© January 2026 | IJIRT | Volume 12 Issue 8 | ISSN: 2349-6002

Just-In-Time Bug Prediction Framework Using Data

Analytics, Soft Computing, and Deep Kendall Analysis

Veena Janardhan Jadhav', Dr. Prakash Devale?, Dr. Rohini Jadhav® Dr. Suhas Patil*
! Assistant Professor, Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune

2*Professor, Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune
I Associate Professor, Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune

Abstract— Just-In-Time (JIT) bug prediction improves
software quality by identifying defect-prone commits at
submission time, yet existing methods suffer from class
imbalance, weak representation of code change
semantics, high false-positive rates, and limited
explainability. Motivated by these challenges, this work
proposes an interpretable JIT bug prediction framework
integrating data balancing, structural feature learning,
and deep sequence modeling. A Density-aware
Borderline Synthetic Tomek (DBST) cleanup mechanism
addresses class imbalance by preserving critical
boundary instances while improving class separation. An
Explainable Backfit Structural Transformer captures
syntactic and semantic code change structures using
dependency and constituency parsing with equivariant
semantic attention. Additionally, an Explainable Deep
Kendall Analysis module employs a Deep Loopy Bi-
LSTM to model long-term commit dependencies and
rank-based correlations, reducing false positives. A
global-local, model-agnostic interpretability mechanism
further provides instance-level explanations. The
proposed framework enhances prediction reliability,
interpretability, and practical applicability in real-world
software development workflows.

Index Terms— class imbalance, explainable deep
learning, Just-in-Time bug prediction, Kendall
correlation, structural code analysis

I. INTRODUCTION

Early identification of software defects is essential for
reducing development cost and maintaining high
softwarequality[1],[14]. Just-In-Time (JIT) bug
prediction addresses this need by evaluating the risk of
code changes at the moment they are committed,
enabling development teams to prioritise code reviews
and testing activities more effectively [2], [11]. By
analysing information derived from code

IJIRT 190619

modifications and commit histories, JIT models
provide timely insights that support efficient and
proactive quality assurance [2],[16].
Despite considerable progress, existing JIT software
defect prediction approaches still face important
limitations. JIT datasets are typically highly
imbalanced, with defective commits representing only
a small fraction of the data, which often biases learning
algorithms and degrades generalization performance
[4],[17]. In addition, many approaches rely on shallow
or coarse-grained features that fail to capture the
underlying syntactic and semantic structure of code
changes [8],[11]. The increasing use of complex
learning models has further introduced challenges
related to interpretability, as many predictions are
difficult for practitioners to understand or trust in
practical development settings [10],[18].
To address these challenges, this paper proposes an
integrated JIT bug prediction framework that jointly
emphasizes robustness, accuracy, and interpretability.
The framework combines density-aware data cleanup
to handle class imbalance, structured feature
extraction to model code semantics and syntax, and
explainable dependency analysis to reduce false
positives while providing transparent prediction
rationale. Together, these components aim to improve
the practical reliability and adoption of JIT bug
prediction in real-world software engineering
workflows.

II. RELATED WORK

Software defect prediction has been extensively
studied to improve software quality and reduce
maintenance costs. Early research primarily focused
on module-level defect prediction, using static
software metrics such as code size, complexity, and

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3009

© January 2026 | IJIRT | Volume 12 Issue 8 | ISSN: 2349-6002

historical defect data with classical machine learning
classifiers [1],[4] including Naive Bayes, Decision
Trees, Support Vector Machines, and Random Forests.
Although these approaches demonstrated reasonable
accuracy, they suffered from poor generalization,
project dependency, and severe class imbalance issues
BLI7]-

To address these challenges, researchers introduced
soft computing and hybrid models, such as fuzzy logic
systems, neuro-fuzzy frameworks, ensemble learning,
and evolutionary optimization techniques. These
approaches improved prediction accuracy and
uncertainty handling but increased model complexity
and relied heavily on static metrics, limiting their
ability to capture semantic characteristics of code
changes.

Class imbalance has been identified as a critical
limitation in defect prediction. Oversampling
techniques such as SMOTE and its variants were
widely adopted to rebalance datasets [S]. While these
methods improved recall, they frequently generated
noisy synthetic instances near class boundaries,
resulting in elevated false-positive rates [6],[17].
Conversely, undersampling methods often removed
informative majority-class instances, degrading
overall performance.

More recent studies have focused on Just-In-Time
(JIT) bug prediction, which aims to identify defect-
prone commits at commit time using change-level
features [2],[11] such as code churn, developer
activity, and historical changes. Large-scale datasets
such as Apache]IT enabled the application of
advanced machine learning and deep learning models
for JIT prediction. However, JIT datasets remain
highly imbalanced, noisy, and sensitive to boundary
instances, making effective data preprocessing
essential.

To enhance feature representation, several works
employed deep learning models, including
autoencoders, convolutional neural networks, graph-
based neural networks, and Bi-LSTMs, to capture
syntactic, semantic, and temporal characteristics of
code changes [8],[9]. Although these models achieved
performance improvements, they often produced high
false-positive rates, required extensive labeled data,
and lacked transparency.

Explainability has therefore emerged as a key
requirement for practical adoption. Model-agnostic
explanation techniques such as LIME and SHAP have

IJIRT 190619

been applied to defect prediction [12],[13]; however,
these methods frequently fail to generate explanations
that align with developer intuition, particularly in JIT
settings [10],[18] where synthetic neighbors may not
accurately represent real commit behavior.

Overall, existing literature highlights persistent
limitations in handling class imbalance without
boundary distortion, capturing deep syntactic and
semantic relationships, modeling long-term commit
dependencies, and providing trustworthy, instance-
level explanations. These gaps motivate the need for
integrated and interpretable JIT bug prediction
frameworks.

III. PROPOSED METHODOLOGY

Modern Just-In-Time (JIT) bug prediction systems
often struggle with three practical issues: highly
imbalanced datasets, weak representation of code
change semantics, and poor explainability. To
overcome these challenges, this work proposes an end-
to-end, explainable JIT bug prediction framework that
integrates data cleanup, structure-aware feature
learning, deep sequential modeling, and transparent
explanations into a unified pipeline.

First, the raw JIT commit data is processed using a
Density-aware Borderline Synthetic Tomek (DBST)
cleanup mechanism [5],[6],[17]. Instead of treating
boundary samples as noise, DBST preserves and
refines them wusing density-based clustering,
Borderline SMOTE, and Tomek link removal. This
step effectively balances the dataset while maintaining
meaningful decision boundaries, addressing a major
limitation of traditional oversampling techniques.

An Explainable Backfit Structural Transformer
extracts both syntactic and semantic features from
code changes. Dependency and constituency parsing
capture how code elements are structurally related,
while an equivariant semantic attention mechanism
models the intent and meaning behind code
modifications [8],[11]. The backfitting process further
refines important features, ensuring that only relevant
structural patterns influence prediction.

The extracted features are then passed to a Deep
Kendall Analysis module, built using a Deep Loopy
Bidirectional LSTM [9],[16]. This component
captures long-range and temporal dependencies across
commit histories and ranks commits based on defect
risk. Kendall’s rank correlation is used to stabilize

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3010

© January 2026 | IJIRT | Volume 12 Issue 8 | ISSN: 2349-6002

predictions and reduce false positives, making the
model more suitable for real-world code review
prioritization.

Finally, a global-local model-agnostic explanation
layer generates human-interpretable explanations
[12],[13],[18]. It highlights why a specific commit is
flagged as risky (local view) and reveals overall defect
patterns across the project (global view). This ensures
that the model does not behave as a black box and
supports developer trust and adoption.

Overall, the proposed methodology delivers a
balanced, structure-aware, and explainable JIT bug
prediction system, directly addressing the
shortcomings identified in existing bug prediction
research.

IV. MATHEMATICAL MODEL

This section presents the mathematical formulation of
the proposed Just-In-Time (JIT) bug prediction
framework, comprising density-aware data cleanup,
structural feature learning, and ranking-oriented defect
prediction.
A. Problem Definition
Let the JIT dataset be defined as:

D = {(x, yD}L1 yi € {0,1}
where x;represents a commit instance and y;denotes its
defect label (buggy or clean). Given the severe class
imbalance (y = 1 <y = 0), the objective is to learn a
function:

fixi = P(yi = 11x;)

that accurately predicts and ranks defect-inducing
commits.

B. Density-Aware DBST Cleanup Mechanism

To address imbalance and boundary noise, a Density-
aware Borderline Synthetic Tomek (DBST)
mechanism is applied.

The taxicab (Manhattan) distance between two
commit vectors is defined as:

d(x;, %) = Z | Xik — X |
K
The local relative density of a commit x;is computed

~ 1
T L d0ax)

X]'ENi

as:

IJIRT 190619

Low-density instances near class boundaries are
treated as critical learning points.
Borderline SMOTE generates synthetic minority
samples near these regions, while Tomek Links
identify and remove overlapping majority—minority
pairs.

The resulting balanced dataset is denoted as:

D' = DBST(D)

C. Structural Feature Representation
Each commit is represented through joint syntactic and
semantic modeling using an Explainable Backfit
Structural Transformer.
The syntactic relationship between code elements
ciand cjis expressed as:

Sij = f(ci ¢;)
capturing dependency and constituency structures.
Semantic representation is obtained using an
equivariant attention mechanism:

E; = z i - hy
1

where aj;denotes attention weights and h;represents
latent code embeddings.
The final commit representation is formed as:

Z=1[S Il E]
Backfitting iteratively refines feature contributions,
enhancing stability and interpretability.

D. Deep Kendall-Based Bug Prediction
To model temporal dependencies across code changes,
the extracted representations are passed to a Deep
Loopy Bi-LSTM:
h; = BILSTM(Z, hy_4)
Bidirectional processing captures both historical and
forward contextual information.
The probability of a commit being defective is
estimated as:
Py=11Z) = 6(Wh;+Db)
where o(-)is the sigmoid activation.
E. Ranking Evaluation Using Kendall’s Tau
Rather than binary classification alone, commits are
ranked by predicted defect risk [16]. The agreement
between predicted and actual rankings is measured
using Kendall’s Tau [15]:
C-D

"Tt+p
where Cand Ddenote concordant and discordant
commit pairs, respectively. A higher t indicates more

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3011

© January 2026 | IJIRT | Volume 12 Issue 8 | ISSN: 2349-6002

reliable prioritization of high-risk commits for code
review.
V.CONCLUSION

This work presents an interpretable JIT bug prediction
framework that effectively addresses class imbalance,
captures structural and semantic code change
information, and reduces false positives. The DBST
cleanup mechanism improves data quality, while deep
sequential modeling with Kendall-based ranking
supports reliable commit prioritization [6],[17]. By
providing clear, human-interpretable explanations, the
proposed approach enhances practical usability and
developer trust, making it well suited for real-world
software development workflows [16],[18]. Top
ofForm Bottom of Form

REFERENCES

[1] T. Menzies, J. Greenwald, and A. Frank, “Data
mining static code attributes to learn defect
predictors,” IEEE Transactions on Software
Engineering, vol. 33, no. 1, pp. 2—-13, 2007.

[2] S. Kim, E. J. Whitehead Jr., and Y. Zhang,
“Classifying software changes: Clean or
buggy?” IEEE Transactions on Software
Engineering, vol. 34, no. 2, pp. 181-196, 2008.

[3] J. Nam and S. Kim, “Heterogeneous defect
prediction,” Proceedings of the 2015 10th Joint
Meeting on Foundations of Software
Engineering (ESEC/FSE), pp. 508-519, 2015.

[4] T. M. Khoshgoftaar, K. Gao, and N. Seliya,
“Attribute selection and imbalanced data:
Problems in software defect prediction,”
Proceedings of the 22nd IEEE International
Conference on Tools with Artificial
Intelligence, pp. 137-144, 2010.

[5] N. V. Chawla, K. W. Bowyer, L. O. Hall, and
W. P. Kegelmeyer, “SMOTE: Synthetic
minority over-sampling technique,” Journal of
Artificial Intelligence Research, vol. 16, pp.
321-357, 2002.

[6] G. E. Batista, R. C. Prati, and M. C. Monard,
“A study of the behavior of several methods for
balancing machine learning training data,”
ACM SIGKDD Explorations, vol. 6, no. 1, pp.
20-29, 2004.

[7] Z. Li, X. Jing, X. Zhu, H. Zhang, and B. Xu,
“Heterogeneous defect prediction with two-

IJIRT 190619

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

stage ensemble learning,” Automated Software
Engineering, vol. 25, pp. 1-46, 2018.

J. Hoang, S. Kamei, D. Lo, and E. Shihab,
“DeepJIT: An end-to-end deep learning
framework for just-in-time defect prediction,”
Proceedings of the 2019 IEEE/ACM
International Conference on Mining Software
Repositories (MSR), pp. 3445, 2019.

Z. Chen, W. Zhang, J. Chen, and X. Yang,
“Just-in-time defect prediction via deep
learning,” Information = and Software
Technology, vol. 109, pp. 1-15, 2019.

Y. Wang, G. Li, T. Liu, and H. Chen,
“Explainable defect prediction with attention-
based neural networks,” IEEE Access, vol. 9,
pp. 128923-128935, 2021.

S. Panichella, A. Zaidman, and A. Bacchelli,
“The impact of code changes on software
quality: A large-scale empirical study,”
Empirical Software Engineering, vol. 26, no. 4,
2021.

S. Lundberg and S.-I. Lee, “A unified approach
to interpreting model predictions,” Advances in
Neural Information Processing Systems
(NeurIPS), pp. 4765-4774, 2017.

M. T. Ribeiro, S. Singh, and C. Guestrin, “Why
should I trust you? Explaining the predictions
of any classifier,” Proceedings of the 22nd
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp.
1135-1144, 2016.

J. Han, M. Kamber, and J. Pei, Data Mining:
Concepts and Techniques, 3rd ed., Morgan
Kaufmann, 2012.

M. Kendall, “A new measure of rank
correlation,” Biometrika, vol. 30, no. 1-2, pp.
81-93, 1938.

Y. Li, Y. Wang, and M. Harman, “Improving
just-in-time defect prediction by ranking
change risk,” IEEE Transactions on Software
Engineering, vol. 49, no. 2, pp. 1043—-1058,
2023.

H. Tong, X. Xia, D. Lo, and S. Li, “Revisiting
class imbalance in software defect prediction,”
ACM Transactions on Software Engineering
and Methodology, vol. 31, no. 3, 2022.

K. Zhang, S. Wang, and D. Lo, “Interpretable
deep learning for software defect prediction,”

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3012

© January 2026 | IJIRT | Volume 12 Issue 8 | ISSN: 2349-6002

IEEE Transactions on Reliability, vol. 72, no.
1, pp. 45-60, 2023.

[19] V. J. Jadhav, P. Devale, R. Jadhav, M.
Molawade, S. Mohite, and R. V. Bidwe, “Bug
predictive models based on data analytics and
soft computing techniques: A survey,” in
Proceedings of the 10th International
Conference on Computing for Sustainable
Global Development (INDIACom), Mar. 2023,
pp. 1-11.

[20] V. J. Jadhav, P. Devale, and A. Kadam, “JIT
software bug prediction using DBST cleanup
mechanism with explainable backfit
transformer and deep Kendal lanalysis,”in
Proceedings of the 12th International
Conference on Computing for Sustainable
Global Development (INDIACom), New
Delhi, India, 2025, pp. 1936-1943.

IJIRT 190619 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3013

