask 

b = [b1, b2, … , bD], bj ∈ {0,1}, 

such that the selected feature subvector 
 

xb = {xj ∣ bj = 1} 
 

maximizes a fitness function combining recognition 

accuracy and feature subset size [6][7]. 

 

4.2 Fitness Function 

The wrapper-based fitness function evaluates each 

feature subset b by training a classifier on selected 

features and measuring recognition accuracy [4][7]: 

Acc(b) =
Ncorrect(b)

Ntotal

, 

Where Ncorrect(b) is the number of correctly classified 

training samples using features indicated by b, and 

Ntotal is the total number of training samples. Cross-

validation ensures unbiased accuracy estimation [4]. 

To balance accuracy and feature compactness, the 

overall fitness is [6][7]: 

Fit(b) = α ⋅ Acc(b) − β ⋅
∑  D

j=1  bj

D
, 

Where: 

• α ≫ β > 0 (e.g., α = 0.9, β = 0.1)[6]. 

• The first term prioritizes recognition accuracy. 

• The second term penalizes larger feature subsets 

to encourage compactness. 

Higher Fit(b) indicates a better feature subset [6][7]. 

4.3 Basic ABC Algorithm Core (Continuous 

Formulation) 

The original ABC algorithm (Karaboga) is 

formulated for continuous optimization [6]. For 

continuous problems, each candidate solution (food 

source) is represented as xi = [xi1, xi2, … , xiD] . The 

employed bee updates its food source using a 

neighbor-based mechanism [6]: 

vij = xij + ϕij(xij − xkj), 

Where: 

• k ≠ i  is a randomly chosen food source index 

[6]. 

• ϕij ∼ 𝒰(−1,1) is a random number controlling 

neighbor exploration [6]. 

Onlooker bees select food sources with probability 

[6]: 

pi =
Fiti

∑  SN
m=1  Fitm

, 

 

Where SN is the number of food sources (population 

size) [6]. 

Scout bees generate new random solutions for 

abandoned food sources:[6]: 
 

xij
new = xj

min + rj(xj
max − xj

min), rj ∼ 𝒰(0,1), 
 

Where xj
min and xj

max are the lower and upper bounds 

of parameter j[6]. 

 

4.4 Binary ABC Adaptation for Feature Selection 

To adapt ABC for discrete binary feature selection, 

we employ a sigmoid-based transfer function [6][10]: 

4.4.1 Neighbor Generation and Transfer 

For each feature position j in food source i: 

1. Generate continuous intermediate value using the 

neighbor formula [6]: 
 

vij = bij + ϕij(bij − bkj), 
 

where bij, bkj ∈ {0,1} and ϕij ∼ 𝒰(−1,1)[6]. 

2. Apply sigmoid transfer function to map to 

probability [6][10]: 

s(vij) =
1

1 + e−vij
. 

3. Threshold at probability 0.5 to obtain binary 

value [6][10]: 

bij
′ = {

1, s(vij) > 0.5,

0, otherwise.
 



© December 2025 | IJIRT | Volume 12 Issue 7 | ISSN: 2349-6002 

IJIRT 189878 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 7602 

This preserves the neighbor-based exploration 

mechanism of basic ABC while mapping to discrete 

binary values [6][10]. 

 

4.4.2 Greedy Selection 

After generating a new candidate bi
′[6]: 

• Evaluate Fit(bi
′). 

• If Fit(bi
′) > Fit(bi) : accept bi ← bi

′  and reset 

trial counter to 0. 

• Else: reject the new candidate and increment trial 

counter [6]. 

 

4.5 Basic ABC Algorithm Procedure 

Algorithm 1: Binary ABC for Feature Selection 

Input: Training data X with labels y, feature 

dimension D, 

parameters: SN (population size), MaxCycles (max 

iterations), 

limit (abandonment threshold), α, β (fitness weights) 

Output: Optimal feature subset mask b* 

// Initialization 

1. For i = 1 to SN: 

Generate random binary solution b_i ∈ {0,1}^D 

with P(b_ij = 1) = 0.5 

Evaluate Fit(b_i) using cross-validated classifier 

on selected features 

Initialize trial_i = 0 

End For 

Store b* = argmax_i Fit(b_i) // Best solution so far 

// Main Loop 
 

2. For cycle = 1 to MaxCycles: 

  // Employed Bee Phase 

  For each employed bee i = 1 to SN: 

     Randomly select neighbor index k ≠ i 

     For each feature j = 1 to D: 

        Generate φ_ij ~ U(-1, 1) 

        Compute v_ij = b_ij + φ_ij(b_ij - b_kj) 

        Apply sigmoid: s(v_ij) = 1/(1 + exp(-v_ij)) 

        Threshold: b'_ij = (s(v_ij) > 0.5) ? 1 : 0 

     End For 

      

     Evaluate Fit(b'_i) 

     If Fit(b'_i) > Fit(b_i): 

        b_i = b'_i 

        trial_i = 0 

     Else: 

        trial_i = trial_i + 1 

     End If 

      

     If Fit(b_i) > Fit(b*): 

        b* = b_i 

     End If 

  End For  // End Employed Bee Phase 

 

  // Onlooker Bee Phase 

  Compute selection probabilities: p_i = Fit(b_i) / Σ 

Fit(b_m) 

   

  For each onlooker bee: 

     Select index i according to probability distribution 

p 

     Repeat same neighbor generation and greedy 

update as employed phase 

     Update b* if improved 

  End For  // End Onlooker Bee Phase 

 

  // Scout Bee Phase 

  For each food source i = 1 to SN: 

     If trial_i ≥ limit: 

        Generate new random binary solution b_i 

        Evaluate Fit(b_i) 

        trial_i = 0 

        If Fit(b_i) > Fit(b*): 

           b* = b_i 

        End If 

     End If 

  End For  // End Scout Bee Phase 

 

End For // cycle 

3. Return b* 

4.6 Algorithm Parameters and Implementation 

Details 

The principal parameters of the Artificial Bee Colony 

(ABC) algorithm used in this study are summarized 

as follows [6][7]. The population size (SN), which 

corresponds to the number of food sources and 

employed bees, controls the trade-off between 

exploration capability and computational cost; typical 

values range from 20 to 40, and in this work SN=30 

[6][7]. The maximum number of cycles (MaxCycles) 

defines the termination criterion of the algorithm and 

is commonly set between 100 and 200 iterations; 

here, MaxCycles=150 [6][7]. The abandonment limit 

(limit) specifies the maximum number of consecutive 

trials without improvement after which a food source 

is abandoned and the corresponding employed bee 

becomes a scout; values typically lie in the range of 
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10 20, and a value of limit=15 is adopted in this study 

[6][7]. To balance recognition performance and 

subset compactness, the fitness function weights are 

set to α=0.9, emphasizing classification accuracy, and 

β=0.1, imposing a mild penalty on feature subset size 

[7]. 

Feature Subset Evaluation 

For each candidate binary feature subset b, the 

selected classifier (e.g., C4.5 or SMO) is trained 

using only the corresponding features, and its 

classification accuracy is estimated through 5-fold 

cross-validation on the training set. This procedure 

provides a reliable and unbiased assessment of 

feature subset quality for fitness evaluation within the 

ABC framework [4][7]. 

Integration into the Biometric Recognition System 

The proposed ABC-based feature selection is 

integrated into the multimodal biometric system as 

follows [7]. First, training samples are collected for 

all three biometric traits across the selected 

benchmark databases. Multi-algorithm feature 

extraction is then performed for each modality, 

followed by feature-level fusion to generate high-

dimensional training feature vectors 𝑥train. The binary 

ABC algorithm is subsequently applied to the fused 

training data and corresponding labels to identify the 

optimal feature subset mask b∗. Both training and test 

feature vectors are then reduced using this mask, 

yielding 𝑥train,∗ and 𝑥test,𝑏∗. Finally, the chosen 

classifier C4.5, SMO, or a Euclidean distance-based 

matcher is trained on the reduced training features 

and evaluated on the test set. System performance is 

assessed using standard biometric metrics, including 

recognition rate, false acceptance rate (FAR), false 

rejection rate (FRR), and equal error rate (EER) [7]. 

 

V. EXPERIMENTAL SETUP 

 

5.1 Biometric Databases and Multi-System Design 

 

Table 1 summarizes the biometric databases used [7]: 

Trait Database #Subjects #Samples 

Fingerprint 
CASIA 

FP 
1000 8000 

Fingerprint 
FVC 

2002 
110 880 

Iris 
CASIA 

V1.0 
108 1080 

Iris IITD Iris 224 896 

Palmprint 
CASIA 

Palm 
600 7200 

Palmprint 
IITD 

Palm 
235 2350 

 

Multi-Algorithmic Systems: Single-trait systems with 

multiple algorithms per trait (e.g., fingerprint using 

minutiae + texture) [7]. 

Multimodal Systems: Virtual person construction 

where each subject combines samples from different 

trait modalities and/or different databases [7]. For 

example, a virtual Fingerprint+Iris system combines 

one person's fingerprint from CASIA-FP with 

another person's iris from CASIA-Iris, creating 

enlarged virtual person databases [7]. 

 

5.2 Training and Testing Protocols 

A stratified random train test split is adopted, with 

50% of the samples used for training and the 

remaining 50% reserved for testing to ensure 

balanced class representation [7]. During the ABC-

based feature selection process, 5-fold cross-

validation is performed exclusively on the training set 

to estimate the classification accuracy Acc(b) for 

each candidate feature subset, thereby preventing 

information leakage and ensuring unbiased fitness 

evaluation [4][7]. All recognition results are reported 

at a fixed false acceptance rate (FAR) of 0.01, which 

is a commonly used operating point in biometric 

system evaluation [7]. 

 

5.3 Baseline Methods and Classifiers 

To assess the effectiveness of the proposed approach, 

several feature reduction baselines are considered [7]. 

The No Feature Selection (No FS) baseline uses the 

full fused feature vector without dimensionality 

reduction and serves as a lower bound reference. 

Principal Component Analysis (PCA) is employed as 

a classical feature extraction baseline, retaining 80 

90% of the total variance. In addition, a basic ABC 

based feature selection method from the literature is 

included for comparative analysis. 

Performance evaluation is carried out using a diverse 

set of classifiers [7]. A Euclidean distance-based 
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matcher is used as a simple reference baseline. The 

C4.5 decision tree classifier is included due to its 

ability to handle both discrete and continuous 

features. Sequential Minimal Optimization (SMO), 

implementing Support Vector Machines (SVMs), is 

employed for its effectiveness in high-dimensional 

feature spaces. Naive Bayes serves as a probabilistic 

baseline classifier, while Random Forests, as an 

ensemble learning method, are used to assess 

robustness and the ability to capture feature 

interactions. 

 

5.4 Performance Metrics 

System performance is evaluated using standard 

biometric recognition metrics [7]. The Recognition 

Rate (RR) denotes the percentage of test samples 

correctly classified. The False Acceptance Rate 

(FAR) measures the proportion of imposters 

incorrectly accepted, while the False Rejection Rate 

(FRR) quantifies the proportion of genuine users 

incorrectly rejected. The Equal Error Rate (EER) 

corresponds to the operating point where FAR equals 

FRR, with lower EER values indicating superior 

overall system performance. In addition, Receiver 

Operating Characteristic (ROC) curves are plotted to 

analyze the trade-off between FAR and the Genuine 

Acceptance Rate (GAR = 1 − FRR). 

To quantify dimensionality reduction effectiveness, 

the feature reduction percentage is computed as 

Reduction\% = (1 −
∑  bj

D
) × 100. 

where D is the dimensionality of the original fused 

feature vector and bj indicates whether the j-th feature 

is selected [7]. 

Finally, computational efficiency is assessed through 

two metrics [7]. Training time corresponds to the 

offline cost of running the ABC optimization during 

system enrollment, while testing time per sample 

measures the time required to classify an individual 

test sample using the trained model, which is critical 

for real-time biometric deployment. 

 

VI. RESULTS AND DISCUSSION 

 

6.1 Multi-Algorithmic Fingerprint Systems 

Table 2 summarizes the feature dimensionality 

reduction results for the multi-algorithmic fingerprint 

systems under different feature reduction strategies 

[7]. The baseline approach without feature selection 

(No FS) retains the full 512-dimensional fused 

feature vector. Principal Component Analysis (PCA) 

achieves a substantial dimensionality reduction of 

approximately 90%, reducing the feature space to 51 

dimensions. Both the basic ABC method and the 

proposed ABC-based feature selection approach 

reduce the feature dimensionality to 102 features, 

corresponding to an 80% reduction. 

 

Table 2 presents feature dimensionality reduction for 

multi-algorithmic fingerprint systems 

Method 
Initial 

Dim 

Reduced 

Dim 

Reduction 

% 

No FS 512 512 0% 

PCA 512 51 90% 

Basic 

ABC 
512 102 80% 

ABC 

(proposed) 
512 102 80% 

 

Table 3 reports the recognition performance of multi-

algorithmic fingerprint systems using Euclidean 

distance-based matching [7]. For both MA-Finger1 

and MA-Finger2 configurations, the proposed ABC-

based method yields a marked improvement in 

recognition accuracy, achieving rates exceeding 96%, 

compared with approximately 84% for PCA and 

around 81 83% for the No FS baseline. 

 

Table 3 shows recognition accuracy (Euclidean 

distance) for multi-algorithmic fingerprint 

System 
No FS 

(%) 

PCA 

(%) 

ABC 

(%) 

MA-

Finger1 
82.5 84.0 96.5 

MA-

Finger2 
80.8 82.3 96.2 

 

These results demonstrate that, although PCA attains 

a higher level of dimensionality reduction, the ABC-

based feature selection method consistently delivers 

significantly superior recognition performance while 

still achieving substantial feature space reduction. 

This highlights the effectiveness of the proposed 

ABC approach in identifying and retaining highly 

discriminative fingerprint features, thereby enhancing 
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matching accuracy without incurring prohibitive 

dimensionality or computational costs [7]. 

 

Table 4 shows recognition accuracy with supervised 

classifiers (C4.5, SMO) 

 

System 
PCA

+C4.

5 (%) 

ABC+C

4.5 (%) 

PCA+S

MO 

(%) 

ABC+S

MO 

(%) 
MA-

Finger1 
88.2 99.1 87.5 99.2 

MA-

Finger2 
86.9 99.0 86.2 99.1 

 

Table 4 presents the recognition performance of 

multi-algorithmic fingerprint systems using 

supervised classifiers, specifically C4.5 decision trees 

and SMO-based Support Vector Machines (SVMs) 

[7]. When combined with PCA-based dimensionality 

reduction, recognition accuracies range between 

approximately 86% and 88% across both MA-

Finger1 and MA-Finger2 configurations. In contrast, 

the proposed ABC-based feature selection 

consistently achieves near-perfect recognition 

performance, with accuracies of approximately 99% 

for both classifiers and system configurations. 

These results clearly indicate that ABC-selected 

feature subsets are significantly more discriminative 

than PCA-reduced features when used with 

supervised learning models. Unlike PCA, which 

retains features based on variance alone, the ABC-

based wrapper approach explicitly optimizes 

classification performance, enabling it to capture 

complex, non-linear decision boundaries more 

effectively. Consequently, the proposed method 

demonstrates superior suitability for high-accuracy 

fingerprint recognition in multi-algorithmic biometric 

systems [7]. 

 

6.2 Multi-Algorithmic Iris Systems 

Table 5 reports the feature dimensionality reduction 

results for the multi-algorithmic iris systems under 

different feature reduction strategies [7]. Without 

feature selection (No FS), the full 640-dimensional 

fused feature vector is retained. PCA achieves a 90% 

reduction, compressing the feature space to 64 

dimensions, while both the basic ABC method and 

the proposed ABC-based approach reduce the 

dimensionality to 128 features, corresponding to an 

80% reduction. 

The recognition performance using Euclidean 

distance-based matching is presented in Table 6 [7]. 

Across all multi-algorithmic iris configurations (MA-

Iris1 to MA-Iris3), the proposed ABC-based feature 

selection consistently delivers superior performance, 

achieving recognition accuracies of approximately 

97%, compared with 82 84% for PCA and 80 82% 

for the No FS baseline. 
 

Table 5 presents feature dimensionality reduction for 

iris 

Method Initial 

Dim 

Reduced 

Dim 

Reduction 

% 

No FS 640 640 0% 

PCA 640 64 90% 

Basic ABC 640 128 80% 

ABC 

(proposed) 

640 128 80% 

 

Table 6 shows recognition accuracy (Euclidean 

distance) for multi-algorithmic iris 

System No FS (%) PCA (%) ABC (%) 

MA-Iris1 81.5 83.8 97.2 

MA-Iris2 79.9 82.1 96.8 

MA-Iris3 80.2 83.5 97.0 

 

Table 7 summarizes the recognition accuracies 

obtained with supervised classifiers, namely C4.5 and 

SMO (SVM), using PCA- and ABC-reduced feature 

sets [7]. The ABC based method achieves 

consistently high recognition rates in the range of 

99.1% 99.4% across all system configurations and 

classifiers. In contrast, PCA-based dimensionality 

reduction results in substantially lower accuracies, 

typically between 85% and 87%. 
 

Table 7 shows recognition accuracy with supervised 

classifiers 

Syste

m 

PCA+C

4.5 (%) 

ABC+C4

.5 (%) 

PCA+S

MO (%) 

ABC+S

MO (%) 

MA-

Iris1 
86.9 99.3 86.5 99.4 

MA-

Iris2 
85.2 99.2 85.8 99.3 

MA-

Iris3 
85.5 99.1 86.1 99.2 
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Overall, these results demonstrate that ABC-based 

feature selection is highly effective for multi-

algorithmic iris recognition, achieving strong 

discriminative performance with both distance-based 

and supervised classifiers while maintaining 

substantial feature space reduction. The consistently 

high recognition rates indicate that the selected 

feature subsets preserve critical iris texture 

information and enable robust class separation in 

high-dimensional fusion settings [7]. 

 

6.3 Multi-Modal Systems (Fingerprint + Iris + 

Palmprint) 

Table 8 summarizes the feature dimensionality 

reduction results for the three-modal biometric 

system that integrates fingerprint, iris, and palmprint 

modalities [7]. The No FS baseline retains the full 

1792-dimensional fused feature vector. PCA achieves 

a 90% reduction, compressing the feature space to 

180 dimensions, while both the basic ABC method 

and the proposed ABC-based approach reduce the 

dimensionality to 256 features, corresponding to an 

86% reduction. 

The recognition performance using Euclidean 

distance-based matching for the three-modal system 

is reported in Table 9 [7]. For both system 

configurations, the ABC-based feature selection 

method substantially outperforms PCA and the No 

FS baseline, achieving recognition accuracies of 

approximately 97%, compared with 84 86% for PCA 

and 83 85% for the unreduced feature set. 

 

Table 8 presents feature reduction for the 3-modal 

system combining all three traits 

Method 
Initial 

Dim 

Reduced 

Dim 

Reduction 

% 

No FS 1792 1792 0% 

PCA 1792 180 90% 

Basic 

ABC 
1792 256 86% 

ABC 

(This 

Work) 

1792 256 86% 

 

 

 

Table 9 shows recognition accuracy (Euclidean 

distance) for 3-modal systems 

System 

Configuration 

No 

FS 

(%) 

PCA 

(%) 

ABC 

(%) 

MM-

Finger+Iris+Palm1 
84.5 85.9 97.1 

MM-

Finger+Iris+Palm2 
83.2 84.5 96.8 

 

Table 10 presents the recognition accuracies obtained 

with supervised classifiers, specifically C4.5 and 

SMO (SVM), using PCA- and ABC-reduced feature 

representations [7]. The proposed ABC-based 

approach consistently attains recognition rates in the 

range of 99.0% 99.4% across all multimodal 

configurations and classifiers. In contrast, PCA-based 

dimensionality reduction yields accuracies below 

88%, underscoring its limited ability to preserve 

class-discriminative information in highly fused 

multimodal feature spaces. 

 

Table 10 shows recognition accuracy with supervised 

classifiers 

System 

Configur

ation 

PCA

+C4.

5 

(%) 

ABC

+C4.

5 

(%) 

PCA

+SM

O 

(%) 

ABC

+SM

O 

(%) 

MM-

Finger+I

ris+Palm

1 

87.5 99.2 87.1 99.4 

MM-

Finger+I

ris+Palm

2 

86.8 99.0 86.5 99.3 

 

These results confirm that the proposed ABC-based 

feature selection effectively identifies complementary 

and discriminative features across multiple biometric 

traits, enabling robust and highly accurate recognition 

in multimodal systems while maintaining substantial 

dimensionality reduction. The consistently high 

performance across both distance-based and 

supervised classifiers highlights the scalability and 

effectiveness of the proposed approach for large-

scale multimodal biometric authentication [7]. 
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6.4 Feature Reduction Summary 

Table 11 provides a consolidated overview of feature 

dimensionality reduction achieved across all 

evaluated biometric system configurations [7]. For 

multi-algorithmic unimodal systems, PCA 

consistently reduces the feature space by 

approximately 88% 90%, while the proposed ABC-

based feature selection achieves reductions in the 

range of 80% 82%. In multimodal configurations, 

PCA attains feature reductions of around 87% 90%, 

whereas ABC reduces dimensionality by 

approximately 84% for two-modal systems and 86% 

for the three-modal system. 

 

Table 11 consolidates feature reduction across all 

systems 

System 

Type 

Initial 

Dim 

PCA 

Reduction 

ABC 

Reduction 

Multi-Algo 

Finger 
512 90% 80% 

Multi-Algo 

Iris 
640 90% 80% 

Multi-Algo 

Palm 
768 88% 82% 

2-Modal 

(Any Pair) 

1152 

1280 
87% 84% 

3-Modal 

(All Traits) 
1792 90% 86% 

 

Several important observations can be drawn from 

these results [7]. First, ABC-based feature selection 

consistently achieves substantial dimensionality 

reduction (80% 86%) across all unimodal, multi-

algorithmic, and multimodal systems. Second, 

although PCA yields slightly higher dimensionality 

reduction, this advantage comes at the cost of 

significantly degraded recognition performance, as 

demonstrated in the preceding sections. Finally, the 

proposed ABC-based approach offers a more 

favorable accuracy efficiency trade-off, combining 

moderate feature space reduction with consistently 

superior recognition accuracy in the range of 97% 

99.4%. 

Overall, these findings confirm that wrapper-based 

ABC feature selection is more effective than 

variance-based PCA for high-dimensional feature-

level fusion in biometric systems, particularly when 

recognition accuracy is the primary performance 

objective [7]. 

 

6.5 Computation Time Analysis 

Table 12 compares the computational costs of 

different feature reduction strategies in terms of 

training time and testing time per sample [7]. The No 

FS baseline requires approximately 5 minutes of 

training and incurs a testing time of 15 ms per 

sample. PCA significantly reduces the training time 

to about 2 minutes and lowers the testing time to 8 

ms per sample. In contrast, the proposed ABC-based 

feature selection requires a substantially longer 

training time of approximately 45 minutes, reflecting 

the iterative nature of the evolutionary optimization 

process. 

Table 12 compares computation times 

Method 
Training 

Time (min) 

Test Time per 

Sample (ms) 

No FS 
5 min 

(baseline) 
15 ms 

PCA 2 min 8 ms 

ABC 45 min 5 ms 

 

Despite its higher training cost, the ABC-based 

approach achieves the lowest testing time, requiring 

only 5 ms per sample, owing to the substantial 

reduction in feature dimensionality. This reduction 

directly translates into faster classification during 

system operation. From a practical standpoint, testing 

time is the critical performance factor in real-world 

biometric applications such as access control, 

automated border control, and large-scale identity 

verification, where rapid response is essential. 

Importantly, the increased training time associated 

with ABC-based feature selection is incurred only 

once during the offline enrollment phase, making it 

acceptable in practical deployments. The resulting 

reduction in testing time enables efficient real-time 

authentication, highlighting a favorable trade-off 

between offline optimization cost and online system 

performance. These results demonstrate that the 

proposed ABC-based approach is well suited for 

operational biometric systems where accuracy and 

real-time responsiveness are paramount [7]. 
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VII. CONCLUSION AND FUTURE WORK 

 

7.1 Conclusions 

This work presented a comprehensive multi-

algorithm, multimodal biometric person 

authentication framework that employs a basic 

Artificial Bee Colony (ABC) based feature selection 

strategy at the feature-level fusion stage [6][7]. By 

jointly exploiting multiple biometric traits and 

complementary feature representations, the proposed 

approach effectively addresses the inherent 

limitations of unimodal biometric systems. 

 

The major contributions and findings of this study 

can be summarized as follows: 

1. Multimodal, multi-algorithm system design: A 

robust authentication framework integrating 

fingerprint, iris, and palmprint modalities was 

developed, with multiple feature extraction 

algorithms applied to each trait to enhance 

complementary discriminatory information. 

2. Binary ABC-based feature selection: The basic 

ABC algorithm was successfully adapted for 

discrete binary feature subset optimization 

using a sigmoid-based transfer function and 

greedy selection, while preserving the core 

neighborhood-based exploration and 

exploitation mechanisms of the original 

formulation [6][7]. 

3. Wrapper-based fitness formulation: A 

classifier-driven fitness function was designed 

to jointly optimize recognition accuracy and 

feature subset compactness, ensuring that 

selected features are directly aligned with 

classification performance. 

4. Extensive experimental validation: The 

proposed method was evaluated on standard 

benchmark databases (CASIA, IITD, and FVC) 

using both distance-based matching (Euclidean 

distance) and multiple supervised classifiers 

(C4.5, SMO, Naive Bayes, and Random 

Forest), consistently outperforming PCA-based 

and baseline feature reduction approaches. 

5. Strong performance outcomes: 

• Recognition accuracies of 96.5% 97.5% using 

Euclidean distance and 99.0% 99.4% using 

supervised classifiers were achieved. 

• Feature space reduction of 80% 86% was 

consistently obtained across unimodal, multi-

algorithmic, and multimodal systems. 

• Testing time of approximately 5 ms per sample 

enables real-time authentication. 

• The proposed ABC-based approach 

demonstrates a superior accuracy efficiency 

trade-off compared with variance-based PCA 

and unreduced feature sets. 

• Practical relevance: The proposed framework 

and ABC-based optimization procedure are well 

suited for deployment in large-scale biometric 

authentication systems, where high recognition 

accuracy, computational efficiency, and real-

time responsiveness are critical requirements. 

Overall, the results confirm that wrapper-based ABC 

feature selection is highly effective for managing 

high-dimensional feature-level fusion in multimodal 

biometric systems, yielding both high recognition 

performance and practical computational efficiency. 

 

7.2 Future Work 

Several promising directions can be explored to 

further enhance the proposed framework: 

• Advanced ABC variants: Investigating improved 

ABC formulations with enhanced exploration 

and convergence behavior, such as Θ-ABC or 

hybrid ABC-based models. 

• Deep learning integration: Incorporating CNN-

based or transformer-based feature extraction 

with ABC-driven feature selection for end-to-end 

multimodal learning. 

• Presentation attack detection: Extending the 

framework to incorporate liveness detection and 

spoof resistance at the feature or fusion level. 

• Additional biometric traits: Expanding the 

multimodal architecture to include face, voice, 

vein, or gait biometrics. 

• Cancelable biometrics: Developing revocable 

and renewable feature representations to enhance 

template security and resilience against 

compromise. 

• Large-scale deployment: Evaluating scalability 

on large, real-world biometric datasets involving 

millions of users. 

• Privacy-preserving authentication: Integrating 

secure computation techniques, such as 

homomorphic encryption or secure multi-party 
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computation, to enable privacy-aware biometric 

matching. 

REFERENCES 

 

[1] Jain, A. K., Ross, A., & Prabhakar, S. (2004). 

An introduction to biometric recognition. 

IEEE Transactions on Circuits and Systems 

for Video Technology, 14(1), 4 20. 

https://doi.org/10.1109/TCSVT.2003.818745 

[2] Ross, A., Nandakumar, K., & Jain, A. K. 

(2006). Handbook of multibiometrics. 

Springer-Verlag. https://doi.org/10.1007/0-

387-33123-9 

[3] Kumari, P. A. (2020). Design and 

development of efficient feature selection 

mechanisms at feature level fusion in 

multimodal biometric systems for person 

identification.  

[4] Daugman, J. (1993). High confidence 

personal identification based on rapid video 

analysis of iris texture. In Proceedings of the 

IEEE International Carnahan Conference on 

Security Technology (Vol. 27, pp. 50 60). 

IEEE. 

https://doi.org/10.1109/CCST.1993.320159 

[5] Karaboga, D., & Basturk, B. (2007). A 

powerful and efficient algorithm for 

numerical function optimization: Artificial 

bee colony (ABC) algorithm. Journal of 

Global Optimization, 39(3), 459 471. 

https://doi.org/10.1007/s10898-007-9149-x 

[6] Karaboga, D., & Guvenc, U. (2009). A novel 

meta-heuristic algorithm: Artificial bee 

colony (ABC). In Proceedings of the World 

Congress on Nature and Biologically Inspired 

Computing (NaBIC) (pp. 1 5). IEEE. 

https://doi.org/10.1109/NABIC.2009.539334

7 

[7] Aruna Kumari, P., & Jaya Suma, G. (2018). 

Artificial bee colony-based feature selection 

for multimodal biometric systems. In IEEE 

Proceedings of International Conference on 

Advances in Computing, Control and 

Networking (ACCNET) (pp. 1 8). 

[8] Bowyer, K. W., Hollingsworth, K., & Flynn, 

P. J. (2008). Image understanding for iris 

biometrics: A survey. Computer Vision and 

Image Understanding, 110(2), 281 307. 

https://doi.org/10.1016/j.cviu.2007.08.004 

[9] Zhang, D., Kong, W. K., You, J., & Wong, 

M. (2003). Online palmprint identification. 

IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 25(9), 1041 1050. 

https://doi.org/10.1109/TPAMI.2003.122798

1 

[10] Dutta, P., Sharma, A., & Shukla, K. K. 

(2012). ABC for image clustering. Journal of 

Digital Imaging, 25(4), 505 516. 

https://doi.org/10.1007/s10278-011-9436-4 

[11] Yang, X. S., and Deb, S., “Cuckoo search via 

Lévy flights,” in Proc. World Congress 

Nature Biologically Inspired Computing, 

2009, pp. 210 214. 

[12] Guyon, I., and Elisseeff, A., “An introduction 

to variable and feature selection,” Journal of 

Machine Learning Research, vol. 3, pp. 1157 

1182, 2003. 

[13] Saeys, Y., Inza, I., and Larrañaga, P., “A 

review of feature selection techniques in 

bioinformatics,” Bioinformatics, vol. 23, no. 

19, pp. 2507 2517, 2007. 

[14] Kennedy, J., and Eberhart, R. C., “Particle 

swarm optimization,” in Proc. IEEE 

International Conference on Neural 

Networks, 1995, pp. 1942 1948. 

[15] Karaboga, D., and Basturk, B., “A powerful 

and efficient algorithm for numerical function 

optimization: Artificial bee colony (ABC) 

algorithm,” Journal of Global Optimization, 

vol. 39, no. 3, pp. 459 471, 2007. 

[16] Holland, J. H., Adaptation in Natural and 

Artificial Systems. Ann Arbor: University of 

Michigan Press, 1975. 

[17] Quinlan, J. R., “C4.5: Programs for machine 

learning,” Morgan Kaufmann, 1993. 

[18] Platt, J., “Sequential minimal optimization: A 

fast algorithm for training support vector 

machines,” Microsoft Research Technical 

Report, 1998. 

[19] Mantegna, R. N., “Fast, accurate algorithm 

for numerical simulation of Lévy stable 

stochastic processes,” Physical Review E, 

vol. 49, no. 5, pp. 4677 4683, 1994. 

[20] Tuba, M., Subotic, M., and Stanarevic, N., 

“Improved cuckoo search algorithm for 

numerical optimization,” in Proc. 11th 

International Symposium on Intelligent 

Systems and Informatics, 2013, pp. 373 378. 

[21] Khan, K., Nikov, A., and Sahai, A., “A fuzzy 

Bayesian network for risk mapping of dengue 

transmission,” Expert Systems with 

Applications, vol. 36, no. 3, pp. 7941 7952, 

2009. 

[22] Dr. P. Aruna Kumari, “A Robust Multi-

Modal Biometric Recognition System Using 

Iris, Fingerprint and Palmprint based on 

Cuckoo Search Algorithm”, International 



© December 2025 | IJIRT | Volume 12 Issue 7 | ISSN: 2349-6002 

IJIRT 189878 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 7610 

Journal of Latest Technology in Engineering, 

Management & Applied Science, Volume 

XIV, Issue X, pp. 1380-1380, 2025. 

[23] Dr. P. Aruna Kumari, Dr. G. Jaya Suma, 

“Novel Framework for Multi-modal 

Biometric Recognition System Using 

Fingerprint and Palmprint”, International 

Journal of Food and Nutritional Sciences, 

Vol. 11, no. 7, pp. 4262-4280, 2022. 

[24] P. Aruna Kumari, G. Jaya Suma, “Designing 

Efficient Feature Space Reduction Schemes 

for Multi-Algorithmic Iris Recognition 

System based on Feature Level Fusion of 

Texture and Phase Features”, International 

Journal of Recent Technology 


