
© January 2026 | IJIRT | Volume 12 Issue 8 | ISSN: 2349-6002

IJIRT 190619 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3009

Just-In-Time Bug Prediction Framework Using Data

Analytics, Soft Computing, and Deep Kendall Analysis

Veena Janardhan Jadhav1, Dr. Prakash Devale2, Dr. Rohini Jadhav3, Dr. Suhas Patil4
1Assistant Professor, Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune

2,4Professor, Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune
3Associate Professor, Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune

Abstract— Just-In-Time (JIT) bug prediction improves

software quality by identifying defect-prone commits at

submission time, yet existing methods suffer from class

imbalance, weak representation of code change

semantics, high false-positive rates, and limited

explainability. Motivated by these challenges, this work

proposes an interpretable JIT bug prediction framework

integrating data balancing, structural feature learning,

and deep sequence modeling. A Density-aware

Borderline Synthetic Tomek (DBST) cleanup mechanism

addresses class imbalance by preserving critical

boundary instances while improving class separation. An

Explainable Backfit Structural Transformer captures

syntactic and semantic code change structures using

dependency and constituency parsing with equivariant

semantic attention. Additionally, an Explainable Deep

Kendall Analysis module employs a Deep Loopy Bi-

LSTM to model long-term commit dependencies and

rank-based correlations, reducing false positives. A

global-local, model-agnostic interpretability mechanism

further provides instance-level explanations. The

proposed framework enhances prediction reliability,

interpretability, and practical applicability in real-world

software development workflows.

Index Terms— class imbalance, explainable deep

learning, Just-in-Time bug prediction, Kendall

correlation, structural code analysis

I. INTRODUCTION

Early identification of software defects is essential for

reducing development cost and maintaining high

softwarequality[1],[14]. Just-In-Time (JIT) bug

prediction addresses this need by evaluating the risk of

code changes at the moment they are committed,

enabling development teams to prioritise code reviews

and testing activities more effectively [2], [11]. By

analysing information derived from code

modifications and commit histories, JIT models

provide timely insights that support efficient and

proactive quality assurance [2],[16].

Despite considerable progress, existing JIT software

defect prediction approaches still face important

limitations. JIT datasets are typically highly

imbalanced, with defective commits representing only

a small fraction of the data, which often biases learning

algorithms and degrades generalization performance

[4],[17]. In addition, many approaches rely on shallow

or coarse-grained features that fail to capture the

underlying syntactic and semantic structure of code

changes [8],[11]. The increasing use of complex

learning models has further introduced challenges

related to interpretability, as many predictions are

difficult for practitioners to understand or trust in

practical development settings [10],[18].

To address these challenges, this paper proposes an

integrated JIT bug prediction framework that jointly

emphasizes robustness, accuracy, and interpretability.

The framework combines density-aware data cleanup

to handle class imbalance, structured feature

extraction to model code semantics and syntax, and

explainable dependency analysis to reduce false

positives while providing transparent prediction

rationale. Together, these components aim to improve

the practical reliability and adoption of JIT bug

prediction in real-world software engineering

workflows.

II. RELATED WORK

Software defect prediction has been extensively

studied to improve software quality and reduce

maintenance costs. Early research primarily focused

on module-level defect prediction, using static

software metrics such as code size, complexity, and

© January 2026 | IJIRT | Volume 12 Issue 8 | ISSN: 2349-6002

IJIRT 190619 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3010

historical defect data with classical machine learning

classifiers [1],[4] including Naïve Bayes, Decision

Trees, Support Vector Machines, and Random Forests.

Although these approaches demonstrated reasonable

accuracy, they suffered from poor generalization,

project dependency, and severe class imbalance issues

[3],[7].

To address these challenges, researchers introduced

soft computing and hybrid models, such as fuzzy logic

systems, neuro-fuzzy frameworks, ensemble learning,

and evolutionary optimization techniques. These

approaches improved prediction accuracy and

uncertainty handling but increased model complexity

and relied heavily on static metrics, limiting their

ability to capture semantic characteristics of code

changes.

Class imbalance has been identified as a critical

limitation in defect prediction. Oversampling

techniques such as SMOTE and its variants were

widely adopted to rebalance datasets [5]. While these

methods improved recall, they frequently generated

noisy synthetic instances near class boundaries,

resulting in elevated false-positive rates [6],[17].

Conversely, undersampling methods often removed

informative majority-class instances, degrading

overall performance.

More recent studies have focused on Just-In-Time

(JIT) bug prediction, which aims to identify defect-

prone commits at commit time using change-level

features [2],[11] such as code churn, developer

activity, and historical changes. Large-scale datasets

such as ApacheJIT enabled the application of

advanced machine learning and deep learning models

for JIT prediction. However, JIT datasets remain

highly imbalanced, noisy, and sensitive to boundary

instances, making effective data preprocessing

essential.

To enhance feature representation, several works

employed deep learning models, including

autoencoders, convolutional neural networks, graph-

based neural networks, and Bi-LSTMs, to capture

syntactic, semantic, and temporal characteristics of

code changes [8],[9]. Although these models achieved

performance improvements, they often produced high

false-positive rates, required extensive labeled data,

and lacked transparency.

Explainability has therefore emerged as a key

requirement for practical adoption. Model-agnostic

explanation techniques such as LIME and SHAP have

been applied to defect prediction [12],[13]; however,

these methods frequently fail to generate explanations

that align with developer intuition, particularly in JIT

settings [10],[18] where synthetic neighbors may not

accurately represent real commit behavior.

Overall, existing literature highlights persistent

limitations in handling class imbalance without

boundary distortion, capturing deep syntactic and

semantic relationships, modeling long-term commit

dependencies, and providing trustworthy, instance-

level explanations. These gaps motivate the need for

integrated and interpretable JIT bug prediction

frameworks.

III. PROPOSED METHODOLOGY

Modern Just-In-Time (JIT) bug prediction systems

often struggle with three practical issues: highly

imbalanced datasets, weak representation of code

change semantics, and poor explainability. To

overcome these challenges, this work proposes an end-

to-end, explainable JIT bug prediction framework that

integrates data cleanup, structure-aware feature

learning, deep sequential modeling, and transparent

explanations into a unified pipeline.

First, the raw JIT commit data is processed using a

Density-aware Borderline Synthetic Tomek (DBST)

cleanup mechanism [5],[6],[17]. Instead of treating

boundary samples as noise, DBST preserves and

refines them using density-based clustering,

Borderline SMOTE, and Tomek link removal. This

step effectively balances the dataset while maintaining

meaningful decision boundaries, addressing a major

limitation of traditional oversampling techniques.

An Explainable Backfit Structural Transformer

extracts both syntactic and semantic features from

code changes. Dependency and constituency parsing

capture how code elements are structurally related,

while an equivariant semantic attention mechanism

models the intent and meaning behind code

modifications [8],[11]. The backfitting process further

refines important features, ensuring that only relevant

structural patterns influence prediction.

The extracted features are then passed to a Deep

Kendall Analysis module, built using a Deep Loopy

Bidirectional LSTM [9],[16]. This component

captures long-range and temporal dependencies across

commit histories and ranks commits based on defect

risk. Kendall’s rank correlation is used to stabilize

© January 2026 | IJIRT | Volume 12 Issue 8 | ISSN: 2349-6002

IJIRT 190619 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3011

predictions and reduce false positives, making the

model more suitable for real-world code review

prioritization.

Finally, a global–local model-agnostic explanation

layer generates human-interpretable explanations

[12],[13],[18]. It highlights why a specific commit is

flagged as risky (local view) and reveals overall defect

patterns across the project (global view). This ensures

that the model does not behave as a black box and

supports developer trust and adoption.

Overall, the proposed methodology delivers a

balanced, structure-aware, and explainable JIT bug

prediction system, directly addressing the

shortcomings identified in existing bug prediction

research.

IV. MATHEMATICAL MODEL

This section presents the mathematical formulation of

the proposed Just-In-Time (JIT) bug prediction

framework, comprising density-aware data cleanup,

structural feature learning, and ranking-oriented defect

prediction.

A. Problem Definition

Let the JIT dataset be defined as:

D = {(xi, yi)}i=1
N , yi ∈ {0,1}

where xirepresents a commit instance and yidenotes its

defect label (buggy or clean). Given the severe class

imbalance (y = 1 ≪ y = 0), the objective is to learn a

function:

f: xi → P(yi = 1 ∣ xi)

that accurately predicts and ranks defect-inducing

commits.

B. Density-Aware DBST Cleanup Mechanism

To address imbalance and boundary noise, a Density-

aware Borderline Synthetic Tomek (DBST)

mechanism is applied.

The taxicab (Manhattan) distance between two

commit vectors is defined as:

d(xi, xj) = ∑ ∣

k

xik − xjk ∣

The local relative density of a commit xiis computed

as:

ρi = ∑
1

d(xi, xj)
xj∈Ni

Low-density instances near class boundaries are

treated as critical learning points.

Borderline SMOTE generates synthetic minority

samples near these regions, while Tomek Links

identify and remove overlapping majority–minority

pairs.

The resulting balanced dataset is denoted as:

D′ = DBST(D)

C. Structural Feature Representation

Each commit is represented through joint syntactic and

semantic modeling using an Explainable Backfit

Structural Transformer.

The syntactic relationship between code elements

ciand cjis expressed as:

Sij = f(ci, cj)

capturing dependency and constituency structures.

Semantic representation is obtained using an

equivariant attention mechanism:

Ej = ∑ αji

i

⋅ hi

where αjidenotes attention weights and hirepresents

latent code embeddings.

The final commit representation is formed as:

Z = [S   ∣∣  E]

Backfitting iteratively refines feature contributions,

enhancing stability and interpretability.

D. Deep Kendall-Based Bug Prediction

To model temporal dependencies across code changes,

the extracted representations are passed to a Deep

Loopy Bi-LSTM:

ht = BiLSTM(Zt, ht−1)

Bidirectional processing captures both historical and

forward contextual information.

The probability of a commit being defective is

estimated as:

P(y = 1 ∣ Z) = σ(Wht + b)

where σ(⋅)is the sigmoid activation.

E. Ranking Evaluation Using Kendall’s Tau

Rather than binary classification alone, commits are

ranked by predicted defect risk [16]. The agreement

between predicted and actual rankings is measured

using Kendall’s Tau [15]:

τ =
C − D

C + D

where Cand Ddenote concordant and discordant

commit pairs, respectively. A higher τ indicates more

© January 2026 | IJIRT | Volume 12 Issue 8 | ISSN: 2349-6002

IJIRT 190619 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3012

reliable prioritization of high-risk commits for code

review.

V.CONCLUSION

This work presents an interpretable JIT bug prediction

framework that effectively addresses class imbalance,

captures structural and semantic code change

information, and reduces false positives. The DBST

cleanup mechanism improves data quality, while deep

sequential modeling with Kendall-based ranking

supports reliable commit prioritization [6],[17]. By

providing clear, human-interpretable explanations, the

proposed approach enhances practical usability and

developer trust, making it well suited for real-world

software development workflows [16],[18]. Top

ofForm Bottom of Form

REFERENCES

[1] T. Menzies, J. Greenwald, and A. Frank, “Data

mining static code attributes to learn defect

predictors,” IEEE Transactions on Software

Engineering, vol. 33, no. 1, pp. 2–13, 2007.

[2] S. Kim, E. J. Whitehead Jr., and Y. Zhang,

“Classifying software changes: Clean or

buggy?” IEEE Transactions on Software

Engineering, vol. 34, no. 2, pp. 181–196, 2008.

[3] J. Nam and S. Kim, “Heterogeneous defect

prediction,” Proceedings of the 2015 10th Joint

Meeting on Foundations of Software

Engineering (ESEC/FSE), pp. 508–519, 2015.

[4] T. M. Khoshgoftaar, K. Gao, and N. Seliya,

“Attribute selection and imbalanced data:

Problems in software defect prediction,”

Proceedings of the 22nd IEEE International

Conference on Tools with Artificial

Intelligence, pp. 137–144, 2010.

[5] N. V. Chawla, K. W. Bowyer, L. O. Hall, and

W. P. Kegelmeyer, “SMOTE: Synthetic

minority over-sampling technique,” Journal of

Artificial Intelligence Research, vol. 16, pp.

321–357, 2002.

[6] G. E. Batista, R. C. Prati, and M. C. Monard,

“A study of the behavior of several methods for

balancing machine learning training data,”

ACM SIGKDD Explorations, vol. 6, no. 1, pp.

20–29, 2004.

[7] Z. Li, X. Jing, X. Zhu, H. Zhang, and B. Xu,

“Heterogeneous defect prediction with two-

stage ensemble learning,” Automated Software

Engineering, vol. 25, pp. 1–46, 2018.

[8] J. Hoang, S. Kamei, D. Lo, and E. Shihab,

“DeepJIT: An end-to-end deep learning

framework for just-in-time defect prediction,”

Proceedings of the 2019 IEEE/ACM

International Conference on Mining Software

Repositories (MSR), pp. 34–45, 2019.

[9] Z. Chen, W. Zhang, J. Chen, and X. Yang,

“Just-in-time defect prediction via deep

learning,” Information and Software

Technology, vol. 109, pp. 1–15, 2019.

[10] Y. Wang, G. Li, T. Liu, and H. Chen,

“Explainable defect prediction with attention-

based neural networks,” IEEE Access, vol. 9,

pp. 128923–128935, 2021.

[11] S. Panichella, A. Zaidman, and A. Bacchelli,

“The impact of code changes on software

quality: A large-scale empirical study,”

Empirical Software Engineering, vol. 26, no. 4,

2021.

[12] S. Lundberg and S.-I. Lee, “A unified approach

to interpreting model predictions,” Advances in

Neural Information Processing Systems

(NeurIPS), pp. 4765–4774, 2017.

[13] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why

should I trust you? Explaining the predictions

of any classifier,” Proceedings of the 22nd

ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp.

1135–1144, 2016.

[14] J. Han, M. Kamber, and J. Pei, Data Mining:

Concepts and Techniques, 3rd ed., Morgan

Kaufmann, 2012.

[15] M. Kendall, “A new measure of rank

correlation,” Biometrika, vol. 30, no. 1–2, pp.

81–93, 1938.

[16] Y. Li, Y. Wang, and M. Harman, “Improving

just-in-time defect prediction by ranking

change risk,” IEEE Transactions on Software

Engineering, vol. 49, no. 2, pp. 1043–1058,

2023.

[17] H. Tong, X. Xia, D. Lo, and S. Li, “Revisiting

class imbalance in software defect prediction,”

ACM Transactions on Software Engineering

and Methodology, vol. 31, no. 3, 2022.

[18] K. Zhang, S. Wang, and D. Lo, “Interpretable

deep learning for software defect prediction,”

© January 2026 | IJIRT | Volume 12 Issue 8 | ISSN: 2349-6002

IJIRT 190619 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3013

IEEE Transactions on Reliability, vol. 72, no.

1, pp. 45–60, 2023.

[19] V. J. Jadhav, P. Devale, R. Jadhav, M.

Molawade, S. Mohite, and R. V. Bidwe, “Bug

predictive models based on data analytics and

soft computing techniques: A survey,” in

Proceedings of the 10th International

Conference on Computing for Sustainable

Global Development (INDIACom), Mar. 2023,

pp. 1–11.

[20] V. J. Jadhav, P. Devale, and A. Kadam, “JIT

software bug prediction using DBST cleanup

mechanism with explainable backfit

transformer and deep Kendal lanalysis,”in

Proceedings of the 12th International

Conference on Computing for Sustainable

Global Development (INDIACom), New

Delhi, India, 2025, pp. 1936–1943.

