National Seminar on Shifting Paradigm in Science and Technology

ISSN: 2349-6002

The Influence of Artificial Intelligence on Science
Education

Anu Lata
Assistant Professor, Department of Education
Dasmesh Girls College, Chak Alla Baksh, Mukerian-144211
doi.org/10.64643/1JIRTV1216-191332-459

Abstract—The integration of artificial intelligence (Al) in
science education is reshaping teaching practices,
assessment, curriculum design, and learners’ epistemic
practices. This paper synthesizes recent empirical and
review literature (2013-2025) to answer: How does Al
influence science learning outcomes, pedagogical
practices, and assessment; what challenges and equity
risks exist; and what design principles should guide
responsible Al integration in science education? We find
consistent evidence that Al-driven systems-intelligent
tutoring systems (ITS), adaptive learning platforms,
educational robotics, and large language models (LLMs)
can improve formative feedback, scaffold inquiry, and
personalize learning pathways, particularly in STEM
domains. However, effects vary by context, teacher
expertise, data quality, and assessment alignment.
Ethical concerns (bias, transparency, data privacy) and
teacher preparation remain primary barriers. We
propose a socio-technical framework for integrating Al
into science classrooms and outline mixed-methods
designs to evaluate pedagogical impact, equity outcomes,
and teacher change. Key recommendations emphasize
teacher agency, curriculum alignment to scientific
practices, transparency, and iterative evaluation.

Index Terms—AIl in Education, Intelligent Tutoring
Systems, Large Language Models, Formative
Assessment, Equity, Teacher Professional Development

I. INTRODUCTION

Recent advances in machine learning, natural
language processing, and educational data mining
have produced tools with the potential to transform
science education. Al can provide individualized
feedback, model complex simulations, scaffold
inquiry-based labs, and support formative assessment
at scale. At the same time, these technologies raise
concerns about fairness, transparency, and the nature
of scientific learning when part of the reasoning

process is externalized to algorithms. This paper
reviews the empirical and theoretical literature to
synthesize what is known about AI’s influence on
science teaching and learning and to propose
principled directions for research and practice (1).

Il. LITERATURE REVIEW

() HISTORICAL ROOTS: ITS AND ADAPTIVE
SYSTEMS

Intelligent Tutoring Systems (ITS) and adaptive
instructional systems have decades of evidence
showing moderate improvements in STEM learning
outcomes, especially when providing stepwise
feedback and individualized pacing. Meta-analyses
indicate ITS have positive effects compared with
traditional classroom instruction, though often smaller
than one-on-one human tutoring; effect sizes vary by
subject, fidelity of domain model, and deployment
conditions. ([ida.org][2])

(I1) EDUCATIONAL ROBOTICS AND HANDS ON
SCIENCE LEARNING

Educational robots and sensor-enabled labs bring Al
to embodied science learning-helping students test
hypotheses, collect real-time data, and engage in
iterative experimentation. Reviews indicate robotics
can support engagement and conceptual understanding
in K-12 science, but teacher scaffolding and curricular
integration are essential.

(I11) LARGE LANGUAGE MODELS (LLMS) AND
GENERATIVE Al

The rapid spread of LLMs (e.g., GPT-family, others)
has created new affordances for drafting explanations,
generating formative questions, simulating “what-if”
scenarios, and offering conversational tutoring.
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Surveys and recent syntheses show LLMs can enhance
accessibility and creativity but raise risks:
hallucinations (incorrect but plausible outputs),
overreliance by learners, and propagation of biases
present in training data. Early studies suggest LLMs
can be powerful assistants when paired with scaffolds
and verification practices.

(V) ASSESSMENT,
LEARNING ANALYTICS
Al enables new forms of formative assessment
(automated scoring, instant hints, and model-based
feedback) and learning analytics that reveal students’
problem-solving paths. The promise is rapid,
personalized feedback aligned with scientific practices
(modeling, explanation, evidence-based reasoning).
However, validity and alignment with curricular goals
are ongoing concerns (4).

FEEDBACK, AND

(V) EQUITY, ETHICS AND TEACHER
PROFESSIONAL LEARNING

Multiple reviews emphasize equity risks (biased
outputs, uneven access to infrastructure), the need for
teacher professional development, and policy for
privacy and accountability. Successful
implementations foreground teacher agency-Al as
augmentation, not  replacement-and  explicit
instruction in Al literacy within science curricula.

I11. CONCEPTUAL FRAMEWORK: A SOCIO-
TECHNICAL MODEL FOR Al IN SCIENCE
EDUCATION

| propose the S-TAR model (Socio-technical
Alignment for Responsible Al), which centers four
interacting components:

(i) Student cognition and epistemic practices-how Al
supports hypothesis formation, modeling,
argumentation from evidence, and met cognition.

(i) Teacher mediation and pedagogy-teacher roles in
scaffolding, interpreting Al feedback, and maintaining
epistemic norms.

(iii) Technology affordances and limitations-accuracy,
explain ability, latency, domain coverage (e.g.,
physics vs. ecology), and propensity to hallucinate.

IV. CONTEXTUAL ETHICS AND GOVERNANCE
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data privacy, equity of access, algorithmic bias,
assessment validity, and institutional policy.

The framework guides design (align tool affordances
with target scientific practices), implementation
(teacher PD, classroom workflows), and evaluation
(learning outcomes + equity metrics + teacher
outcomes).

V. METHODOLOGICAL RECOMMENDATIONS
FOR EMPIRICAL STUDY

To robustly evaluate AI’s influence on science
education, combine these methods:

Cluster randomized controlled trials (RCTs) where
feasible (e.g., comparing curriculum + Al tutor vs.
curriculum alone) for causal estimates of learning
gains. Include pre/post content tests and transfer tasks.

MIXED-METHODS STUDIES: classroom
observations, teacher interviews, and analysis of
interaction logs to surface mechanisms (how feedback
was used, when students verified Al outputs).

LEARNING ANALYTICS AND SEQUENCE
MINING: analyze fine-grained traces (click streams,
solution steps) to model how Al feedback changes
problem-solving strategies.

EQUITY-FOCUSED ANALYSES: disaggregate
outcomes by socio-economic status, language
background, and prior achievement to detect
differential effects.

VALIDITY STUDIES FOR AUTOMATED
ASSESSMENT: align automated scoring rubrics with
expert human scoring and analyze reliability across
diverse student responses.

EXAMPLE MEASUREMENT INSTRUMENTS:
concept inventories in target science domains, rubrics
for scientific argumentation, surveys for epistemic
beliefs and Al trust.

VI. SYNTHESIS OF EMPIRICAL FINDINGS
(WHAT THE LITERATURE SHOWS)

(). LEARNING GAINS: ITS and adaptive platforms
produce small-to-moderate average gains in STEM
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subjects; LLM-augmented tutors show promise but
evidence is still emerging. Gains are largest when Al
provides timely, targeted feedback and is tightly
aligned with curriculum objectives (2).

(I. ENGAGEMENT AND MOTIVATION:
Educational robotics and interactive simulations
increase engagement and task persistence-especially
in younger learners-when combined with teacher-
guided inquiry.

(11). TEACHER PRACTICE: Teachers who receive
PD on Al tools and maintain control over assessment
choices tend to use Al more effectively; otherwise,
tools can be marginalized or used superficially (4).

(IV). EQUITY RISKS AND ACCESS: Without
policy and infrastructure investment, Al can widen
gaps-unequal device access, biases in
language/knowledge representation, and differential
teacher capacity.

V). ASSESSMENT VALIDITY AND
HALLUCINATION RISK: Generative models can
produce convincing but incorrect science explanations
(hallucinations). Systems that combine LLMs with
verification  modules  or  retrieval-augmented
approaches show more promise for reliable
educational use (3).

(vi). Practical guidelines for teachers, designers, and
policymakers

FOR TEACHERS

e Treat Al as an assistant-use outputs as starting
points, and teach students verification strategies
(cross-checking, experimental validation).

e Integrate Al-supported tasks that require
scientific practices (e.g., designing experiments,
constructing explanations) rather than only fact
retrieval.

e Seek PD that includes hands-on use of ed-Al tools
and pedagogical scenarios.

FOR DESIGNERS

e Prioritize explain ability: provide traceable
reasoning or sources for claims, and expose
uncertainty.
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o Align feedback with curricular rubrics (not only
correctness).

e Build retrieval-augmented systems to reduce
hallucinations and to tie outputs to authoritative
resources.

FOR POLICYMAKERS

e Invest in equitable access (devices, internet) and
in teacher preparation.

e Require transparency and data-privacy standards
for ed-Al vendors.

e  Support independent evaluation of Al tools in real
classrooms before large-scale adoption (4).

VII. LIMITATIONS OF EXISTING RESEARCH
AND OPEN QUESTIONS

() HETEROGENEITY OF EFFECTS: Many studies
report varied effect sizes; more replication across
contexts (countries, grade levels, subjects) is needed.

(1) SHORT-TERM FOCUS: Much evidence
addresses immediate learning gains; long-term
retention, transfer, and changes to students’ scientific
reasoning need study.

(1) LLM RELIABILITY: Rapidly evolving models
mean prior findings may age quickly; ongoing
evaluation is necessary.

(IV) ETHICAL MEASUREMENT: How to measure
and mitigate algorithmic bias in formative feedback
remains underdeveloped.

VIII. CONCLUSION

Al offers substantial opportunities to enhance science
education—improving personalized feedback,
enabling richer simulations, and scaling formative
assessment—when designed and implemented with
attention to pedagogy, transparency, and equity. The
most promising approach positions Al as a socio-
technical augmentation: powerful tools under teacher
mediation, aligned to scientific practices, and
governed by clear ethical and policy safeguards.
Future research should prioritize rigorous causal
studies, equity analyses, and the development of Al-
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aware curricula that teach students to use and critique
Al as part of scientific inquiry.
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