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Abstract—Epilepsy is a lifelong neurological disorder 

characterized by sudden and unpredictable surges of 

electrical activity in the brain, resulting in seizures that 

affect movement, awareness, and behavior. Although 

electroencephalography (EEG) plays a crucial role in 

epilepsy diagnosis, conventional EEG monitoring 

requires sophisticated clinical infrastructure, making 

long-term and continuous observation impractical for 

many patients. This work presents a compact, non-

invasive, and portable system capable of detecting 

seizure-like patterns in real time using EEG signals. The 

proposed system employs lightweight preprocessing, 

eighteen interpretable EEG features with additional 

derived measures, and an embedded hybrid CNN–

LSTM classifier deployed on a low-cost 

microcontroller. An IoT layer enables real-time alerts 

and remote visualization of physiological parameters. 

Experimental validation using the CHB-MIT Scalp 

EEG Dataset and supplementary dry-electrode 

recordings demonstrates that the proposed approach 

achieves high detection accuracy while remaining cost-

effective and suitable for home-based and non-clinical 

monitoring applications. 

 

Index Terms— Epilepsy, EEG, Embedded Machine 

Learning, CNN–LSTM, IoT Monitoring, Biomedical 

Signal Processing 

 

I. INTRODUCTION 

 

Epilepsy affects almost fifty million individuals all 

around the world, with a major portion of them 

residing in places where infrastructure is limited for 

purposes of diagnosis [1]. Fits and seizures begin 

from abnormal neuronal firing that randomly changes 

be- haviour, motor control, and consciousness 

temporarily [3]. Traditional diagnostic workflows are 

dependent on EEG monitoring, which needs 

specialised hospital equipment, an expert’s 

interpretation, and controlled environments that act as 

barriers that restrict accessibility for patients in 

previously mentioned low infrastructure areas. [4]. 

Progress in new wearable and bendable, waterproof 

sensors, low-power controllers and processors, and 

embedded machine learning systems has now paved 

the way for lightweight seizure detection systems that 

operate outside controlled clinical settings. [2, 5]. 

These systems combine signal processing techniques 

with AI-based classifiers to automatically distinguish 

seizure activity from normal EEG patterns. However, 

many such solutions depend on computationally 

heavy algorithms or multi-channel medical hardware, 

which limits their deployment on low-cost embedded 

platforms [6]. 

 

Our objective in the project is to design a practical, 

resource-efficient system for continuous, real-world 

EEG monitoring that integrates preprocessing, 

features that can be interpreted, and a hybrid CNN-

LSTM Deep learning model best suited for 

deployment onto microcontrollers. We also 

integrated a lightweight IoT layer for visualisation of 

the features extracted from the EEG signals and 

alerting, while carefully evaluating messaging 

services (e.g., Telegram) against memory and TLS 

constraints on the embedded device. 

 

II. LITERATURE REVIEW 

 

A. Existing Medical Techniques 

Clinical EEG interpretation is the top-tier standard 

for the diagnosis of epilepsy; doctors inspect the long 

recordings to identify epileptic activity such as 

’spike-and-wave’ discharges and sharp and 

unexplained transients [7]. Intra-cranial EEG (iEEG) 

im- proves accuracy tremendously but needs surgical 

action and is primarily reserved for extreme cases [8]. 

 

B. AI and Signal Processing Approaches 

Automated detection using ML and DL has matured 

considerably since the time of traditional EEG signal 

interpretation. Earlier works used classical classifiers 

such as SVM and Random For- est with hand-picked 
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features [9, 10], whereas recent research into this field 

employs deep learning architectures such as CNN, 

LSTM and hybrid CNN-LSTM (such as ours) to 

capture spatial, temporal patterns in EEG [11, 12]. 

Entropy-based and wavelet-derived features have 

also been shown to boost discriminability in the EEG 

Signals. [13, 14]. 

 

C. Deployment and Research Gaps 

ML model accuracy on benchmark datasets such as 

the one by CHB-MIT is excellent however these high-

performing models are impractical on 

microcontrollers due to memory, computation and 

latency constraints [5, 6]. Also, an end-to-end real-

time system involving acquisition, preprocessing, 

inference, and cloud integration is rarely written 

about in the literature [32]. Our system can address 

these gaps by dividing the computation responsibility 

across an STM32 for acquisition, preprocessing and 

model deployment and an ESP8266 for the data 

visualisation and IoT functions. The CNN-LSTM 

model has been quantised into an 8-bit TFLite model 

for deployment [21]. 

 

III. SYSTEM DESIGN 

 

Figure 1 shows the overall architecture of the entire 

project: EEG signal acquisition via a single-channel, 

low-cost dry-electrode system, analogue conditioning 

and amplification to measurable values, STM32-

based conversion to digital signals and then 

preprocessing, extraction of necessary features. The 

slave ESP8266 is used for message alerts, buzzer and 

LED alerts and also the data visualisation through a 

dashboard. 

 
Figure 1: Overall system architecture combining 

acquisition, processing, classification, and IoT-

based monitoring. 

 

A. Hardware Components 

The hardware of the entire project consists of: 

▪ Three-channel dry-electrode EEG headset: 

frontal electrodes to capture relevant waveforms 

while allowing for wear- ability and general 

mobility [23]. 

 

▪ BioAmp EXG Pill frontend: an integrated and 

low-noise electrophysiology analogue frontend 

sensor and amplifier combination that replaces 

the traditionally used instrumentation amplifiers 

such as INA333 or AD8237-class. It gives built-

in gain, filtering, and a high CMR ratio (CMRR) 

for the capturing of EEG signals in the 𝜇V value 

ranges while simplifying the broader hardware 

design [33]. 

 

▪ STM32 MCU: responsible for the ADC 

sampling in the 200–512 Hz ranges, bandpass and 

notch filtering, and for the feature extraction. The 

STM32 model used in this prototype was an 

STM32 with the specific model being the F446RE 

for its DSP capabilities, floating point and DMA 

support [17]. 

 

▪ ESP8266 MCU: chosen for its Wi-Fi 

connectivity (used for Twilio and Telegram) and 

sufficient RAM and flash memory for hosting a 

lightweight web server (dashboard) [18]. 

 

▪ Power subsystem: for the prototype, power was 

supplied directly from a laptop USB port, 

avoiding additional Li-ion battery management 

hardware to simplify rapid prototyping. 

 

▪ Local alerting: buzzer and LED controlled by the 

ESP8266 for immediate alarms on detection. 

 
Figure 2: basic circuit diagram of the proposed EEG 

monitoring system (buzzer and LED omitted). 

 

B. Software and Data Flow 

The firmware pipeline (Figure 3) is split across the two 

controllers to optimise latency as much as possible 

and allow for better re- source utilisation: 
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Figure 3: Firmware data flow from acquisition to 

output. 

 

1. Acquisition (STM32 and BIOAMP EXG pill: The 

STM32 ADC samples raw EEG through the 

BIOAMP EXG pill at 256 Hz (configurable 

between 200 to 512 Hz range) with ’DMA-

driven circular buffers’ to minimise CPU load as 

much as possible [19]. 

2. Preprocessing (STM32): digital 0.5 to 60 Hz 

bandpass filtering (we used IIR Butterworth), 

along with a 50/60 Hz IIR notch filter was made 

using fixed-point routines; then a moving-

average smoothing was applied to reduce 

impulsive noise from the earlier filters [16]. 

3. Feature extraction (STM32): We computed 18 

core features per window, along with a few 

additional derived features such as crest factor 

and spectral centroid and Peak to Peak (P2P) and 

packaged them as a compact feature bundle to be 

sent to the ESP8266. This feature bundle is ran 

through a quantised 8-bit TensorFlow Lite model 

that outputs seizure probability; if the threshold is 

exceeded, a local alert is also sent along with the 

message. 

4. Communication/Transportation: the feature 

bundle we spoke about earlier is now transmitted 

over USART (baud 9600 as we used Software 

Serial) (simple frame with header and footer and 

a checksum) to the ESP8266 for alerts and 

visualisation. 

5. Alerts (ESP8266): the ESP8266 is connected to 

a Buzzer and an LED. If a local alert message is 

transmitted by the STM32, the local alert is 

triggered and an MQTT event is published to the 

cloud dashboard along with the message being 

sent to the registered phone number. 

6. Cloud dashboard: HTTP endpoint receives the 

MQTT events, displays live feature trends, raw 

waveform snapshots, and stores event history for 

clinician review which can also be downloaded 

if needed. 

 

IV. METHODOLOGY 

 

A. EEG Data Acquisition 

Two types of EEG data were collected and turned 

into a single working dataset, and then used: 

 

• CHB-MIT Scalp EEG Dataset: clinical pediatric 

recordings sampled at 256 Hz with precise seizure 

annotations used for training and offline 

evaluation, and is available as an open source 

library for EEG classification model training. 

[22]. 

• Wearable dry-electrode recordings: three frontal 

channels were used to collect values in semi-

controlled daily activities to evaluate robustness 

to motion and common ambient noise [23, 24]. 

 

Figure 4 shows the standard 10–20 layout (for 

reference); our wearable used two frontal placements 

along with a reference be- hind the ear (temporal), 

approximating Fp1/Fp2/T5 for comfort while 

extracting meaningful signals [25]. 

 
Figure 4: Standard international 10-20 electrode 

layout [25]. 

 

B. Signal Processing and Feature Extraction 

Raw EEG signals are mixed with ocular artefacts, 

EMG, motion artefacts, and mains interference acting 

as noise. This noise acts as a major barrier to 

extraction and further preprocessing. The 

preprocessing pipeline shown below was designed to 

be operated on a microcontroller: 

 

• Bandpass filter: 0.5-60 Hz fourth-order 

Butterworth IIR filter (implemented as cascaded 
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biquads in the program) to retain bands relevant 

to the project [16]. 

 

• Notch filter: narrowband IIR notch filter at 50 Hz 

(you can also use 60 Hz, depending on your 

region) with high Q value to suppress mains 

interference (50 Hz in India) [20]. 

 

• Smoothing: short-window moving average 

windows (length= 5 to 11 samples, depending on 

the sampling rate used) was used to reduce the 

impulsive noise from the filters used before, 

while providing minimal noise towards the 

temporal resolution. 

 

• Artefact handling: Thresholding and an epoch 

rejection scheme for extreme amplitude 

transients (such as those greater than 500 𝜇V) 

was made and also channel-wise cor- relation 

checks were added to avoid processing gross 

motion artefacts received. 

 

The STM32 computes features for sliding windows 

(we used windows with 2 s length with 50% overlap) 

and generates the 18-feature bundle described below 

that is sent to the ESP8266. 

 

C. Feature Set 

The extracted feature set includes time-domain 

statistics (mean, variance, RMS, skewness, kurtosis), 

nonlinear measures (entropy, zero-crossing rate, 

Hjorth parameters), and frequency-domain 

descriptors (band powers, dominant frequency, 

spectral centroid, flatness, and crest factor). 

 

V. CNN–LSTM CLASSIFICATION MODEL 

 

A. Motivation 

The layers of the Convolutional Neural Network 

(CNN) capture short-term spatial dependencies in the 

received feature vector, while the LSTMs capture 

temporal evolution across adjacent win- dows. This 

comes out to be very important because seizures exhibit 

slow and gradual temporal buildup [11, 12]. 

 

 
Figure 5: CNN-LSTM Architecture. 

 

B. Architecture 

Figure 5 shows the model (placeholder). 

 

▪ 1D Convolution (kernel=3, filters=32) 

 

▪ Max Pool 

 

▪ LSTM(32 units) 

 

▪ Dense (16 units, ReLU) 

 

▪ Output (1 neuron, Sigmoid) 

 

C. Training 

Training was performed on a dataset comprising of 

normal values obtained by using the BIOAMP EXG 

pill and seizure values from the CHB-MIT dataset. 

[22]. 

Loss: Binary cross-entropy  

Optimiser: Adam 

Epochs: 80 

Batch size: 32 

 

D. TFLite Quantization 

We converted the model we trained above to an 8-bit 

quantised (int 8 size) TensorFlow Lite Micro model 

[21]. The Benefits of which are: 

 

▪ 4x smaller model size 

 

▪ 2x faster inference on STM32 

 

▪ slightly RAM usage 

 

Final model size: 102 kB(it may vary depending on 

compile flags used). 

Inference time on the STM32: 0.23 seconds. 

 

VI. FIRMWARE ARCHITECTURE AND REAL-

TIME LOGIC 

 

A. STM32 Data handling 

The complete signal processing and inference 

pipeline is done on the STM32: 

 

▪ ADC sampling at 256 Hz using a DMA circular 

buffer [19] 

 

▪ ISR-triggered processing on a 2 second window 

 

▪ Feature extraction using DSP (18+ temporal 

and spectral features) [17] 

▪ 8-bit quantised TF Lite-Micro CNN-LSTM 
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inference 

 

▪ UART transmission of the features, prediction, 

and system status to the ESP8266 in the form of 

a packet 

 

B. ESP8266 Runtime Loop 

 
 

C. Latency Breakdown 

 

Table 1: Measured End-to-End Latency (STM32 

+ ESP8266) 

Task Time (ms) 

STM32: preprocessing 5–10 

STM32: feature extraction 8–12 

STM32: TFLite inference 40–55 

UART transfer 3–5 

ESP8266: packet parsing 2–3 

ESP8266: dashboard refreshing 10–20 

ESP8266: MQTT publishing 15–25 

Total end-to-end 85–130 ms 

 

VII. MEMORY AND RESOURCE ANALYSIS 

 

A. STM32 Memory Use 

▪ TFLite Micro arena (8-bit model): 25–35 kB 

 

▪ DSP buffers: 8–12 kB 

 

▪ ADC and DMA buffers: 1–2 kB 

 

▪ Feature arrays: 1–2 kB 

 

▪ Stack and system: 8–10 kB 

 

▪ Total SRAM usage: 45–60 kB (within 

operational limits) 

 

 

B. ESP8266 Memory Use 

Since STM32 does all the heavy computation and 

mathematical work, the ESP8266 only handles the 

networking and UI: 

 

▪ Web server (HTML and CSS buffers): 20-40 kB 

 

▪ MQTT client: 6-10 kB 

 

▪ UART parsing: 1-2 kB 

 

▪ Dashboard JSON buffer: 3-5 kB 

 

▪ Free heap at runtime: 20-35 kB (5%) 

 

VIII. IoT DASHBOARD AND CLOUD 

INTEGRATION 

 

A. Dashboard Overview 

The ESP8266 hosts a lightweight local dashboard 

providing live EEG visualisation, feature trends, alert 

logs, and system status, with periodic auto-refresh. 

Data are synchronised with a cloud MQTT broker for 

remote clinician access. 

 

IX. RESULTS AND DISCUSSION 

 

A. Classification Performance 

The hybrid CNN-LSTM classifier showed us good 

results on the combined CHB-MIT dataset and 

wearable recordings. Performance metrics given 

below followed the standard evaluation procedure for 

optimal seizure detection [26]. 

 

Table 2: Performance Metrics of the Proposed 

Seizure Detection System 

Metric Value (%) 

Accuracy 93.12 

Recall (Sensitivity) 94.1 

Specificity 92.42 

Precision 93.26 

F1-Score 94.4 

 

B. Confusion Matrix 

The confusion matrix given below (Fig. 6) shows us the 

distribution of classification outcomes from the CNN-

LSTM model. 
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Figure 6: Confusion matrix of CNN–LSTM 

classifier. 

 

C. Latency and On-Device Real-Time Performance 

The end-to-end system latency of both devices was 

consistently below roughly 300 ms (Table 3). This 

allows us not to worry about the real-time monitoring 

constraints [5] of the devices. 

 

Table 3: Latency Breakdown and On-Device 

Performance 

 
 

X. APPLICATIONS 

 

A. Rural Healthcare and Low-Resource Settings 

Since low-cost microcontrollers and dry electrodes 

were used, the system can be used in rural clinics 

where EEG labs are lacking, enhancing accessibility 

and care in even the remotest of areas [27]. 

 

B. Telemedicine and Remote Neurology 

Using MQTT and cloud dashboards, doctors can 

observe trends, snapshots, and event histories 

remotely, allowing for better long- term care [28]. 

 

C. Predictive Healthcare Pipelines 

As the system also stores feature trajectories, it can be 

mixed into seizure forecasting algorithms [29], 

allowing for personalised risk predictions. 

 

 

XI. LIMITATIONS AND FUTURE WORK 

 

A. Motion Artifacts 

Dry electrodes suffer due to motion artefacts, which 

mimic epileptic activities of the brain [24]. 

 

B. Dataset Diversity 

CHB-MIT contains only children and pediatric 

subjects. Gener- alisation between adults and seniors 

requires multicenter datasets [26]. 

 

C. Hardware Constraints 

Only 3 channels are used; future versions may 

include: 

 

▪ 8-channel designs 

▪ Virtual electrode synthesis 

▪ Custom wearable PCB with case 

 

D. Seizure Prediction 

The current model can only detect seizures post-

onset. Future goals: 

 

▪ Pre-ictal prediction models 

▪ Temporal convolution networks (TCN) 

▪ Transformer-based EEG forecasting 

 

XII. ETHICAL CONSIDERATIONS 

 

All EEG data that we took from the CHB-MIT 

comply with its open-access license [22]. 

The other wearable data that we collected followed 

proper ethical guidelines such as: 

 

• Informed consent 

• No personal identifiers stored 

• Encrypted MQTT transport using TLS 

lightweight profiles 

 

These measures adhered to biomedical principles of 

autonomy, beneficence, and confidentiality followed 

throughout the world [31]. 

 

XIII. CONCLUSION 

 

This work presents a finished, completely non-

invasive EEG monitoring system integrating STM32-

based preprocessing, CNN– LSTM-based seizure 

detection and an IoT dashboard on an ESP8266. 

The ML model-based system achieved 93.1% 

accuracy using a lightweight, quantised TFLite 

model best suited for embedded deployment was 
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deployed on the STM32. 

Comprehensive debugging addressed the 

TLS/HTTPS limitations we encountered on ESP8266 

and also the UART desynchronization, and the 

dashboard rendering issues. 

The system’s portability, low cost, and good accuracy 

make it best suitable for rural healthcare and long-

term EEG supervision. Future extensions may include 

predictive modelling, multi-channel EEG, and 

wearable PCB miniaturisation with its own custom 

case. 
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