

# A Comprehensive Review of Nephelometry and Turbidimetry in Environmental Monitoring and Industrial Process control

Vijaya Durga Dumpala<sup>1</sup>, J. Rohith<sup>2</sup>, Prasanna Deshaboina<sup>3</sup>, G. Uday Chandra<sup>4</sup>, Varun Kumar<sup>5</sup>

<sup>1</sup>Assistant Professor, Department of Pharmaceutical Analysis, Gokaraju Rangaraju College of Pharmacy, Bachupally, Hyderabad, Telangana 500090

<sup>2,3,4,5</sup>Gokaraju Rangaraju College of Pharmacy, Bachupally, Hyderabad, Telangana 500090

**Abstract**—Turbidimetric and nephelometric methods of analysis are based upon phenomenon whereby light passing through a medium with dispersed particles of a different refractive index than the medium is attenuated in intensity by scattering. Both of these techniques are so closely related that they can be very easily discussed together. When a turbid solution i.e., a suspension of solid particles in a liquid is brought into the light path of a photometer less radiant power reaches the photo detector than if the clear (non-absorbing) liquid were in the light path. This reduction results from the scattering of light due to refraction on and refraction by the suspended particles. Since the light is scattered in all directions, consequently the radiant power of the beam directed towards the detector is reduced and as a consequence the mixture has a cloudy or turbid appearance. If other variables are held constant, the extent of this loss in radiant power can be related to the weight concentration of the particles responsible for the scattering. Thus, turbidimetric analysis is based upon the measurement of the decrease in power of a collimated beam as a result of scattering. The turbidimetric measurements can be performed in the same manner as a photometric measurement and the results can be expressed in absorbance unit.

**Index Terms**—Nephelometry, Turbidometry, Turbidity measurement, Light scattering, Absorbance, Photometric analysis, Calibration curve, Formazin standard.

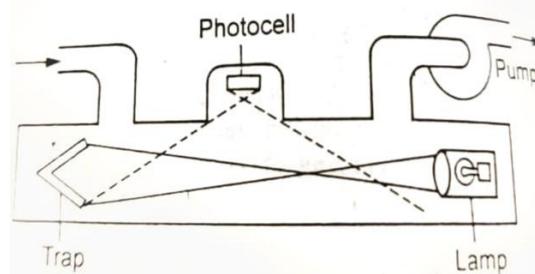
## I. INTRODUCTION

Turbidity is an expression of the optical property of a sample that causes radiation to be scattered and absorbed rather than transmitted in straight lines through the sample. Scattering is elastic so that both incident and scattered radiation have the same

wavelength. (Turbidity is caused by the presence of suspended matter in a liquid. /A scattering centre is actually an optical inhomogeneity in an otherwise homogeneous medium. An atom, molecule, thermal density fluctuation, colloidal particle, or suspended solid can produce an optical inhomogeneity that results in scattering of radiation. The intensity of the perpendicularly polarized component of scattered radiation and the parallel component is a function of the relative refractive index, the size parameter, and the angle of observation (relative to the incident radiation), as well as the concentration of scattered. When there is no molecular absorption in the sample, the refractive index is the conventional value. The size parameter ( $a = 2tr/2$ ) involves the radius of the scattering centre and the wavelength of the incident radiation. This ratio determines the phase distribution of the scattered radiation around the scattering centre. The phase distribution shapes the scattering envelope and determines the resulting angular distribution of the scattered radiation. When the size parameter is smaller than one-tenth the wavelength of the incident radiation and the refractive index of the particle is not greatly different from that of the surrounding medium, the scattering envelope is symmetrical and is called Rayleigh scattering. As the size parameter becomes approximately one-fourth the wavelength of the incident radiation, scattering is concentrated in the forward direction. Ultimately, for particles larger than the wavelength of incident radiation, the radiation intensity scattered by the particle depends in a very complicated manner on the angle of scattering, but a large amount is scattered in the forward direction. This is known as Mie scattering. For very large particles,

there is no wavelength dependence. Light-scattering theory is complicated by other sample parameters such as particle shape, molecular absorption, sample concentration, and size distribution of scatterers. Consequently, the relationship between any measurable indication of scattered radiation intensity and concentration of scatterer is not simple. Analytical determinations must be empirical. In fact, differences in the physical design of an instrument cause differences in the measured values for turbidity, even though the same calibration material was used for each instrument.

There are two methods for measuring the turbidity of a sample, turbidimetry and nephelometry. A turbidimeter measures the amount of radiation that passes through a sample in the forward direction, analogous to absorption spectrophotometry. A nephelometer measures the amount of radiation scattered by a turbid sample. These measurements are made at an angle to the direction of the beam of radiation through the sample, usually  $45^\circ$  or  $90^\circ$ , analogous to fluorometry.


Overview of Nephelometry and Turbidometry and its importance in Analytical Chemistry.

The turbidity may be due to a single chemical species, or it may be due to a combination of several components. For example, silica can be determined in approximate concentration range of 0.1-150 ppm SiO<sub>2</sub>. Composite turbidities are sometimes expressed as equivalent to silica.

The nephelometric methods permit the determination of sulphate by conversion to barium sulphate under conditions which lead to a colloidal suspension. This suspension can be obtained by shaking a dilute solution of the sulphate containing NaCl with excess of solid barium chloride. In order to get constant results all, the variable must be properly controlled. Thus, the quantity and grain size of the crystalline barium chloride and the efficiency and duration of stirring must be uniform for sample and standards.

Other important uses of these techniques are the determination of carbonate as BaCO<sub>3</sub>, chloride as AgCl, fluoride as a CaF<sub>2</sub>, cyanide at AgCN, calcium as oxalate and zinc as Ferro cyanide. The turbidimetric and nephelometric methods are more precise and sensitive than colorimetric methods. For example, phosphorous can be detected at a concentration of 1 part in more than 300 million parts of water as a precipitate with a strych-nine-molybdate reagent.

Similarly, ammonia in 160 million parts of water can be detected by adding Nessler's reagent. Tur-bidi metric methods have also been used for determining end point in precipitation re-actions. The apparatus can be very simple, consisting of a light source, and a photocell placed on opposite sides of the titration vessel. Turbidimetric titrations are of particular interest because no general types of chemical indicators have been developed for precipitation titrations as has been done in case of neutralisation and oxidation-reduction reactions. Among the various applications which have been developed are the titration of SO<sub>4</sub><sup>2-</sup> as BaSO<sub>4</sub>, Ag as AgCl, Ca as CaC<sub>2</sub>, O<sub>2</sub> as CaF<sub>2</sub> etc.



Nephelometry Analyser for Atmospheric Particulates

#### Principles of Nephelometry and Turbidometry

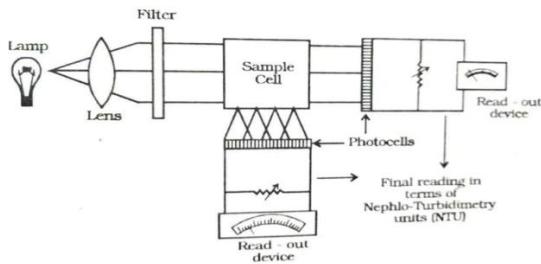
If light is passed through a cell containing suspended particles, radiation can be observed at all angles. Thus, light is scattered in all directions when it is allowed to pass through a transparent medium containing a particulate second phase and phenomenon is known as scattering. As a consequence of scattering, the mixture has a cloudy or turbid appearance.

The incident light  $P_0$  impinges upon the sample, resulting in a transmitted intensity  $P_t$  and a scattered intensity  $P_s$ . The amount of scattering depends upon the number of particles in the suspension, the size of the particles and the path length. The variation of scattering  $\log[P_t/P_s]$  with concentration  $c$  and path length  $b$  can be expressed as,

$k$  is known as turbidity constant and depends upon size and shape of the particles.

The relation between scattered radiation  $P_s$  and concentration  $c$  can be expressed as,

where  $k'$  is a constant which depends upon the system. The term scattering, as applied to the interaction of radiant energy with matter and covers a variety of phenomena. Scattering generally implies a more or


less random change in the direction of propagation and the mechanism involved mainly depends upon the wavelength of radiation, size and shape of particles which are responsible for scattering.

It is convenient to distinguish scattering without change in frequency, including Rayleigh scattering (in which the particles are small compared to the wavelength, Tyndall scattering (for larger particles) and scattering due to shift in frequency (Raman effect).

## II. INSTRUMENTATION

Usual type of photoelectric colorimeter can be used for turbidimetric analysis. The sample holder allows large size cuvettes or cells to accommodate in instruments. Ordinary electric bulb or a light source of 6 volts or 6-watt bulb can be used in the Instrumental phototube or Barrier layer cell can be employed as a detector. A line diagram of simple type of turbidimeter is shown in this diagram nephelometer is designed on the Tyndall effect.

Turbidimeter is shown in this diagram nephelometer is designed on the Tyndall effect an instrument, suitable source of light (6-8 volts tungsten lamp is focused by lens and/or prism on scattered light at 90° to the path of incident light Is collected on a photocell? The side of test tube or cuvettes containing a sample solution under test the current so produced is amplified and supplied to an indicator meter graduated from 0-100 divisions. The meter is also calibrated with corresponding standard solutions in Nephelometry-Turbidimetric Units (NTU) of sulphate or phosphate standards; The calibration is done from 0-40 or 50 divisions on meter with respect to NTU. The sensitivity of meter is adjusted to fine or coarse in various ranges from 04-100 NTU.



Schematic Diagram of Nephloturbidimeter

The components of Nephlo-Turbidimeter are:

Source of light: Tungsten lamp is used when a polychromatic light is used. Mercury arc lamp is used

when monochromatic light is required. This is to avoid any light absorption since we need only scattering of light.

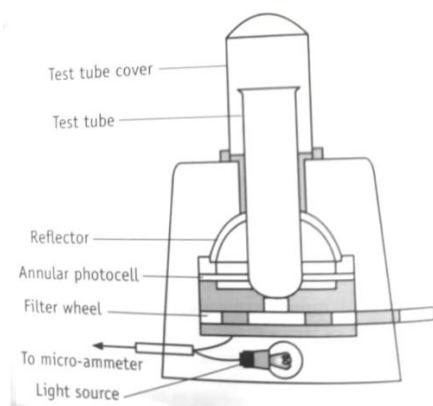
Filters and monochromators: When a white light or polychromatic light is used, filters and monochromators are not required. However, when monochromatic light is required, a filter or monochromator is used. In a turbidimeter, a blue filter or 530 nm is used. In a nephelometer, the visible filter is applied as a secondary filter.

Sample cells: Diverse shapes of sample cells are used in Nephelometry and Turbidimetry. They may be cylindrical (like an ordinary small test tube) with Lem path length, rectangular cells are also used, but the cell walls may be coated with black to avoid any reflection that may affect detector response. Specialized cells are also used to measure scattered light at different angles like 45°, 90°, 135° and 180°. The cells are made up of glass.

Detectors: Photometric detectors like Photovoltaic cells, Photo-tubes, or Photomultiplier tubes are used. In Turbidimeters, Photovoltaic cells or Phototubes are used. In Nephelometers, as the scattered radiation is weak, Photomultiplier tubes are used.

## III. METHODOLOGY

Source is started on and an appropriate filter (in case of filter type instrument) is inserted in the instrument. With pure solvent or distilled water zero setting is adjusted to '0\*' of galvanometer. With the standard turbidity or highest expected turbid solution, instrument is set to 100 divisions) Various solutions/suspensions of intermediate turbidity are put in the sample tubes and readings recorded. A calibration graph is drawn for the various concentrations of turbid solutions. Now a sample of unknown or test is inserted in the instrument and turbidity reading is recorded.


Turbidimetric titrations can be carried out in a manner similar to photometric titrations. A sample solution which forms a finely colloidal type of precipitate on addition of titrant (reagent) can be analysed. In the titration, sample material is taken in cell (50-100 ml capacity having stirring mechanism) and regular volume of titrant is added by using micro burette. A graph of absorbance is plotted against the volume of

titrant added. This holds true only if the number of particles increase linearly to the end point. Takes place and size and shape of particles remain same throughout. In practice, however, it is emission added to those previously formed giving distortion of lines found that the added reagent may simultaneously form some new particles or get may rang emission chloride as  $\text{AgCl}$ , calcium as calcium oxalate, zinc as ferricyanide, Instrumentation Specific instruments are available for use as Nephelometer or as Turbidimeter. They are also available in combination as Nephelo-Turbidimeter.

#### IV. DIFFERENT TYPES OF INSTRUMENTS

**Nephelometer:** The Nephelometer is simple, inexpensive, and easy to operatable nephelometric instruments. It has reasonable precision and accuracy. The Nephelometer consists of a tungsten lamp as a source of light at the bottom, and the sample cell is placed on top of the source. Light passing through filter falls on suspended particles. These particles scatter the light. The light scattered by the particles is collected by a reflector (curved mirror) and reflected the Photovoltaic cell.

**Nephelo-turbidimeter:** Several instruments have been developed and designed jointly for nephelometry. (Nephelo-turbidimeter). These Nephelo-turbidimeters have two detectors, one for measuring the scattered light at  $90^\circ$  (Nephelometer) and the other at  $180^\circ$  (Turbidimeter) for measuring the transmitted light. The ratio of the response of the two detectors is displayed as Nephelo Turbidimetric units (NTU), which is proportional to the turbidity of the sample.



Schematic Diagram of a Typical Nephelometer

#### Applications

Applications of nephelometry and turbidimetry are widely varied in analysis. Some determinations involve systems which are turbid prior to entering the analytical laboratory (e.g. determination of suspended material in river water). Some systems require that the turbidity be developed in the laboratory by adding suitable chemical reagents. Some applications involve titrations, with the nephelometric or turbidimetric measurements being used to construct titration curves for the detection of end point. Certain measurements of scattered light intensity give information regarding size, shape and uniformity of the scattering particles. Light scattering is so highly dependent on the size of scattering particles that conditions must be rigidly standardised to permit valid comparisons between unknown and standards. If such precision are scattering can be of great importance for variety of analytical applications and a great sensitivity and adequate precision may be achieved. For example, phosphate can be detected at a concentration of 1 part in more than 300 million parts of water as a precipitate with a strychnine-molybdate reagent. One part of ammonia in 160 million parts of water can be detected by using Nessler's reagent, a mercuric chloride complex. Sulphur can be determined by conversion to sulphate and precipitation as  $\text{BaSO}_4$ , under conditions which lead to a colloidal suspension. Scattering has also been used to determine the weight average molecular weight of a polymer in solution, as proposed by Debye.

Nepheloturbidometry is a valuable analytical technique widely used in various fields. It is employed for the determination of ions such as sulphate, chloride, carbonate, magnesium, and calcium. In the pharmaceutical industry, it plays a significant role in detecting impurities in pharmaceutical substances. It is also used to determine the growth of bacteria in culture and nutrient media, as well as to monitor the growth of microorganisms in vitamin and antibiotic assays. Additionally, nepheloturbidometry is utilized to measure the presence of particles or solids in aerosols, injections, and other liquid preparations. In the soap and detergent industry, it helps in determining the cloud point, while in water treatment and sewage tanks, it is useful for analysing sediment and suspended particles. Moreover, this technique finds applications in several other industries such as paper and pulp manufacturing, beverages, oil refineries,

petroleum, and dye industries, where accurate measurement of turbidity and particulate matter is essential. Applications of Nepheloturbidimetry.

#### Environmental Monitoring of Nephelometry and turbidimetry

Mainly used in to access the water quality and pollution levels by measuring the turbidity (cloudiness) caused by suspended particles

Water Quality testing: Measures turbidity of natural and drinking water. High turbidity indicates contamination with silt, clay, or organic matter.

Wastewater analysis: Determines the level of suspended solids in sewage and effluents before and after treatment.

River and Lake pollution: monitor sediment load and algal blooms, reflecting pollution from industrial discharge or soil

Industrial Process of Nephelometry and turbidometry

Pharmaceutical Industry: Checking clarity injections and infusions. Monitoring suspensions, emulsions, and colloids. Evaluate stability of formulations.

Food and Beverage Industry: Ensuring clarity beer, wine, juices and soft drinks. Detecting suspended impurities or yeast contamination, Monitoring filtrate efficiency.

Chemical and petrochemical industry: Measuring particle dispersion in emulsions or polymers. Controlling reaction processes involving precipitates. Testing cooling water clarity.

#### V. ADVANTAGES

Nepheloturbidimetry is widely used in various analytical determinations. In the analysis of water, it helps in assessing clarity and determining the concentration of different ions by adding selective precipitants. For the determination of carbon dioxide, the gas sample is passed through a barium salt solution, where it forms a precipitate of barium carbonate, and the resulting turbidity is measured nepheloturbidimetrically. This technique is also employed for the determination of inorganic substances, where elements and ions such as phosphorus, ammonia, sulphate, chloride, carbonate, fluoride, cyanide, calcium, and zinc are estimated by forming precipitates whose opalescence is measured using a Nephelo-Turbidimeter. In cognate assays, several antibiotics including chlortetracycline, doxycycline, gentamicin, neomycin, streptomycin,

and tobramycin can be assayed turbidimetrically with good accuracy. Furthermore, turbidimetric titrations are similar to spectrophotometric titrations, where the Nephelo-Turbidimetric Unit (NTU) is plotted against the titrant volume. The endpoint is determined from the point of inflection on the graph. Examples of such titrations include the determination of sulphur as calcium sulphate ( $\text{CaSO}_4$ ), silver as silver chloride ( $\text{AgCl}$ ), calcium as calcium carbonate ( $\text{CaCO}_3$ ), and fluoride as calcium fluoride ( $\text{CaF}_2$ ).

#### VI. DISADVANTAGES

Nephelometry and turbidometry, although widely used in environmental monitoring and industrial process control, have several important disadvantages that limit their accuracy and reliability. Both techniques are highly sensitive to particle size, shape, and distribution, meaning that irregular or very fine particles often scatter light unpredictably and give inaccurate results, especially in wastewater or industrial slurries. The presence of coloured or light-absorbing substances further interferes with measurements, as dyes, organic matter, or industrial pigments reduce or distort the light signal. Air bubbles are another major issue because they scatter light similarly to suspended solids, leading to falsely elevated turbidity readings common in aeration tanks or systems with gas injection. These methods also require frequent calibration due to lamp aging, sensor drift, and fouling of optical windows. Dirt, biofilm, and mineral deposits on optical surfaces can significantly affect readings, especially in field environments where fouling is unavoidable. Additionally, nephelometry and turbidometry perform poorly at very high turbidity levels, where scattering becomes nonlinear and often requires sample dilution. Their lack of selectivity is another drawback, as they measure only cloudiness and cannot differentiate between types of particles or identify specific pollutants. Temperature changes and certain chemicals can alter scattering behaviour and cause unstable readings, while heterogeneous mixtures containing oils, emulsions, or multiple phases produce inconsistent results. Field deployment challenges such as biofouling, stray light, and environmental fluctuations further complicate accurate measurement. These methods also struggle to detect very small particles like nanoparticles, leading to underestimation

of fine pollutants. Finally, interpreting turbidity data requires expertise, because readings can be misleading without understanding particle sources, water chemistry, and process conditions, potentially resulting in improper decisions in industrial operations.

## VII. CONCLUSION

Nephelometry and turbidimetry are important analytical techniques used to measure the scattering of light by suspended particles in liquids. They are widely applied in environmental monitoring to assess water quality and pollution levels, and in industries such as pharmaceuticals, food, and chemicals to check clarity, purity, and stability of products. These methods are simple, fast, and sensitive, making them useful for detecting very low concentrations of substances. However, their accuracy depends on factors like particle size, colour of the solution, and instrument calibration. Interference from air bubbles, coloured impurities, and high turbidity can affect the results. Despite these limitations, nephelometry and turbidimetry remain valuable tools due to their efficiency, cost-effectiveness, and ability to provide reliable information about suspended matter in various samples.

## REFERENCES

- [1] Sharma, B. K. (2012). Instrumental Methods of Chemical Analysis (Goel Publishing House, Meerut, India). Page no. 576-584
- [2] Willard, H. H., Merritt, L. L., Dean, J. A., & Settle, F. A. (1988). Instrumental Methods of Analysis (7th ed.). CBS Publishers & Distributors, New Delhi. Page no. 186-196.
- [3] Dr. Arun V. Kasture, Dr. Suresh G. Wadodkar, Dr. Kishore R. Mahadik, and Dr. Harish N. More. Nirali Prakashan, 26th Edition (Revised and Enlarged). page no. 21.1-21.4.
- [4] Hemant Badwaik, Madhuri Baghel, Kalyani Sakure (2021), Vallabh Prakashan, India (1<sup>st</sup> ed,), page no. 116-121.
- [5] Robert D. Braun, (1987), Hill International Editions, Hill Book Company, (1<sup>st</sup> ed), page no. 426-444.
- [6] Skoog, D. A., West, D. M., Holler, F. J., & Crouch, S. R. (2014). Fundamentals of Analytical Chemistry (9th ed.). Cengage Learning, USA, page no. 601
- [7] Christian, G. D. (2004). Analytical Chemistry (6th ed.). John Wiley & Sons, New York, page no. 678-695
- [8] Khopkar, S. M. (2008). Basic Concepts of Analytical Chemistry (3rd ed.). New Age International Publishers, New Delhi, page no. 303-310
- [9] APHA, AWWA, & WEF. (2017). Standard Methods for the Examination of Water and Wastewater (23rd ed.). American Public Health Association, Washington D.C, page no. 2-15