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Abstract—Epilepsy is a lifelong neurological disorder
characterized by sudden and unpredictable surges of
electrical activity in the brain, resulting in seizures that
affect movement, awareness, and behavior. Although
electroencephalography (EEG) plays a crucial role in
epilepsy diagnosis, conventional EEG monitoring
requires sophisticated clinical infrastructure, making
long-term and continuous observation impractical for
many patients. This work presents a compact, non-
invasive, and portable system capable of detecting
seizure-like patterns in real time using EEG signals. The
proposed system employs lightweight preprocessing,
eighteen interpretable EEG features with additional
derived measures, and an embedded hybrid CNN-
LSTM  classifier deployed on a low-cost
microcontroller. An loT layer enables real-time alerts
and remote visualization of physiological parameters.
Experimental validation using the CHB-MIT Scalp
EEG Dataset and supplementary dry-electrode
recordings demonstrates that the proposed approach
achieves high detection accuracy while remaining cost-
effective and suitable for home-based and non-clinical
monitoring applications.

Index Terms— Epilepsy, EEG, Embedded Machine
Learning, CNN-LSTM, loT Monitoring, Biomedical
Signal Processing

l. INTRODUCTION

Epilepsy affects almost fifty million individuals all
around the world, with a major portion of them
residing in places where infrastructure is limited for
purposes of diagnosis [1]. Fits and seizures begin
from abnormal neuronal firing that randomly changes
be- haviour, motor control, and consciousness
temporarily [3]. Traditional diagnostic workflows are
dependent on EEG monitoring, which needs
specialised hospital equipment, an expert’s
interpretation, and controlled environments that act as
barriers that restrict accessibility for patients in
previously mentioned low infrastructure areas. [4].

Progress in new wearable and bendable, waterproof
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sensors, low-power controllers and processors, and
embedded machine learning systems has now paved
the way for lightweight seizure detection systems that
operate outside controlled clinical settings. [2, 5].
These systems combine signal processing techniques
with Al-based classifiers to automatically distinguish
seizure activity from normal EEG patterns. However,
many such solutions depend on computationally
heavy algorithms or multi-channel medical hardware,
which limits their deployment on low-cost embedded
platforms [6].

Our objective in the project is to design a practical,
resource-efficient system for continuous, real-world
EEG monitoring that integrates preprocessing,
features that can be interpreted, and a hybrid CNN-
LSTM Deep learning model best suited for
deployment onto microcontrollers.  We also
integrated a lightweight 10T layer for visualisation of
the features extracted from the EEG signals and
alerting, while carefully evaluating messaging
services (e.g., Telegram) against memory and TLS
constraints on the embedded device.

Il. LITERATURE REVIEW

A. Existing Medical Techniques

Clinical EEG interpretation is the top-tier standard
for the diagnosis of epilepsy; doctors inspect the long
recordings to identify epileptic activity such as
’spike-and-wave’  discharges and sharp and
unexplained transients [7]. Intra-cranial EEG (iEEG)
im- proves accuracy tremendously but needs surgical
action and is primarily reserved for extreme cases [8].

B. Al and Signal Processing Approaches

Automated detection using ML and DL has matured
considerably since the time of traditional EEG signal
interpretation. Earlier works used classical classifiers
such as SVM and Random For- est with hand-picked
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features [9, 10], whereas recent research into this field
employs deep learning architectures such as CNN,
LSTM and hybrid CNN-LSTM (such as ours) to
capture spatial, temporal patterns in EEG [11, 12].
Entropy-based and wavelet-derived features have
also been shown to boost discriminability in the EEG
Signals. [13, 14].

C. Deployment and Research Gaps

ML model accuracy on benchmark datasets such as
the one by CHB-MIT is excellent however these high-
performing  models  are impractical ~ on
microcontrollers due to memory, computation and
latency constraints [5, 6]. Also, an end-to-end real-
time system involving acquisition, preprocessing,
inference, and cloud integration is rarely written
about in the literature [32]. Our system can address
these gaps by dividing the computation responsibility
across an STM32 for acquisition, preprocessing and
model deployment and an ESP8266 for the data
visualisation and loT functions. The CNN-LSTM
model has been quantised into an 8-bit TFLite model
for deployment [21].

M. SYSTEM DESIGN

Figure 1 shows the overall architecture of the entire
project: EEG signal acquisition via a single-channel,
low-cost dry-electrode system, analogue conditioning
and amplification to measurable values, STM32-
based conversion to digital signals and then
preprocessing, extraction of necessary features. The
slave ESP8266 is used for message alerts, buzzer and
LED alerts and also the data visualisation through a

dashboard.
( Storage )

Signal Signal Feature -
AcquisitionH ProcessingH Extraction HMO"“O“"Q

Classification
model

Figure 1: Overall system architecture combining
acquisition, processing, classification, and 10T-
based monitoring.

A. Hardware Components

The hardware of the entire project consists of:

»= Three-channel dry-electrode EEG headset:
frontal electrodes to capture relevant waveforms
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while allowing for wear- ability and general
mobility [23].

BioAmp EXG Pill frontend: an integrated and
low-noise electrophysiology analogue frontend
sensor and amplifier combination that replaces
the traditionally used instrumentation amplifiers
such as INA333 or AD8237-class. It gives built-
in gain, filtering, and a high CMR ratio (CMRR)
for the capturing of EEG signals in the 4V value
ranges while simplifying the broader hardware
design [33].

STM32 MCU: responsible for the ADC
sampling in the 200-512 Hz ranges, bandpass and
notch filtering, and for the feature extraction. The
STM32 model used in this prototype was an
STM32 with the specific model being the F446RE
for its DSP capabilities, floating point and DMA
support [17].

ESP8266 MCU: chosen for its Wi-Fi
connectivity (used for Twilio and Telegram) and
sufficient RAM and flash memory for hosting a
lightweight web server (dashboard) [18].

Power subsystem: for the prototype, power was
supplied directly from a laptop USB port,
avoiding additional Li-ion battery management
hardware to simplify rapid prototyping.

Local alerting: buzzer and LED controlled by the
ESP8266 for immediate alarms on detection.

{

Figure 2: basic circuit diagram of the proposed EEG
monitoring system (buzzer and LED omitted).

B. Software and Data Flow

The firmware pipeline (Figure 3) is splitacross the two
controllers to optimise latency as much as possible
and allow for better re- source utilisation:
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Figure 3: Firmware data flow from acquisition to
output.

1. Acquisition (STM32 and BIOAMP EXG pill: The
STM32 ADC samples raw EEG through the
BIOAMP EXG pill at 256 Hz (configurable
between 200 to 512 Hz range) with ’DMA-
driven circular buffers’ to minimise CPU load as
much as possible [19].

2. Preprocessing (STM32): digital 0.5 to 60 Hz
bandpass filtering (we used IIR Butterworth),
along with a 50/60 Hz IR notch filter was made
using fixed-point routines; then a moving-
average smoothing was applied to reduce
impulsive noise from the earlier filters [16].

3. Feature extraction (STM32): We computed 18
core features per window, along with a few
additional derived features such as crest factor
and spectral centroid and Peak to Peak (P2P) and
packaged them as a compact feature bundle to be
sent to the ESP8266. This feature bundle is ran
through a quantised 8-bit TensorFlow Lite model
that outputs seizure probability; if the threshold is
exceeded, a local alert is also sent along with the
message.

4. Communication/Transportation:  the feature
bundle we spoke about earlier is now transmitted
over USART (baud 9600 as we used Software
Serial) (simple frame with header and footer and
a checksum) to the ESP8266 for alerts and
visualisation.

5. Alerts (ESP8266): the ESP8266 is connected to
a Buzzer and an LED. If a local alert message is
transmitted by the STM32, the local alert is
triggered and an MQTT event is published to the
cloud dashboard along with the message being
sent to the registered phone number.

6. Cloud dashboard: HTTP endpoint receives the
MQTT events, displays live feature trends, raw
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waveform snapshots, and stores event history for
clinician review which can also be downloaded
if needed.

V. METHODOLOGY

A. EEG Data Acquisition
Two types of EEG data were collected and turned
into a single working dataset, and then used:

e CHB-MIT Scalp EEG Dataset: clinical pediatric
recordings sampled at 256 Hz with precise seizure
annotations used for training and offline
evaluation, and is available as an open source
library for EEG classification model training.
[22].

o Wearable dry-electrode recordings: three frontal
channels were used to collect values in semi-
controlled daily activities to evaluate robustness
to motion and common ambient noise [23, 24].

Figure 4 shows the standard 10-20 layout (for
reference); our wearable used two frontal placements
along with a reference be- hind the ear (temporal),
approximating Fpl/Fp2/T5 for comfort while
extracting meaningful signals [25].
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Figure 4: Standard international 10-20 electrode
layout [25].

B. Signal Processing and Feature Extraction

Raw EEG signals are mixed with ocular artefacts,
EMG, motion artefacts, and mains interference acting
as noise. This noise acts as a major barrier to
extraction and further preprocessing.  The
preprocessing pipeline shown below was designed to
be operated on a microcontroller:

e Bandpass filter: 0.5-60 Hz fourth-order
Butterworth IR filter (implemented as cascaded
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biguads in the program) to retain bands relevant
to the project [16].

¢ Notch filter: narrowband IIR notch filter at 50 Hz
(you can also use 60 Hz, depending on your
region) with high Q value to suppress mains
interference (50 Hz in India) [20].

e Smoothing: short-window moving average
windows (length= 5 to 11 samples, depending on
the sampling rate used) was used to reduce the
impulsive noise from the filters used before,
while providing minimal noise towards the
temporal resolution.

e Artefact handling: Thresholding and an epoch
rejection scheme for extreme amplitude
transients (such as those greater than 500 V)
was made and also channel-wise cor- relation
checks were added to avoid processing gross
motion artefacts received.

The STM32 computes features for sliding windows
(we used windows with 2 s length with 50% overlap)
and generates the 18-feature bundle described below
that is sent to the ESP8266.

C. Feature Set

The extracted feature set includes time-domain
statistics (mean, variance, RMS, skewness, kurtosis),
nonlinear measures (entropy, zero-crossing rate,
Hjorth  parameters), and  frequency-domain
descriptors (band powers, dominant frequency,
spectral centroid, flatness, and crest factor).

V. CNN-LSTM CLASSIFICATION MODEL

A. Motivation

The layers of the Convolutional Neural Network
(CNN) capture short-term spatial dependencies in the
received feature vector, while the LSTMs capture
temporal evolution across adjacent win- dows. This
comes out to be very important because seizures exhibit
slow and gradual temporal buildup [11, 12].

Figure 5: CNN-LSTM Architecture.

B. Architecture
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Figure 5 shows the model (placeholder).

= 1D Convolution (kernel=3, filters=32)
=  Max Pool

»  LSTM(32 units)

= Dense (16 units, ReLU)

= Output (1 neuron, Sigmoid)

C. Training

Training was performed on a dataset comprising of
normal values obtained by using the BIOAMP EXG
pill and seizure values from the CHB-MIT dataset.
[22].

Loss: Binary cross-entropy

Optimiser: Adam

Epochs: 80

Batch size: 32

D. TFLite Quantization

We converted the model we trained above to an 8-bit
quantised (int 8 size) TensorFlow Lite Micro model
[21]. The Benefits of which are:

= 4x smaller model size

= 2x faster inference on STM32

slightly RAM usage

Final model size: 102 kB(it may vary depending on
compile flags used).
Inference time on the STM32: 0.23 seconds.

VI. FIRMWARE ARCHITECTURE AND REAL-
TIME LOGIC

A. STM32 Data handling
The complete signal processing and inference
pipeline is done on the STM32:

= ADC sampling at 256 Hz using a DMA circular
buffer [19]

= |SR-triggered processing on a 2 second window
= Feature extraction using DSP (18+ temporal

and spectral features) [17]
= 8-bit quantised TF Lite-Micro CNN-LSTM
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inference

= UART transmission of the features, prediction,
and system status to the ESP8266 in the form of
a packet

B. ESP8266 Runtime Loop

Algorithm 1 ESP8266 Runtime Loop

Init WiFi, MQTT, WebServer
Init UART buffer
loop
Wait for STM32 status packet
Parse prediction. probability and device status
if prediction == seizure then
Trigger buzzer and LED
Publish MQTT alert
end if

UPdate dashboard JSON buftfer
end loop

C. Latency Breakdown

Table 1: Measured End-to-End Latency (STM32
+ ESP8266)

Task Time (Ms)
STM32: preprocessing 5-10
STM32: feature extraction 8-12
STM32: TFLite inference 40-55
UART transfer 35
ESP8266: packet parsing 2-3
ESP8266: dashboard refreshing 10-20
ESP8266: MQTT publishing 15-25

Total end-to-end 85-130 ms

VII. MEMORY AND RESOURCE ANALYSIS

A. STM32 Memory Use
= TFLite Micro arena (8-bit model): 25-35 kB

= DSP buffers: 8-12 kB

= ADC and DMA buffers: 1-2 kB

= Feature arrays: 1-2 kB

= Stack and system: 8-10 kB

= Total SRAM usage: 45-60 kB (within

operational limits)

B. ESP8266 Memory Use
Since STM32 does all the heavy computation and
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mathematical work, the ESP8266 only handles the
networking and Ul:

= Web server (HTML and CSS buffers): 20-40 kB
=  MQTT client: 6-10 kB

= UART parsing: 1-2 kB

= Dashboard JSON buffer: 3-5 kB

= Free heap at runtime: 20-35 kB (5%)

VIII. loT DASHBOARD AND CLOUD
INTEGRATION

A. Dashboard Overview

The ESP8266 hosts a lightweight local dashboard
providing live EEG visualisation, feature trends, alert
logs, and system status, with periodic auto-refresh.
Data are synchronised with a cloud MQTT broker for
remote clinician access.

IX. RESULTS AND DISCUSSION

A. Classification Performance
The hybrid CNN-LSTM classifier showed us good
results on the combined CHB-MIT dataset and
wearable recordings. Performance metrics given
below followed the standard evaluation procedure for
optimal seizure detection [26].

Table 2: Performance Metrics of the Proposed
Seizure Detection System

Metric Value (%)
Accuracy 93.12
Recall (Sensitivity) 94.1
Specificity 92.42
Precision 93.26
F1-Score 944

B. Confusion Matrix

The confusion matrix given below (Fig. 6) shows us the
distribution of classification outcomes from the CNN-
LSTM model.
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Figure 6: Confusion matrix of CNN-LSTM
classifier.
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C. Latency and On-Device Real-Time Performance
The end-to-end system latency of both devices was
consistently below roughly 300 ms (Table 3). This
allows us not to worry about the real-time monitoring
constraints [5] of the devices.

Table 3: Latency Breakdown and On-Device
Performance

Process Latency (ms)
TUART reception 3-5
Feature normalization 24
TFLite inference 180-200
MQTT publish 15-25
Dashboard update 10-20
Total 200-260

X. APPLICATIONS

A. Rural Healthcare and Low-Resource Settings
Since low-cost microcontrollers and dry electrodes
were used, the system can be used in rural clinics
where EEG labs are lacking, enhancing accessibility
and care in even the remotest of areas [27].

B. Telemedicine and Remote Neurology

Using MQTT and cloud dashboards, doctors can
observe trends, snapshots, and event histories
remotely, allowing for better long- term care [28].

C. Predictive Healthcare Pipelines

As the system also stores feature trajectories, it can be
mixed into seizure forecasting algorithms [29],
allowing for personalised risk predictions.
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Xl. LIMITATIONS AND FUTURE WORK

A. Motion Artifacts
Dry electrodes suffer due to motion artefacts, which
mimic epileptic activities of the brain [24].

B. Dataset Diversity

CHB-MIT contains only children and pediatric
subjects. Gener- alisation between adults and seniors
requires multicenter datasets [26].

C. Hardware Constraints
Only 3 channels are used; future versions may
include:

= 8-channel designs
Virtual electrode synthesis
= Custom wearable PCB with case

D. Seizure Prediction
The current model can only detect seizures post-
onset. Future goals:

= Pre-ictal prediction models
= Temporal convolution networks (TCN)
= Transformer-based EEG forecasting

XII. ETHICAL CONSIDERATIONS

All EEG data that we took from the CHB-MIT
comply with its open-access license [22].

The other wearable data that we collected followed
proper ethical guidelines such as:

+ Informed consent

« No personal identifiers stored

« Encrypted MQTT transport using TLS
lightweight profiles

These measures adhered to biomedical principles of
autonomy, beneficence, and confidentiality followed
throughout the world [31].

XII. CONCLUSION

This work presents a finished, completely non-
invasive EEG monitoring system integrating STM32-
based preprocessing, CNN— LSTM-based seizure
detection and an loT dashboard on an ESP8266.

The ML model-based system achieved 93.1%
accuracy using a lightweight, quantised TFLite
model best suited for embedded deployment was
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deployed on the STM32.

Comprehensive debugging addressed the
TLS/HTTPS limitations we encountered on ESP8266
and also the UART desynchronization, and the
dashboard rendering issues.

The system’s portability, low cost, and good accuracy
make it best suitable for rural healthcare and long-
term EEG supervision. Future extensions may include
predictive modelling, multi-channel EEG, and
wearable PCB miniaturisation with its own custom
case.
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