

A Blockchain-Based Secure and Transparent Digital Identity Management System

Rajavi Mhatre¹, Riddhi Mhatre²

¹Assistant Professor, Sonopant Dandekar Arts, V.S. Apte Commerce and M.H. Mehta Science College

²Student, Sonopant Dandekar Arts, V.S. Apte Commerce and M.H. Mehta Science College

Abstract— Digital identity systems play a crucial role in contemporary digital services such as governance, banking, healthcare, and online platforms. Conventional centralized identity management systems are prone to data breaches, unauthorized access, and the misuse of personal information. This paper introduces a secure and transparent digital identity management system based on blockchain technology, which facilitates decentralized storage, user-controlled access, and verification that resists tampering. The suggested model enhances trust, privacy, and security by utilizing the immutability of blockchain and cryptographic authentication techniques.

Index Terms— Blockchain, Digital Identity, Decentralization, Privacy, Security, Smart Contracts

I. INTRODUCTION

A digital identity is essential for utilizing online services and digital environments. Traditional identity systems depend on centralized databases that are managed by service providers or governing bodies. These systems are prone to security issues, exhibit a lack of transparency, and offer minimal control for users. The frequent exchange of sensitive personal information heightens the risk of identity theft. Blockchain technology presents a decentralized and unchangeable framework that can tackle these problems by facilitating secure, verifiable, and user-focused identity management.

II. LITERATURE REVIEW

Blockchain-oriented identity solutions have drawn interest with ideas like self-sovereign identity (SSI) and decentralized identifiers (DIDs). These methods focus on enabling users to have control over their identity information. Prior research indicates that

blockchain technology can improve accountability and decrease fraud; however, issues such as scalability, interoperability, and adherence to regulations still pose significant challenges. This paper extends previous research by suggesting a universal framework designed for managing digital identities across multiple domains.

III. SYSTEM ARCHITECTURE

Blockchain-driven identity solutions have garnered interest due to ideas like self-sovereign identity (SSI) and decentralized identifiers (DIDs). These methods highlight the importance of user control over identity information. Prior studies indicate that blockchain technology can improve audit capabilities and decrease the likelihood of fraud, yet issues regarding scalability, interoperability, and regulatory adherence still pose significant challenges. This paper expands on prior research by suggesting a generalized framework designed for multi-domain digital identity management.

IV. METHODOLOGY

The framework employs a systematic approach that entails user identity registration, verification, authentication, and access management. In the registration process, users create cryptographic key pairs along with decentralized identifiers. Authorized entities confirm identity attributes and provide verifiable credentials that are anchored on the blockchain. Digital signatures are utilized for authentication, allowing secure access without the need for passwords.

V. IMPLEMENTTIONS

The suggested system can be deployed on blockchain platforms like Ethereum that have smart contract capabilities. Solidity is utilized to create smart contracts for identity management, and off-chain storage options like IPFS are used to keep encrypted identity information. User interfaces can be developed as mobile or web applications that work in conjunction with cryptographic wallets.

VI. SECURITY ANALYSIS

The blockchain-based strategy reduces typical risks including unauthorized access, impersonation, and data manipulation.

While cryptographic authentication guards against credential forging, immutability guarantees the integrity of identity records.

Only hashed references, not raw personal data, are stored on-chain to protect privacy.

VII. DISCUSSION

Decentralized identity management lessens dependency on centralized authorities while increasing transparency and user trust.

Large-scale real-world deployment requires addressing issues including transaction costs, scalability, and legal acceptance.

VIII. CONCLUSION AND FUTURE SCOPE

A blockchain-based system for managing digital identities that enhances security, privacy, and transparency is presented in this study.

Biometric integration, cross-chain interoperability, regulatory compliance systems, and performance optimization are examples of future improvements.

REFERENCES

- [1] S. Nakamoto, 'Bitcoin: A Peer-to-Peer Electronic Cash System,' 2008.
- [2] Tobin and D. Reed, 'The Inevitable Rise of Self-Sovereign Identity,' 2017.
- [3] W3C, 'Decentralized Identifiers (DIDs) v1.0,' 2022.