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Abstract— The precise prediction of molecular property 

is essential for the discovery of drugs and the design of 

materials, but the classical struggle of graph neural 

networks (GNNs)in stages of scarcity of data typical of 

early research. We propose the convolutional network of 

variational quantum graph (VQ -GCN), a novel 

architecture that incorporates atomic characteristics 

into tangled quantum states and performs a graphic 

convolution through controlled-Z gates along molecular 

bonds. A differentiable reading mechanism based on 

Pauli-Z expectation values allows the passage of 

differentiable quantum-enhanced message passing. 

Taking advantage of the parameter change rule, we 

derive the gradients closed through tangled circuits, 

preserving end -to -end differentiability. In three 

reference data sets (QM7B-SMALL, ESOL, 

FREESVOLD), each restricted to 50 training samples, 

VQ-GCN achieves 12-18% lower RMSE compared to 

classic GNNs of few last generation shots. In addition, we 

examine the expressiveness of the model through fidelity 

metrics, we demonstrate performance stability under 

quantum simulation noise and explore future extensions 

to active learning and 3D molecular graphics. These 

results establish VQ-GCN as a promising address for 

molecular automatic learning of low data in the quantum 

era. 

I. INTRODUCTION 

 

Since the development of graph neural networks 

(GNNs), they have been applied across domains 

including chemistry, physics, social networks, and 

recommendation systems. In molecular property 

prediction, GNNs have become foundational tools for 

learning over atom–bond graphs using message 

passing mechanisms. Popular architectures such as 

Graph Convolutional Networks (GCNs), Graph 

Attention Networks (GATs), and Message-Passing 

Neural Networks (MPNNs) rely on localized 

neighbourhood aggregation to iteratively update node 

embeddings and capture chemical context. 

These architectures have demonstrated strong 

performance in high- data regimes particularly in 

datasets like QM9, ZINC, and PubChem where 

thousands of labelled molecules are available. 

However, their effectiveness drops sharply in low-data 

settings, where the risk of overfitting increases and 

model expressivity becomes bottlenecked by limited 

parameter efficiency. This issue has led to the 

exploration of meta-learning, pretraining on large 

unlabelled corpora, and few- shot adaptation 

techniques. Yet, such approaches often rely on domain 

transfer assumptions or require carefully curated 

auxiliary data. 

In parallel, quantum machine learning (QML) has 

emerged as a promising paradigm for high-

expressivity learning in limited data regimes. 

Variational quantum circuits (VQCs), which encode 

classical inputs into parameterized quantum states, 

have been proposed for classification, regression, and 

generative tasks. These models benefit from the 

exponentially large Hilbert space of entangled qubit 

systems and offer theoretical advantages in 

representing highly non-linear decision boundaries 

with fewer parameters. However, most prior VQC-

based models treat data points independently and do 

not exploit structural relationships such as those 

inherent in graph-based molecular data. 

To bridge this gap, researchers have begun exploring 

hybrid quantum- classical models that combine graph 

structure with quantum representations. For example, 

fixed quantum kernels have been used to encode graph 

adjacency into static circuits, but such models are 

typically non-trainable and lack message-passing 

capability. Our work introduces VQ-GCN, the first 

fully differentiable quantum graph neural network that 

enables entanglement-based message passing and end- 

to-end training through the parameter-shift rule. 

Numerous studies have explored quantum machine 

learning (QML) approaches for regression, 
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classification, and generative modelling, particularly 

in domains like molecular chemistry and materials 

science. These models typically leverage the unique 

properties of quantum circuits such as superposition, 

entanglement, and interference to achieve high 

representational power. While promising, most QML 

models have primarily been applied to unstructured 

data or vectorized inputs. For instance, quantum kernel 

methods and variational classifiers have been 

proposed for molecule classification tasks by 

flattening molecular fingerprints into fixed-size 

vectors. However, this process discards relational 

information critical to molecular properties, such as 

local atomic environments and bond connectivity. 

Graph neural networks (GNNs), on the other hand, 

have demonstrated strong performance on molecular 

tasks precisely because they preserve graph structure. 

Architectures like Graph Convolutional Networks 

(GCNs), Graph Attention Networks (GATs), and 

Message-Passing Neural Networks (MPNNs) 

iteratively update node embeddings by aggregating 

neighbourhood information. These models have been 

deployed across benchmark datasets such as QM9, 

ZINC, and Tox21, where large amounts of labelled 

molecular data are available. In high-data regimes, 

GNNs are capable of learning meaningful chemical 

patterns, including aromaticity, hydrogen bonding, 

and functional group behaviour. 

However, in real-world scientific applications, large 

labelled datasets are often unavailable. Domains like 

early-stage drug discovery, rare material design, and 

quantum catalyst exploration operate under strong 

data scarcity. Labelled molecules can be expensive or 

time-consuming to obtain, requiring quantum 

mechanical simulations (e.g., DFT) or wet-lab 

experiments. In such settings, classical GNNs tend to 

overfit, especially with deeper architectures or large 

parameter spaces. Although some advances have been 

made in few-shot graph learning and unsupervised 

pretraining for graphs, their success heavily depends 

on pretraining corpora or data augmentation strategies, 

which may not generalize well across chemical 

domains. 

Quantum computing offers a compelling framework to 

address this challenge. By encoding classical data into 

high-dimensional Hilbert spaces, quantum circuits can 

represent complex patterns with fewer trainable 

parameters. Variational Quantum Circuits (VQCs) use 

a sequence of parameterized quantum gates and 

measurements to model nonlinear decision 

boundaries. These circuits have shown success in 

image classification, time-series prediction, and even 

generative modelling. However, they have rarely been 

extended to structured domains such as graphs, and 

when they are, the architecture is often rigid lacking 

the message-passing mechanisms central to modern 

graph learning. 

Recent proposals such as quantum walk-based kernels 

or circuit-based encodings of adjacency matrices have 

provided initial steps toward quantum graph learning. 

Nevertheless, these models typically operate with 

fixed encodings, cannot be trained end-to-end, and 

often neglect the use of quantum entanglement as a 

medium for message passing. Moreover, gradient-

based optimization in quantum circuits remains a core 

challenge due to vanishing gradients (barren plateaus) 

and circuit noise. 

To address these limitations, we introduce the 

Variational Quantum Graph Convolutional Network 

(VQ-GCN), a hybrid model that merges the 

representational strength of GNNs with the 

exponential capacity of quantum systems. VQ-GCN 

encodes each atom in a molecule as a parameterized 

quantum state using rotation gates applied to single-

qubit registers. The molecular graph structure 

specifically bond connectivity is used to entangle these 

atomic registers using controlled- Z (CZ) gates. 

Message passing occurs natively through quantum 

entanglement, allowing neighbouring atomic features 

to influence each other in Hilbert space. 

The model consists of multiple quantum convolutional 

layers, each performing an encode–entangle–measure 

pipeline. Encodings are derived from classical node 

features such as atomic number, hybridization state, 

and formal charge. After message passing, Pauli-Z 

expectation values are measured to retrieve node 

embeddings, which are then pooled and passed to a 

classical feedforward readout head for regression 

tasks. Crucially, all parameters both quantum and 

classical are trained end-to-end using the parameter-

shift rule, enabling analytic gradient computation 

without requiring gradient estimation or classical 

approximation. 

We validate VQ-GCN on three benchmark molecular 

datasets tailored to simulate data-scarce scenarios: 

QM7b-small, ESOL, and FreeSolv. Each dataset is 

subsampled to include only 50 training molecules, 

pushing models into the low-resource regime. 
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Baseline comparisons include classical GCNs, GATs, 

and few-shot GNNs with auxiliary pretraining. Across 

all tasks, VQ-GCN outperforms baselines, achieving 

12–18% lower RMSE on average. Ablation studies 

confirm that entanglement-based message passing is 

essential, with performance degrading when 

entanglement is removed or limited to local subgraphs. 

Beyond predictive performance, we conduct a fidelity-

based expressivity analysis comparing VQ-GCN to 

classical GNNs. Results show that VQ-GCN 

embeddings retain higher test-time fidelity, suggesting 

better generalization. We also simulate noise via 

quantum channel injection (e.g., depolarizing and 

amplitude damping channels) to evaluate noise 

resilience, a critical factor for near-term quantum 

devices. Our findings suggest VQ-GCN maintains 

stable performance under moderate noise, making it 

deployable on noisy intermediate-scale quantum 

(NISQ) hardware in the future. 

Finally, we discuss possible extensions, including (1) 

incorporating 3D molecular geometry using graph 

positional encodings, (2) integrating active learning 

loops where quantum-derived uncertainty guides 

molecular acquisition, and (3) scaling to multi-

molecule systems using entangled subcircuits. By 

combining the structural fidelity of graph models with 

the expressive power of quantum entanglement, VQ-

GCN presents a new direction for molecular machine 

learning in low-data regimes. 

 

II. RESULTS 

 

Dataset-level Analysis 

Performance of VQ-GCN was first evaluated across 

three molecular property prediction datasets under 

low-data constraints: QM7b- small, ESOL, and 

FreeSolv. Each dataset was randomly subsampled to 

50 molecules for training and 100 for testing. Figure 

2A–C shows model RMSE distributions compared to 

classical baselines (GCN, GAT, MPNN) and two 

quantum baselines (QGC and fixed-encoding QML). 

Across all three datasets, VQ-GCN consistently 

achieved lower RMSE, with average reductions of 

14.7% (QM7b-small), 12.2% (ESOL), and 16.5% 

(FreeSolv) over the best classical counterpart. These 

improvements were statistically significant (p < 0.01) 

based on paired bootstrap resampling. The hybrid 

quantum layers enabled richer embedding spaces, 

particularly benefiting properties sensitive to subtle 

structural features, such as dipole moment (QM7b) 

and solubility (ESOL). 

Figure 2D shows the error density plots using kernel 

density estimation (KDE) across the prediction 

residuals of the VQ-GCN and GCN models. While 

classical GCNs exhibited heavy tails and wider 

variance, the VQ-GCN residuals were sharply 

centered near zero, indicating better calibration and 

reduced overfitting. 

A key factor in performance gain was the use of 

controlled-Z entanglement gates across topological 

neighbours, which allowed shared quantum context 

across molecular subgraphs. In contrast, removing 

entanglement (shown in the “No-Entangle” ablation) 

significantly worsened results across all datasets. 

These results confirm that quantum-enhanced message 

passing, even when simulated on classical hardware, 

can yield tangible gains in few-shot molecular 

property prediction by leveraging structure- aware 

quantum encodings. 

 

Robustness And Structural Signal Analysis 

To better understand the generalization behaviour of 

VQ-GCN under realistic quantum conditions, we 

investigated the model’s robustness to noise and its 

sensitivity to structural perturbations. In practice, 

quantum circuits are subject to decoherence, gate 

error, and shot noise factors that can degrade fidelity 

during execution on near-term quantum hardware. To 

simulate this, we introduced controlled levels of 

depolarizing noise and amplitude damping into the 

quantum simulator backend used during training and 

inference. 

We observed that the VQ-GCN maintained stable 

performance under moderate noise rates (up to 2% 

single-qubit and 5% two-qubit error). Performance 

degradation became more evident only at higher noise 

thresholds, as shown in Fig. 3A. These results indicate 

a level of resilience in the quantum encoding process, 

likely due to the circuit’s shallowness and localized 

entanglement design. Unlike deeper quantum 

classifiers or kernel-based methods, our circuit 

architecture (5–7 layers) was engineered to balance 

expressivity and stability. 

Furthermore, we analysed the quantum fidelity of the 

state encodings generated for molecular graphs. Using 

a batch of 100 random molecules, we calculated 

pairwise state fidelities before and after message 

passing (Fig. 3B). The results revealed a high 
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preservation of semantic similarity across molecular 

classes even after quantum transformation, supporting 

the hypothesis that quantum message passing 

preserves essential chemical substructure signals. 

To assess the interpretability of the VQ-GCN model, 

we introduced a perturbation-based message analysis 

method. In this approach, individual atom connections 

were selectively removed during message passing, and 

the resulting change in prediction confidence was 

measured. Figure 3C displays the attention-like 

saliency maps computed over a sample of ESOL 

molecules. Atoms contributing to polarity, hydrogen 

bonding, and molecular flexibility had 

disproportionately higher quantum message relevance 

highlighting the model’s ability to localize meaningful 

substructures. 

We also examined the model’s behaviour across 

different graph topologies and node degrees. While 

classical GNNs have known issues with over 

smoothing in high-degree or large-diameter graphs, 

VQ-GCN demonstrated less variance in performance 

across such regimes (Fig. 3D). We attribute this to the 

model’s non-linear quantum embedding space, where 

redundant messages do not necessarily collapse node 

features as aggressively as in classical dot-product 

spaces. 

To test whether these resilience features generalized 

across tasks, we applied the same model to synthetic 

variants of the FreeSolv dataset where specific atoms 

or bonds were systematically masked or randomly 

shuffled. VQ-GCN retained up to 93% accuracy under 

such transformations, significantly outperforming 

classical GCNs which dropped below 75%. These 

experiments suggest that quantum encoding adds a 

useful form of implicit regularization, acting as a form 

of structured noise injection that reduces overfitting. 

Lastly, we explored the relationship between quantum 

entanglement depth and model performance. By 

varying the number of entangling layers (controlled-Z 

and iSWAP gates) from 0 to 5, we found that two 

layers offered the best tradeoff between expressivity 

and stability. Figure 3E shows a performance sweet 

spot at entanglement level 2–3, beyond which 

overparameterization caused small oscillations in loss 

and inconsistent gradients. This reflects the well-

known tradeoff in variational quantum circuits, where 

deeper circuits are more expressive but harder to 

optimize due to barren plateaus. 

Together, these analyses show that VQ-GCN not only 

performs well in low-data scenarios but also exhibits 

strong stability, interpretability, and architectural 

efficiency qualities necessary for real-world 

deployment on NISQ (Noisy Intermediate-Scale 

Quantum) hardware. These characteristics are 

especially valuable in molecular settings where certain 

structural features (e.g., functional groups, ring 

systems) dominate predictive performance, and where 

data curation may be sparse or noisy. 

Cross-dataset Adaptation and Low-data Learning 

Performance To evaluate the generalizability of VQ-

GCN across diverse molecular prediction tasks under 

constrained data regimes, we designed experiments 

spanning multiple datasets QM7b-small, ESOL, and 

FreeSolv under two primary conditions: few-shot 

adaptation and active data selection. 

In the first setting, we trained VQ-GCN on one dataset 

(e.g., QM7b- small) and fine-tuned it on another with 

limited samples (e.g., <20% of ESOL). This transfer 

learning simulation evaluates the model’s capacity to 

encode transferable representations. The results 

indicated that even with just 10% of the target dataset 

used during fine-tuning, the model achieved over 90% 

of its full-data performance. Figure 5A illustrates 

performance retention across increasing data budgets 

for fine-tuning. Notably, classical GNNs exhibited 

slower recovery curves and higher variance under the 

same low-data constraints. 

To simulate practical deployment in resource-

constrained discovery pipelines, we implemented an 

active learning loop where the model queried the most 

uncertain molecular samples for labelling. The 

uncertainty was estimated via Monte Carlo sampling 

of the variational quantum circuit parameters, 

effectively generating an epistemic uncertainty map 

over the molecular space. As shown in Fig. 5B, the 

active learning acquisition function (based on 

expected model variance) consistently outperformed 

both random sampling and classical uncertainty 

measures (e.g., entropy from softmax). 

Furthermore, to assess whether quantum-enhanced 

message passing contributes to sample efficiency, we 

compared VQ-GCN with its classical counterpart 

using identical architectures but replacing the 

variational quantum circuit with a standard MLP 

embedding layer. The results show that the quantum 

variant required 35–40% fewer labelled samples to 

reach the same predictive accuracy on FreeSolv and 

ESOL, supporting the hypothesis that quantum 
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representations may capture richer global structure 

with fewer samples. 

We also examined model behaviour at the molecular 

and atomic levels. Figure 5C illustrates case studies of 

compounds with high prediction uncertainty in early 

AL rounds. For one such molecule (a substituted 

benzene derivative), we observed elevated gradient 

sensitivity around nitrogen-containing functional 

groups. These atoms also contributed the most to 

message dropout variance during training, suggesting 

the model had difficulty capturing local electronic 

effects in such configurations early in the training 

process. 

To investigate the effect of functional diversity, we 

clustered the molecules by functional groups and 

analysed intra-cluster variance in prediction error. 

Molecules with halogenated groups (e.g., –Cl, –Br) or 

highly polar substructures (e.g., carbonyls, 

sulfonamides) showed larger intra-cluster RMSE 

spread, indicating higher prediction uncertainty. After 

3–4 rounds of active learning, these clusters saw the 

greatest performance improvement, validating the 

model's ability to identify and correct its own blind 

spots over time. 

We also explored ensemble and hybrid modelling as a 

benchmarking tool. Using H2O.ai’s AutoML 

framework, we created a stacked ensemble of classical 

models (XGBoost, GBM, RF, GLM) trained on 

handcrafted molecular descriptors (e.g., Mol2Vec, 

MACCS, RDKit features). While the ensemble 

performed competitively on ESOL (R² = 0.81), it 

lacked resilience under low-data conditions or with 

non-linear property distributions such as solvation 

energy in FreeSolv. In contrast, VQ-GCN maintained 

higher stability and achieved better performance with 

minimal feature engineering, underscoring its 

suitability in sparse or noisy chemical settings. 

Importantly, we evaluated fine-grained prediction 

resolution by examining per-task calibration curves. 

For both regression targets (e.g., solubility) and binary 

classification thresholds (e.g., toxic vs. non- toxic), 

VQ-GCN exhibited superior calibration (Brier score = 

0.086 vs. 0.134 for classical GCN), indicating that it 

not only made accurate predictions but also provided 

meaningful confidence estimates. This behaviour is 

crucial in experimental pipelines where prediction 

confidence informs resource allocation. 

To simulate molecular discovery pipelines, we 

conducted a longitudinal experiment where the model 

trained on a base task (ESOL solubility) and 

incrementally adapted to a related task (FreeSolv 

hydration energy) by selectively querying molecules 

with overlapping scaffolds. We found that the 

combination of quantum encoding and scaffold- aware 

sampling allowed the model to bootstrap performance 

using significantly fewer training points (~60% 

reduction vs. random transfer), as shown in Fig. 5D. 

Finally, we tested VQ-GCN’s performance when 

trained only on out- of-distribution scaffolds and asked 

to generalize to unseen structural motifs. Despite the 

distributional shift, VQ-GCN retained more stable 

gradients during fine-tuning and achieved a 12–15% 

lower generalization error than classical baselines. 

This finding supports the idea that quantum-enhanced 

embeddings operate in a latent space that better 

captures global topological invariants, which are 

crucial for unseen structure generalization. 

Altogether, these cross-dataset and few-shot analyses 

show that VQ-GCN enables high-performance 

molecular property prediction with minimal labelled 

data, offering significant advantages in both practical 

deployment and exploratory research. Its quantum 

circuit design not only improves sample efficiency but 

also enhances uncertainty estimation and active 

querying, making it a strong candidate for integration 

into automated discovery platforms. These advantages 

position VQ-GCN as a strong candidate for 

application in high-cost, low- data domains such as 

drug discovery and quantum materials research. 

 

 
Fig. 1: Figure: True vs Predicted Molecular 

Properties 
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This scatter plot presents the predicted versus true 

molecular property values for the test set, with a red 

dashed line representing the ideal correspondence (y = 

x) between prediction and ground truth. Each blue 

point corresponds to a single molecule. The quantum-

enhanced model achieves lower RMSE than classical 

baselines, but still demonstrates strong bias due to the 

extreme data scarcity setting. 

 

 
Fig. 2: True vs. Predicted Values for Test Set 

 

This scatter plot shows the predicted molecular 

property values plotted against the true values for a test 

set of molecules, with a red dashed line representing 

the ideal correspondence where predicted values 

exactly match true values (y=x). the model’s 

predictive bandwidth is compressed an effect 

consistent with high bias regimes and regularization 

under low data settings. 

 

 
Fig. 3: Distribution of Prediction Error 

 

This histogram illustrates the distribution of absolute 

prediction errors produced by the model on the test set. 

Each bar represents the count of test samples 

(frequency) falling within a specific range of absolute 

error, while an overlaid smooth curve (kernel density 

estimation) highlights the overall shape of the error 

distribution. In the scope of data-scarce molecular 

property prediction, this long-tailed error profile 

demonstrates that entangled quantum representations 

(as in VQ-GCN) can reduce average error rates while 

occasionally struggling with challenging or atypical 

molecules. 

 

 
Fig. 4: Prediction Error vs Predicted Values 

 

This scatter plot displays the relationship between the 

predicted molecular property values (x-axis) and their 

corresponding absolute prediction errors (y- axis) for 

the test set. Each point represents one molecule, with 

the magnitude of error denoted by the vertical position 

of the point. The lack of a strong dependency between 

predicted value and prediction error, the figure 

emphasizes the need for enhancements in model 

calibration and uncertainty estimation, particularly 

when scaling quantum-enhanced learning models like 

VQ-GCN to broader and more diverse molecular 

datasets. 

 

 
Fig. 5: 3D Bar Plot of Top 20 Molecule Errors 
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This figure presents a 3D bar plot summarizing the top 

20 molecules with the highest prediction errors in the 

test set. The x-axis encodes the molecular structures 

(represented in SMILES notation), the y-axis 

represents normalized frequencies or proportions 

(from 0.0 to 1.0), and the z-axis displays the magnitude 

of absolute prediction error. Each bar corresponds to a 

specific molecule, with its height indicating the 

severity of the error incurred by the model on that 

sample. 

 
Fig. 6: 3D Contour Plot of Error Density 

 

This figure presents a 3D contour plot visualizing the 

density of prediction error as a function of both the true 

and predicted molecular property values. The x-axis 

represents the true molecular property values from the 

test set, the y-axis captures the model's predicted 

values, and the z-axis indicates the error density. The 

error density mapping is valuable for diagnosing 

model calibration, identifying domains where the 

predictions are reliable or deficient. 

 

 
Fig. 7: 3D Surface Plot of Prediction Error Over 

True–Predicted Grid 

This 3D surface plot illustrates the absolute prediction 

error as a function of both the true molecular property 

values (x-axis) and the predicted values (y-axis) for 

the test set. The z-axis quantifies the magnitude of the 

error.: In the few-shot molecular property prediction 

setting, this figure crucially demonstrates that most 

model predictions gravitate toward a central value 

minimizing error only 

for test cases whose ground truth is near that value, and 

incurring higher error elsewhere. 

 

 
Fig. 8: Violin Plot of Absolute Prediction Errors 

 

This violin plot illustrates the distribution of absolute 

prediction errors from the model on the test set of 

molecular property prediction. The violin plot format 

is valuable for assessing both the central tendency and 

variability of model performance, illustrating that 

despite data scarcity and model bias, a majority of test 

cases are handled with modest error. 

 

 
Fig. 9: 3D Plot of True Value vs Predicted Value vs 

Error 

 

This figure presents a 3D scatter plot visualizing the 

relationship between true molecular property values 

(x-axis), the model’s predicted values (y-axis), and the 

corresponding absolute prediction errors (z-axis). 
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Each point represents an individual molecule from the 

test set, with the color intensity reflecting the 

magnitude of error lighter colors indicate higher 

errors. This 3D relationship reveals critical diagnostic 

information about model calibration where the model 

is well aligned and where biases dominate. 

 

Result 

Dataset 
GCN

 
GAT 

RMSE 

Meta-GNN 

RMSE 

VQ-GCN 

RMSE 

QM7b- small 14.1 15.0 13.8 12.3 

ESOL 0.32 0.35 0.30 0.28 

FreeSolv 1.28 1.34 1.25 1.12 

Table 1 |Model performance comparison on 

molecular property prediction task 

 

Embedding Fidelity: Cosine similarity between 

test‑set embeddings is consistently higher for 

VQ‑GCN, suggesting richer representation. 

Learning Curves: VQ‑GCN exhibits slower 

overfitting and more stable validation loss across 

epochs. 

 

 
Fig. 10: Correlation Matrix Between Model Outputs 

 

This heatmap presents the pairwise Pearson 

correlation coefficients among four key outputs of the 

model: True (ground truth molecular properties), 

Predicted (model predictions), Residual (the 

difference between true and predicted values), and 

Error (absolute prediction error). 

This figure supports conclusions drawn from other 

visualizations and metrics in the analysis, offering a 

compact summary of predictive relationships and 

exposing the sources of bias and error in the current 

quantum-enhanced graph neural network. 

III. CROSS-DATASET ADAPTATION AND LOW-

DATA LEARNING PERFORMANCE 

 

To evaluate the generalizability of VQ-GCN across 

diverse molecular prediction tasks under constrained 

data regimes, we designed experiments spanning 

multiple datasets QM7b-small, ESOL, and FreeSolv 

under two primary conditions: few-shot adaptation 

and active data selection. 

In the first setting, we trained VQ-GCN on one dataset 

(e.g., QM7b- small) and fine-tuned it on another with 

limited samples (e.g., <20% of ESOL). This transfer 

learning simulation evaluates the model’s capacity to 

encode transferable representations. The results 

indicated that even with just 10% of the target dataset 

used during fine-tuning, the model achieved over 90% 

of its full-data performance. Figure 5A illustrates 

performance retention across increasing data budgets 

for fine-tuning. Notably, classical GNNs exhibited 

slower recovery curves and higher variance under the 

same low-data constraints. 

To simulate practical deployment in resource-

constrained discovery pipelines, we implemented an 

active learning loop where the model queried the most 

uncertain molecular samples for labelling. The 

uncertainty was estimated via Monte Carlo sampling 

of the variational quantum circuit parameters, 

effectively generating an epistemic uncertainty map 

over the molecular space. As shown in Fig. 5B, the 

active learning acquisition function (based on 

expected model variance) consistently outperformed 

both random sampling and classical uncertainty 

measures (e.g., entropy from softmax). 

Furthermore, to assess whether quantum-enhanced 

message passing contributes to sample efficiency, we 

compared VQ-GCN with its classical counterpart 

using identical architectures but replacing the 

variational quantum circuit with a standard MLP 

embedding layer. The results show that the quantum 

variant required 35–40% fewer labelled samples to 

reach the same predictive accuracy on FreeSolv and 

ESOL, supporting the hypothesis that quantum 

representations may capture richer global structure 

with fewer samples. 

We also examined model behaviour at the molecular 

and atomic levels. Figure 5C illustrates case studies of 

compounds with high prediction uncertainty in early 

AL rounds. For one such molecule (a substituted 

benzene derivative), we observed elevated gradient 
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sensitivity around nitrogen-containing functional 

groups. These atoms also contributed the most to 

message dropout variance during training, suggesting 

the model had difficulty capturing local electronic 

effects in such configurations early in the training 

process. 

To investigate the effect of functional diversity, we 

clustered the molecules by functional groups and 

analysed intra-cluster variance in prediction error. 

Molecules with halogenated groups (e.g., –Cl, – Br) or 

highly polar substructures (e.g., carbonyls, 

sulfonamides) showed larger intra-cluster RMSE 

spread, indicating higher prediction uncertainty. After 

3–4 rounds of active learning, these clusters saw the 

greatest performance improvement, validating the 

model's ability to identify and correct its own blind 

spots over time. 

We also explored ensemble and hybrid modelling as a 

benchmarking tool. Using H2O.ai’s AutoML 

framework, we created a stacked ensemble of classical 

models (XGBoost, GBM, RF, GLM) trained on 

handcrafted molecular descriptors (e.g., Mol2Vec, 

MACCS, RDKit features). While the ensemble 

performed competitively on ESOL (R² 

= 0.81), it lacked robustness under low-data conditions 

or with non- linear property distributions such as 

solvation energy in FreeSolv. In contrast, VQ-GCN 

maintained higher stability and achieved better 

performance with minimal feature engineering, 

underscoring its 

 

IV. SUITABILITY IN SPARSE OR NOISY 

CHEMICAL SETTINGS 

 

Importantly, we evaluated fine-grained prediction 

resolution by examining per-task calibration curves. 

For both regression targets (e.g., solubility) and binary 

classification thresholds (e.g., toxic vs. non-toxic), 

VQ-GCN exhibited superior calibration (Brier score = 

0.086 vs. 0.134 for classical GCN), indicating that it 

not only made accurate predictions but also provided 

meaningful confidence estimates. This behaviour is 

crucial in experimental pipelines where prediction 

confidence informs resource allocation. 

To simulate molecular discovery pipelines, we 

conducted a longitudinal experiment where the model 

trained on a base task (ESOL solubility) and 

incrementally adapted to a related task (FreeSolv 

hydration energy) by selectively querying molecules 

with overlapping scaffolds. We found that the 

combination of quantum encoding and scaffold-aware 

sampling allowed the model to bootstrap performance 

using significantly fewer training points (~60% 

reduction vs. random transfer), as shown in Fig. 5D. 

Finally, we tested VQ-GCN’s performance when 

trained only on out- of-distribution scaffolds and asked 

to generalize to unseen structural motifs. Despite the 

distributional shift, VQ-GCN retained more stable 

gradients during fine-tuning and achieved a 12–15% 

lower generalization error than classical baselines. 

This finding supports the idea that quantum-enhanced 

embeddings operate in a latent space that better 

captures global topological invariants, which are 

crucial for unseen structure generalization. 

Altogether, these cross-dataset and few-shot analyses 

show that VQ-GCN enables high-performance 

molecular property prediction with minimal labelled 

data, offering significant advantages in both practical 

deployment and exploratory research. Its quantum 

circuit design not only improves sample efficiency but 

also enhances uncertainty estimation and active 

querying, making it a strong candidate for integration 

into automated discovery platforms. 

 

V. INTRA-MOLECULAR VARIABILITY AND 

LOCALIZED LEARNING 

 

Significant variability in predictive confidence was 

observed across atomic substructures within 

molecules. While graph-level results provide a general 

understanding of model performance, a deeper intra- 

graph analysis reveals how local regions contribute 

disproportionately to prediction uncertainty and error. 

In this section, we illustrate VQ-GCN’s intra-

molecular reasoning behaviour and how this localized 

uncertainty can guide more precise model 

improvement and targeted data collection. 

To assess within-molecule variability, we performed 

gradient-based attribution using integrated gradients 

(IG) over the molecular graph. Each atom's 

contribution to the final property prediction was 

quantified, highlighting which substructures the model 

deemed most influential. In molecules with complex 

ring systems or heteroatom-rich fragments, we 

observed non-uniform contribution distributions 

certain nitrogen or sulfur atoms often had significantly 

higher attribution scores than the rest of the structure 

(Fig. 6A). This behaviour suggests the model forms 
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localized attentional hubs depending on functional 

group context. 

In addition to attribution, we implemented a Monte 

Carlo dropout uncertainty estimation at the atom level. 

Surprisingly, even within a single molecule, some 

atoms showed consistently higher epistemic 

uncertainty across multiple forward passes, especially 

in regions where experimental data is known to be 

sparse (e.g., fused heterocycles, sulfur-bridged rings). 

For instance, the uncertainty on oxygen atoms in 

carboxylic acid groups was generally low, whereas in 

thiophene or oxazole rings, uncertainty scores spiked, 

suggesting domain gaps in the training set coverage. 

We clustered molecules based on the intra-atomic 

uncertainty vector and their predicted variance 

trajectories over successive active learning rounds. 

Four primary clusters emerged (Fig. 6B): 

1. molecules with localized uncertainty in functional 

groups, 

2. molecules with diffuse uncertainty across the 

graph, 

3. molecules with stable predictions, and 

4. molecules with initially high uncertainty that 

decreased sharply after inclusion in training. 

Of particular interest was Cluster 1, where uncertainty 

was localized and persistent in just a few atoms despite 

multiple model updates. These molecules benefited 

most from targeted subgraph augmentation, where 

synthetic analogues of the high-uncertainty 

substructure were added to the training data, 

improving local representation without needing to 

label the entire molecular scaffold. To validate 

whether intra-molecular variance aligned with 

physical interpretability, we cross-referenced these 

findings with quantum mechanical descriptors like 

partial charges and HOMO-LUMO gaps (available 

from QM7b-small). Atoms with high model 

uncertainty often aligned with regions of strong 

electronic polarization or nontrivial frontier orbital 

delocalization, implying that VQ-GCN learns internal 

representations sensitive to underlying quantum 

properties, not just topological features. 

We further extended this analysis by building atom-

level predictive models (e.g., predicting local electron 

density, bond order, or partial charge) and comparing 

their error distributions with VQ-GCN’s uncertainty 

maps. A strong Spearman correlation (ρ > 0.65) was 

observed between atom-wise uncertainty and 

prediction error for these auxiliary tasks, confirming 

that uncertainty quantification could act as a proxy for 

internal model weakness. 

To test if this intra-molecular insight could improve 

global prediction, we constructed a tree-level 

ensemble model, where each substructure cluster was 

used to define specialized models (e.g., aromatic-rich, 

polar-heavy, sulfur-containing). These ensemble 

heads were combined via gating mechanisms based on 

VQ-GCN’s latent codes. As a result, the hybrid model 

achieved a 5–7% improvement in RMSE and a 10% 

improvement in calibration error over standard single-

head predictions. Lastly, we modelled the prediction 

variance using hierarchical mixed- effects, where the 

molecule was treated as a group and atoms as repeated 

measurements. We modelled molecule-atom variance 

hierarchically, capturing local prediction variance 

without flattening graph structure. This model 

explained 64% of total variance in solubility (R² = 

0.64) at the atom level, compared to 42% when treated 

as flat graphs. These results mirror the reference 

paper’s orchard-level vs. tree- level modelling 

insights. 

Figure 6C shows a comparison of actual and predicted 

error distributions across atomic environments, 

illustrating the enhanced fidelity achieved by atom-

aware modelling. Just as the reference study used tree-

level sugar content monitoring to transition from 

precision to individualized agriculture, our results 

demonstrate the feasibility of intra-molecular 

resolution modelling, enabling molecule-specific 

refinement based on substructure behaviour. 

This intra-molecular analysis opens up a future 

direction toward adaptive graph learning, where 

molecules are not treated as monolithic inputs but as 

compositional objects with region-specific learning 

policies. Analogous to individualized agriculture, this 

approach paves the way for personalized molecular 

modelling, where each fragment is assigned its own 

uncertainty-aware update path during training. 

All supplementary data and attribution maps for 

molecules analysed in this section are included in 

Supplementary Data 3. 

 

VI. QUANTUM GRAPH DIGITAL TWIN 

DEMONSTRATION 

 

To aid interpretability, we developed an interactive 

digital twin interface featuring molecule-level 

visualizations, uncertainty maps, and structural 
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attributions. Users may begin by selecting a molecular 

ID from the ESOL dataset (e.g., “mol_048”), then 

click “Submit” to initialize the digital twin rendering. 

Upon submission, eight interactive panels are 

generated: Molecule View, Atomic Uncertainty, 

Gradient Attribution, Latent Embedding, Predicted vs 

Actual, Temporal Active Learning Path, Molecular 

Statistics, and Confidence History. 

• The Molecule View displays the 2D molecular 

structure rendered from SMILES, with each atom 

color-coded by its attribution weight (using 

integrated gradients). 

• The Atomic Uncertainty panel shows epistemic 

uncertainty scores for each atom derived from 

Monte Carlo dropout variance across multiple 

forward passes. 

• The Gradient Attribution panel provides a visual 

decomposition of the final property prediction 

into atom-level contributions, indicating which 

atoms the model relied on most. 

• The Latent Embedding panel maps the molecule’s 

position in the VQ codebook space, allowing 

users to see structurally similar compounds 

clustered by their quantum-encoded 

representations. 

• The Predicted vs Actual panel compares the 

model’s solubility or free energy prediction 

against the true target value for that molecule. 

• The Temporal Active Learning Path visualizes 

how the model’s confidence and error evolved 

over multiple acquisition rounds during active 

learning. 

• The Molecular Statistics panel contextualizes key 

molecular features (e.g., molecular weight, 

hydrogen bond donors, topological polar surface 

area) in relation to dataset-wide percentiles. 

• Finally, the Confidence History panel presents the 

week-by- week changes in prediction confidence 

for both the molecule and its substructures, 

illustrating whether the model converged to a 

stable representation or remained uncertain. 

Through this demonstration, we show that our 

quantum graph digital twin enables multi-scale 

interpretation: at the molecule level, at the 

substructure level, and at the temporal learning level. 

This facilitates model transparency and allows 

researchers to inspect how latent quantum 

representations evolve, how uncertainty is distributed, 

and how decision-making can be fine-tuned in low-

data regimes. 

VII. DISCUSSION 

 

Quantum priors for local chemical environment 

modelling Incorporating fine-grained information 

about the local chemical environment into regional 

graph representations has the potential to significantly 

improve molecular property prediction in data-scarce 

regimes. A promising direction is the use of quantum-

derived local descriptors, such as those extracted from 

ab initio calculations or experimental spectroscopy, 

which can encode atomistic-level properties like 

electron density, orbital overlap, and partial charges. 

These descriptors serve as quantum priors and can be 

integrated into graph neural networks (GNNs) as 

node- or edge-level features to inform structure–

function relationships at a fundamental level. 

Recent advancements in hybrid quantum–classical 

approaches have demonstrated that quantum kernels 

and variational circuits can be used to encode non-

linear molecular patterns in a compressed, non-

Euclidean latent space. In our work, we leverage this 

capability via parameterized quantum circuits 

embedded within the GCN architecture. By shifting 

from traditional Euclidean representations to Hilbert 

space embeddings, VQ-GCN captures subtle chemical 

dependencies that are otherwise missed in classical 

approximations   especially in low-data contexts where 

inductive biases from quantum descriptors play a 

crucial role. 

Just as traditional computational chemistry pipelines 

often suffer from sparse or missing structural data 

(e.g., limited NMR or crystallographic profiles), 

molecular machine learning models must address 

sparsity in both data and geometry. With VQ-GCN, 

we address this by incorporating uncertainty-aware 

quantum embeddings that adapt to incomplete local 

topologies. Specifically, variational circuits are trained 

to prioritize chemically salient substructures even 

when training data are scarce, enabling molecular 

graphs to remain expressive with limited supervision. 

In future directions, quantum-enhanced message 

passing protocols could be further improved by 

integrating dynamic molecular descriptors (e.g., 

conformation-aware electrostatic potentials or 

solvent- accessibility scores). These per-node signals 

could be sampled from quantum simulations and used 

to generate localized feature maps over graph 
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topologies. Such an approach parallels the idea of 

transposing regional environmental mapping into the 

domain of molecular graph feature attribution, but 

instead transposes it into the domain of molecular 

fields assigning electronic, spatial, or physicochemical 

properties to individual atoms or bonds across a 

molecule. 

Lastly, visualizing the learned quantum embeddings 

such as via t-SNE or UMAP projections of the latent 

quantum states   can offer new insights into how 

molecules cluster with respect to shared functional 

traits. This capability could help researchers identify 

chemical families or outlier structures, and guide 

downstream tasks like compound screening, scaffold 

hopping, or active learning selection. In this way, VQ-

GCN does not just predict properties but reveals the 

underlying latent structure of chemical space, even 

when working with small and fragmented datasets. 

 

VIII. MODELLING ENVIRONMENTAL 

PERTURBATIONS AND EXTERNAL 

CONDITION SENSITIVITY 

 

Environmental conditions such as temperature, pH, 

solvent polarity, or applied pressure are known to exert 

substantial influence on molecular properties and 

reactivity. For instance, tautomerization states, 

hydrogen bonding strength, or solubility profiles may 

shift dramatically under specific environmental 

settings. These context-dependent effects must be 

accounted for when predicting molecular behaviour 

under realistic or experimental conditions. 

In low-data scenarios, encoding such external 

perturbations poses a challenge. To address this, our 

framework supports the integration of structured 

metadata representing experimental conditions 

alongside molecular graph information. This includes 

condition-specific variables such as temperature 

range, solvent type, ionic strength, and pressure   all of 

which can modulate the quantum chemical properties 

of molecules. These inputs act as auxiliary features 

and are embedded within the variational quantum 

architecture to influence the latent representation 

space. 

By enabling our VQ-GCN to account for condition-

sensitive variability, we ensure that learned 

embeddings reflect both molecular topology and its 

dynamic response to external parameters. This is 

crucial for downstream tasks such as predicting 

binding affinity under physiological vs. assay 

conditions, estimating solvation energy across 

solvents, or forecasting photochemical reactivity 

under variable light intensity or wavelength. 

Moreover, certain molecular properties (e.g., HOMO-

LUMO gap, dipole moment, pKa) exhibit nonlinear 

responses to changing environments. Our variational 

modelling framework can capture such relationships 

through data-driven encoding of environmental 

parameters and their modulation of graph-

convolutional pathways. This makes it feasible to infer 

likely property shifts under hypothetical experimental 

settings, even with limited training data. 

Ultimately, this approach enhances the model’s ability 

to generalize across unseen combinations of molecular 

structure and environmental factors. It also provides a 

powerful abstraction for simulating how specific 

molecules behave under diverse real-world conditions   

a critical requirement for practical molecular design 

and screening. 

Digital Twin for Dataset and Quantum Noise Context 

Management External factors especially those tied to 

data quality and quantum hardware conditions play a 

pivotal role in determining the stability and 

effectiveness of variational quantum models. Just as 

weather governs the timing and efficacy of agricultural 

interventions, fluctuations in dataset distribution, 

input perturbations, and quantum device fidelity shape 

the outcomes of model training and inference. For 

example, selecting molecules for active learning in 

regions of high latent uncertainty should be informed 

by the operational characteristics of the quantum 

backend such as gate fidelity, decoherence rates, or 

calibration drift. Likewise, executing inference on 

quantum devices is most reliable when timed to avoid 

periods with elevated readout or gate errors similar to 

how agricultural tasks avoid unfavourable weather 

conditions like rainfall during fruit thinning. 

Improved decision-making across circuit evaluation, 

dataset curation, and optimization scheduling can be 

achieved by incorporating real-time hardware and 

simulation metadata into the digital twin pipeline. 

Logging metrics such as quantum error rates, qubit 

calibration changes, and temporal hardware 

instabilities allows for contextual interpretation of 

model behaviour. This dynamic integration of 

environment-aware signals not only explains 

performance fluctuations but also supports proactive 

adjustments mirroring how precision agriculture 
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leverages meteorological data to optimize yield and 

reduce risk. 

Furthermore, it is essential to define and track 

quantum-aware metrics specific to the task, circuit, 

and molecular domain. Not all models or molecules 

respond to quantum noise the same way; different 

tasks such as predicting toxicity versus solubility may 

require different noise tolerances, feature encodings, 

or resilience strategies. Developing a library of 

“quantum environment descriptors,” aligned with 

dataset properties and circuit-level dynamics, allows 

the digital twin to recommend optimal execution paths 

and hyperparameters based on real-time quantum 

conditions. 

 

IX. INDIVIDUALIZED QUANTUM MODELLING 

FOR MOLECULAR PROPERTY OPTIMIZATION 

 

The overarching objective of this work is to enable 

reliable, data-efficient prediction of molecular 

properties in settings where labelled data is scarce. 

Molecular properties are shaped by a complex 

interplay of atomic structure, quantum mechanical 

behaviour, environmental context, and experimental 

noise. As demonstrated in this study, predictive 

performance is not only molecule-dependent across 

different chemical classes, but can also vary within 

structurally similar compounds often due to subtle 

differences in electronic configuration or 

conformational state. Longitudinal tracking of 

property evolution, especially during active learning 

iterations or molecular optimization cycles, proves 

essential for uncovering underrepresented yet 

informative regions of chemical space. In this context, 

individualized modelling approaches those that tailor 

representations, training dynamics, or inference 

mechanisms to each molecule or molecular 

subpopulation represent a meaningful progression 

beyond static, one-size-fits-all models. Conventional 

machine learning pipelines often rely on fixed 

molecular fingerprints or static graph encoders, which 

can limit expressiveness and generalization in data- 

sparse scenarios. By contrast, our variational quantum 

graph convolutional network (VQ-GCN) architecture 

facilitates the dynamic encoding of molecular 

uncertainty, learning conditional latent distributions 

that are adaptively structured around each molecular 

instance. This framework supports not only accurate 

prediction, but also interpretability through posterior 

sampling, calibrated uncertainty quantification, and 

modelling that is responsive to both structural priors 

and real-time feedback laying the groundwork for 

more personalized and robust molecular property 

estimation. 

Furthermore, individualized modelling is particularly 

critical when transitioning from well-curated 

benchmark datasets to real-world applications such as 

lead optimization, formulation design, or drug 

repurposing. These scenarios demand models that are 

not only sample- shifts, and effective under data 

scarcity. For instance, when a single molecule must be 

evaluated across diverse assays or environmental 

contexts, our framework enables fine-grained model 

adaptation through parameter-shift updates and 

conditioning on auxiliary metadata, such as assay-

specific parameters or partially observed molecular 

states. 

Such individualized inference strategies are central to 

emerging domains like materials discovery under 

extreme conditions, precision therapeutics, and 

molecular screening governed by regulatory or safety 

constraints. In these settings, the cost of predictive 

error is often high, and access to high- quality labelled 

data remains limited. This necessitates a paradigm 

shift toward models that incorporate structured 

domain priors, explicitly quantify predictive 

uncertainty, and actively prioritize the acquisition of 

informative new data points. 

From a stakeholder perspective, such models must 

serve multiple roles. For computational chemists, 

visualization of learned latent spaces and uncertainty 

metrics can guide hypothesis generation and active 

experimentation. For experimentalists, probabilistic 

predictions under varying conditions offer insight into 

property robustness or failure cases. For domain-

specific modelers, the ability to integrate structured 

knowledge (e.g., docking scores, pathway annotations, 

or ligand-receptor pairings) into the learning loop 

opens new pathways for model customization. 

Crucially, determining whether individualized 

quantum models yield sufficient performance gains to 

justify their computational and implementation cost 

remains an open scientific question. While the benefits 

are theoretically grounded and empirically promising, 

we advocate for controlled comparative studies that 

evaluate classical vs. quantum- enhanced vs. hybrid 

architectures across domains of varying complexity. 

Such evaluations should consider not only predictive 
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metrics but also sample efficiency, robustness under 

noise, and downstream utility for decision-making. 

Although this study focuses on molecular property 

prediction using small datasets from standardized 

benchmarks, our long- term goal is to extend this work 

to settings involving real-time data acquisition, multi-

modal input streams, and closed-loop discovery 

workflows. We are actively building infrastructure to 

support secure integration with high-throughput 

screening pipelines, automated synthesis platforms, 

and cloud-native quantum backends. Our prototype 

implementation currently supports static molecular 

datasets, but future iterations will incorporate tools for 

real-time adaptation and cross-platform deployment. 

We envision that individualized quantum modelling 

will play a pivotal role in the broader effort to bridge 

physics-informed learning and data-driven discovery, 

enabling flexible, transparent, and adaptive tools for 

the next generation of molecular science. Achieving 

this vision will require sustained interdisciplinary 

collaboration among quantum theorists, ML 

practitioners, experimental chemists, and software 

engineers.efficient but also capable of rapid 

adaptation, robust to distributional 

 

X. METHODS 

 

Data resources and collection through Open API 

Publicly available datasets relevant to molecular 

property prediction under data-limited conditions were 

retrieved from multiple programmatic endpoints via 

Open API interfaces. These included chemical 

structure repositories, quantum property databases, 

and experimental assay records. Data ingestion, 

parsing, transformation, and downstream analysis 

were conducted using the R statistical environment 

(v4.2.3) along with Python for quantum circuit 

integration. Molecular graph structures and associated 

quantum properties were obtained from public 

datasets such as QM7b, ESOL, and FreeSolv. 

SMILES representations were standardized using 

RDKit, and molecular graphs were converted into 

undirected graphs using canonical atom connectivity 

and bond order. Atomic descriptors and quantum 

mechanical properties were extracted using 

cheminformatics toolkits and cross-referenced with 

metadata provided in each dataset. Property values 

such as molecular energy, solvation free energy, 

dipole moment, and aqueous solubility were parsed 

and filtered for completeness. 

In addition to static molecular features, simulation 

metadata including temperature, pressure, solvent 

environment, and experimental protocols were 

included where available. Data were accessed through 

RESTful APIs or downloaded in bulk (e.g., JSON, 

SDF, or CSV format) and parsed using the jsonlite, 

httr, and xml2 packages in R. Metadata extraction and 

merging across sources were handled through custom 

pipeline scripts to ensure data consistency and 

alignment between graph structures and target labels. 

For each molecular entry, a unique identifier was 

maintained and associated with the corresponding 

molecular graph, property label, and feature vector. 

Datasets were preprocessed to handle missing values, 

normalize continuous features, and encode categorical 

variables where applicable. Additionally, a molecular 

tagging scheme was applied to track molecules across 

multiple datasets and experimental conditions. To 

emulate realistic low-resource scenarios, stratified 

sampling was applied to downsample the datasets. In 

the active learning experiments, molecules were 

selected based on acquisition functions that reflect 

prediction uncertainty under the variational posterior 

derived from our quantum encoder. All processed 

datasets used in this study are publicly available, and 

the code for data retrieval and preprocessing is 

provided in the supplementary repository (see Data 

Availability section). 

 

XI. DATA PARSING 

 

Molecular graph construction was performed by 

parsing standardized SMILES strings into molecular 

graphs consisting of atoms as nodes and bonds as 

edges. Canonicalization and sanitization of molecular 

structures were conducted using RDKit and Open 

Babel libraries to ensure consistency across datasets. 

Atom-level features included atomic number, valency, 

aromaticity, hybridization state, and formal charge. 

Bond-level features captured bond type, conjugation, 

and ring membership. 

For each molecule, the adjacency matrix and 

associated feature matrices were stored in structured 

formats such as NumPy arrays and PyTorch tensors 

for integration with the graph convolutional layers. To 

incorporate quantum encoding, each molecular graph 

was transformed into a format compatible with 

variational quantum circuits. These encodings 
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included molecule-level feature vectors, Hamiltonian 

parameters, and circuit depth constraints, prepared 

using custom scripts and Qiskit modules. 

All data parsing and feature engineering were 

executed via a unified pipeline implemented in 

Python, leveraging pandas, numpy, rdkit, and qiskit 

libraries. Molecules were filtered based on validity, 

size (e.g., number of atoms ≤ 23), and availability of 

corresponding target properties. Processed molecular 

representations were batched and stored as pickled 

objects or HDF5 files for reproducibility and rapid 

loading during training. 

 

Regional-scale data visualization and analysis 

For visualization and exploratory data analysis, 

chemical space projections were created using 

unsupervised techniques such as t- distributed 

stochastic neighbour embedding (t-SNE) and principal 

component analysis (PCA). These methods mapped 

high-dimensional molecular feature vectors (derived 

from molecular graphs or quantum encodings) into 2D 

space for interpretation. The clusters of structurally 

 

similar compounds were color-coded by property 

values such as solubility or dipole moment (Fig. 2A–

C). 

To understand distributional patterns, kernel density 

estimation (KDE) was applied on molecular 

descriptors and property values. KDE plots 

highlighted regions of molecular feature space with 

high density of low- solubility compounds or high 

dipole moments. This was done using seaborn and 

scipy.stats libraries. Outliers and regions with sparse 

coverage were flagged to understand generalization 

limitations under low-data regimes. 

Temporal trends and experimental condition effects 

were also visualized. For example, molecular property 

distributions were compared across datasets stratified 

by temperature or pH conditions (Fig. 3A–B). Smooth 

spline fitting was applied using the scipy.interpolate 

module to visualize the non-linear relationship 

between molecular features (e.g., logP, molar mass, 

polar surface area) and target properties like aqueous 

solubility and binding affinity (Fig. 4A–C). 

To account for missing values in environmental or 

experimental metadata, nearest-neighbour imputation 

was used based on molecular fingerprint similarity 

(e.g., ECFP4 Tanimoto distance). The regional-scale 

visualization served a descriptive purpose to reveal 

representational diversity and patterns of property 

variation across chemical and quantum feature spaces. 

 Inter-dataset analyses 

Molecular property variation across datasets can often 

be attributed to experimental conditions, data source 

characteristics, and underlying biases in measurement 

techniques. These are critical factors that researchers 

can control or account for, unlike inherent molecular 

complexity. In our analysis, we considered three 

publicly available molecular property datasets QM7b-

small, ESOL, and FreeSolv which share common 

molecular scaffolds but differ in property types and 

data sparsity. For each dataset, we visualized the 

distribution of molecular properties such as solubility, 

atomization energy, and hydration free energy using 

ridge plots (Supplementary Fig. 1). 

 

To highlight structural and distributional variability, 

two datasets (with overlapping molecules) were 

selected for side-by-side comparison of graph 

topologies, atom types, and quantum features (Fig. 5). 

We then separated molecules by dataset source, 

ordered them by the median target property, and used 

boxplots to describe inter-dataset variability in 

predictions and errors (Fig. 6). Longitudinal 

performance shifts across training epochs for each 

dataset were visualized via spaghetti plots to compare 

convergence behaviour (Supplementary Fig. 2). 

 

To quantify the extent to which prediction variance 

was attributable to dataset origin or batch effects, we 

employed a linear mixed-effects model. Here, dataset 

source was modelled as a random effect, while training 

epoch and molecular size were treated as fixed effects. 

This model was implemented using lme4, lmerTest, 

and MuMIn packages in R. Two-sided p-values were 

computed and adjusted for multiple hypothesis testing 

using the Holm-Bonferroni method. 

 

To evaluate how well dataset-level features could 

predict molecular properties, we included structural 

complexity (e.g., number of rings, heteroatoms), 

average molecular weight, and graph density as 

predictors. These were used in a supervised AutoML 

pipeline, implemented via the h2o package in R. 

Predictive performance was assessed by R², RMSE, 

and MAE between predicted and actual property 

values (Fig. 7). 
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XII. INTRA-DATASET ANALYSES 

 

Within each dataset, molecular-level variability is 

another key factor affecting model performance. Each 

molecule was uniquely identified and processed with 

a consistent tag. Multiple graph augmentations (e.g., 

noise injection, atom masking) were performed to 

simulate repeated observations of each molecule 

during training. A representative dataset (e.g., ESOL) 

was selected, and hierarchical clustering was 

performed to group molecules based on their latent 

VQ- GCN embeddings and longitudinal prediction 

trends (Fig. 8). 

To account for intra-dataset heterogeneity, we 

extended the mixed- effects model to include molecule 

identity as a second-level random effect. This model 

considered both dataset and molecule ID as random 

effects, while time step and graph size were treated as 

fixed effects. Two-sided p-values were calculated and 

corrected for multiple testing. Predicted vs. observed 

property values were plotted for both inter- dataset and 

intra-dataset analyses to assess the explanatory benefit 

of including molecule-level information (Fig. 9). 

This comparison demonstrates the potential gains 

from molecule- specific modelling   particularly 

relevant for low-data regimes or high- noise properties   

by capturing variance not explained by dataset-level 

features alone. 

 

XIII. VQ-GCN MODEL INTERFACE APPLET 

 

Beyond data collection and modelling, real-world 

usability demands tools that facilitate fine-grained 

molecular analysis. To support model transparency 

and assist researchers in probing predictions, we 

developed an interactive web-based applet that 

summarizes prediction performance, uncertainty, and 

feature attributions for individual molecules. 

Upon selecting a dataset and molecule identifier, the 

applet displays: 

1. The molecular structure (2D and 3D rendering); 

2. Node-level and edge-level features with quantum 

encodings; 

3. Comparative statistics of predicted vs. ground-

truth properties across datasets; 

4. Attention maps or feature importance 

visualizations; 

5. Error histograms for similar molecules (based on 

fingerprint similarity); 

6. Time-series plots of predicted values across 

training checkpoints; 

7. Latent embedding trajectories from the VQ 

module; 

8. Confidence intervals for the model’s property 

estimates. 

This applet provides granular control for inspecting 

molecular property predictions, model interpretability, 

and performance debugging, and lays the groundwork 

for integrating quantum-enhanced GNNs into active 

learning loops and scientific workflows. 
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