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Abstract— Just-In-Time (JIT) bug prediction improves 

software quality by identifying defect-prone commits at 

submission time, yet existing methods suffer from class 

imbalance, weak representation of code change 

semantics, high false-positive rates, and limited 

explainability. Motivated by these challenges, this work 

proposes an interpretable JIT bug prediction framework 

integrating data balancing, structural feature learning, 

and deep sequence modeling. A Density-aware 

Borderline Synthetic Tomek (DBST) cleanup mechanism 

addresses class imbalance by preserving critical 

boundary instances while improving class separation. An 

Explainable Backfit Structural Transformer captures 

syntactic and semantic code change structures using 

dependency and constituency parsing with equivariant 

semantic attention. Additionally, an Explainable Deep 

Kendall Analysis module employs a Deep Loopy Bi-

LSTM to model long-term commit dependencies and 

rank-based correlations, reducing false positives. A 

global-local, model-agnostic interpretability mechanism 

further provides instance-level explanations. The 

proposed framework enhances prediction reliability, 

interpretability, and practical applicability in real-world 

software development workflows. 

 

Index Terms— class imbalance, explainable deep 

learning, Just-in-Time bug prediction, Kendall 

correlation, structural code analysis 

 

I. INTRODUCTION 

 

Early identification of software defects is essential for 

reducing development cost and maintaining high 

softwarequality[1],[14]. Just-In-Time (JIT) bug 

prediction addresses this need by evaluating the risk of 

code changes at the moment they are committed, 

enabling development teams to prioritise code reviews 

and testing activities more effectively [2], [11]. By 

analysing information derived from code 

modifications and commit histories, JIT models 

provide timely insights that support efficient and 

proactive quality assurance [2],[16]. 

Despite considerable progress, existing JIT software 

defect prediction approaches still face important 

limitations. JIT datasets are typically highly 

imbalanced, with defective commits representing only 

a small fraction of the data, which often biases learning 

algorithms and degrades generalization performance 

[4],[17]. In addition, many approaches rely on shallow 

or coarse-grained features that fail to capture the 

underlying syntactic and semantic structure of code 

changes [8],[11]. The increasing use of complex 

learning models has further introduced challenges 

related to interpretability, as many predictions are 

difficult for practitioners to understand or trust in 

practical development settings [10],[18]. 

To address these challenges, this paper proposes an 

integrated JIT bug prediction framework that jointly 

emphasizes robustness, accuracy, and interpretability. 

The framework combines density-aware data cleanup 

to handle class imbalance, structured feature 

extraction to model code semantics and syntax, and 

explainable dependency analysis to reduce false 

positives while providing transparent prediction 

rationale. Together, these components aim to improve 

the practical reliability and adoption of JIT bug 

prediction in real-world software engineering 

workflows.  

II. RELATED WORK 

 

Software defect prediction has been extensively 

studied to improve software quality and reduce 

maintenance costs. Early research primarily focused 

on module-level defect prediction, using static 

software metrics such as code size, complexity, and 
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historical defect data with classical machine learning 

classifiers [1],[4] including Naïve Bayes, Decision 

Trees, Support Vector Machines, and Random Forests. 

Although these approaches demonstrated reasonable 

accuracy, they suffered from poor generalization, 

project dependency, and severe class imbalance issues 

[3],[7]. 

To address these challenges, researchers introduced 

soft computing and hybrid models, such as fuzzy logic 

systems, neuro-fuzzy frameworks, ensemble learning, 

and evolutionary optimization techniques. These 

approaches improved prediction accuracy and 

uncertainty handling but increased model complexity 

and relied heavily on static metrics, limiting their 

ability to capture semantic characteristics of code 

changes. 

Class imbalance has been identified as a critical 

limitation in defect prediction. Oversampling 

techniques such as SMOTE and its variants were 

widely adopted to rebalance datasets [5]. While these 

methods improved recall, they frequently generated 

noisy synthetic instances near class boundaries, 

resulting in elevated false-positive rates [6],[17]. 

Conversely, undersampling methods often removed 

informative majority-class instances, degrading 

overall performance. 

More recent studies have focused on Just-In-Time 

(JIT) bug prediction, which aims to identify defect-

prone commits at commit time using change-level 

features [2],[11] such as code churn, developer 

activity, and historical changes. Large-scale datasets 

such as ApacheJIT enabled the application of 

advanced machine learning and deep learning models 

for JIT prediction. However, JIT datasets remain 

highly imbalanced, noisy, and sensitive to boundary 

instances, making effective data preprocessing 

essential. 

To enhance feature representation, several works 

employed deep learning models, including 

autoencoders, convolutional neural networks, graph-

based neural networks, and Bi-LSTMs, to capture 

syntactic, semantic, and temporal characteristics of 

code changes [8],[9]. Although these models achieved 

performance improvements, they often produced high 

false-positive rates, required extensive labeled data, 

and lacked transparency. 

Explainability has therefore emerged as a key 

requirement for practical adoption. Model-agnostic 

explanation techniques such as LIME and SHAP have 

been applied to defect prediction [12],[13]; however, 

these methods frequently fail to generate explanations 

that align with developer intuition, particularly in JIT 

settings [10],[18] where synthetic neighbors may not 

accurately represent real commit behavior. 

Overall, existing literature highlights persistent 

limitations in handling class imbalance without 

boundary distortion, capturing deep syntactic and 

semantic relationships, modeling long-term commit 

dependencies, and providing trustworthy, instance-

level explanations. These gaps motivate the need for 

integrated and interpretable JIT bug prediction 

frameworks. 

 

III. PROPOSED METHODOLOGY 

 

Modern Just-In-Time (JIT) bug prediction systems 

often struggle with three practical issues: highly 

imbalanced datasets, weak representation of code 

change semantics, and poor explainability. To 

overcome these challenges, this work proposes an end-

to-end, explainable JIT bug prediction framework that 

integrates data cleanup, structure-aware feature 

learning, deep sequential modeling, and transparent 

explanations into a unified pipeline. 

First, the raw JIT commit data is processed using a 

Density-aware Borderline Synthetic Tomek (DBST) 

cleanup mechanism [5],[6],[17]. Instead of treating 

boundary samples as noise, DBST preserves and 

refines them using density-based clustering, 

Borderline SMOTE, and Tomek link removal. This 

step effectively balances the dataset while maintaining 

meaningful decision boundaries, addressing a major 

limitation of traditional oversampling techniques. 

An Explainable Backfit Structural Transformer 

extracts both syntactic and semantic features from 

code changes. Dependency and constituency parsing 

capture how code elements are structurally related, 

while an equivariant semantic attention mechanism 

models the intent and meaning behind code 

modifications [8],[11]. The backfitting process further 

refines important features, ensuring that only relevant 

structural patterns influence prediction. 

The extracted features are then passed to a Deep 

Kendall Analysis module, built using a Deep Loopy 

Bidirectional LSTM [9],[16]. This component 

captures long-range and temporal dependencies across 

commit histories and ranks commits based on defect 

risk. Kendall’s rank correlation is used to stabilize 



© January 2026 | IJIRT | Volume 12 Issue 8 | ISSN: 2349-6002 

IJIRT 190619 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3011 

predictions and reduce false positives, making the 

model more suitable for real-world code review 

prioritization. 

Finally, a global–local model-agnostic explanation 

layer generates human-interpretable explanations 

[12],[13],[18]. It highlights why a specific commit is 

flagged as risky (local view) and reveals overall defect 

patterns across the project (global view). This ensures 

that the model does not behave as a black box and 

supports developer trust and adoption. 

Overall, the proposed methodology delivers a 

balanced, structure-aware, and explainable JIT bug 

prediction system, directly addressing the 

shortcomings identified in existing bug prediction 

research. 

 

IV. MATHEMATICAL MODEL 

 

This section presents the mathematical formulation of 

the proposed Just-In-Time (JIT) bug prediction 

framework, comprising density-aware data cleanup, 

structural feature learning, and ranking-oriented defect 

prediction. 

A. Problem Definition 

Let the JIT dataset be defined as: 

D = {(xi, yi)}i=1
N , yi ∈ {0,1} 

where xirepresents a commit instance and yidenotes its 

defect label (buggy or clean). Given the severe class 

imbalance (y = 1 ≪ y = 0), the objective is to learn a 

function: 

f: xi → P(yi = 1 ∣ xi) 

that accurately predicts and ranks defect-inducing 

commits. 

 

B. Density-Aware DBST Cleanup Mechanism 

To address imbalance and boundary noise, a Density-

aware Borderline Synthetic Tomek (DBST) 

mechanism is applied. 

The taxicab (Manhattan) distance between two 

commit vectors is defined as: 

d(xi, xj) = ∑ ∣

k

xik − xjk ∣ 

The local relative density of a commit xiis computed 

as: 

ρi = ∑
1

d(xi, xj)
xj∈Ni

 

Low-density instances near class boundaries are 

treated as critical learning points. 

Borderline SMOTE generates synthetic minority 

samples near these regions, while Tomek Links 

identify and remove overlapping majority–minority 

pairs. 

The resulting balanced dataset is denoted as: 

D′ = DBST(D) 

 

C. Structural Feature Representation 

Each commit is represented through joint syntactic and 

semantic modeling using an Explainable Backfit 

Structural Transformer. 

The syntactic relationship between code elements 

ciand cjis expressed as: 

Sij = f(ci, cj) 

capturing dependency and constituency structures. 

Semantic representation is obtained using an 

equivariant attention mechanism: 

Ej = ∑ αji

i

⋅ hi 

where αjidenotes attention weights and hirepresents 

latent code embeddings. 

The final commit representation is formed as: 

Z = [S   ∣∣   E] 

Backfitting iteratively refines feature contributions, 

enhancing stability and interpretability. 

 

D. Deep Kendall-Based Bug Prediction 

To model temporal dependencies across code changes, 

the extracted representations are passed to a Deep 

Loopy Bi-LSTM: 

ht = BiLSTM(Zt, ht−1) 

Bidirectional processing captures both historical and 

forward contextual information. 

The probability of a commit being defective is 

estimated as: 

P(y = 1 ∣ Z) = σ(Wht + b) 

where σ(⋅)is the sigmoid activation. 

E. Ranking Evaluation Using Kendall’s Tau 

Rather than binary classification alone, commits are 

ranked by predicted defect risk [16]. The agreement 

between predicted and actual rankings is measured 

using Kendall’s Tau [15]: 

τ =
C − D

C + D
 

where Cand Ddenote concordant and discordant 

commit pairs, respectively. A higher τ indicates more 
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reliable prioritization of high-risk commits for code 

review. 

V.CONCLUSION 

 

This work presents an interpretable JIT bug prediction 

framework that effectively addresses class imbalance, 

captures structural and semantic code change 

information, and reduces false positives. The DBST 

cleanup mechanism improves data quality, while deep 

sequential modeling with Kendall-based ranking 

supports reliable commit prioritization [6],[17]. By 

providing clear, human-interpretable explanations, the 

proposed approach enhances practical usability and 

developer trust, making it well suited for real-world 

software development workflows [16],[18]. Top 

ofForm Bottom of Form 
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