

Blockchain and IoT-Based Secure Framework for Intelligent Water Management

M. Rajkumar¹, M. Nivas², M. Rahul³, P. Lakshman⁴, R Sanghavi⁵, Dr. S Shiva Prasad⁵

^{1,2,3,4}Student, Department of CSE(DataScience), MallaReddy Engineering college, Secunderabad

⁵Assistant Professor, Department of CSE(DataScience), MallaReddy Engineering college, Secunderabad

⁶Professor, Department of CSE(DataScience), MallaReddy Engineering college, Secunderabad

Abstract—The growing shortage of clean water and the problems with traditional water management systems highlight the need for new technological solutions. This project suggests a blockchain-based water management system to improve transparency, security, and efficiency in tracking water distribution and usage. By using blockchain's decentralized ledger, the system records and verifies water usage data in real time across various stakeholders, including suppliers, distributors, and consumers. Smart contracts automate transactions and help ensure compliance with regulations and sustainability standards, reducing human errors and corruption. Furthermore, the unchangeable nature of blockchain offers reliable data for making policies and planning resources. Connecting with IoT sensors allows for precise monitoring of water quality and consumption, leading to better decision-making based on data. Overall, this project seeks to transform water management by establishing a clear, accountable, and efficient system that promotes sustainable resource use and fair water distribution for both communities and industries.

Index Terms—Blockchain, resource optimization, data security, IoT integration, water management, smart contracts, decentralization, transparency, sustainability, and real-time monitoring

I. INTRODUCTION

Water is an essential natural resource that sustains industry, agriculture, human life, and ecological balance. The availability of water resources has been severely strained in recent years due to population growth, rapid urbanization, climate variability, and rising industrial demand. Effective water management is crucial since many parts of the world are dealing with water scarcity, unequal distribution, and deteriorating water quality. As a result, both

communities and governments now consider the sustainable use of water resources to be crucial.

Conventional water management systems rely on manual data collection, sporadic reporting, and restricted monitoring capabilities. They are primarily centralized. These systems frequently have problems like imprecise measurement, slow data updates, a lack of transparency, and susceptibility to data manipulation. Water loss, unauthorized use, ineffective billing, and inadequate accountability are therefore frequent problems. Coordination between various stakeholders, such as water authorities, service providers, and customers, is made more difficult by the lack of a consistent and reliable data management framework.

In a blockchain-based water management system, smart contracts are essential for automating decision-making procedures. Smart contracts with predefined rules can compute usage-based billing, automatically enforce water allocation policies, and guarantee regulatory compliance. Water management policies are applied fairly and consistently thanks to this automation, which also lowers administrative overhead and human error.

To sum up, a blockchain-based water management system is a cutting-edge solution to the problems with conventional water governance. The system enhances sustainability, efficiency, and transparency by integrating automated policy enforcement, real-time monitoring, and decentralized data storage. In an increasingly water-stressed world, such an approach promotes responsible water use, builds stakeholder trust, and helps conserve water resources over the long term.

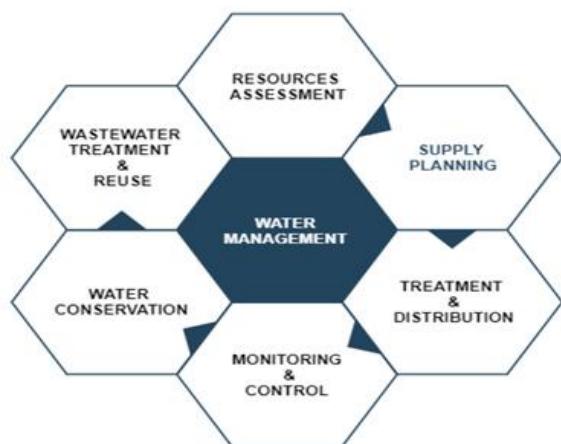


Figure 1. Main components of the smart water management system.

II. LITERATURE SURVEY

Growing scarcity, population expansion, and climate change have made water management a significant area of study. For data collection and distribution control, traditional water management systems mainly rely on centralized authorities. This frequently leads to data manipulation, inefficiencies, and a lack of transparency. To enhance water monitoring and decision-making, recent research has examined integrating technologies such as cloud computing, artificial intelligence, and the Internet of Things (IoT). IoT-based systems for real-time water quality and usage monitoring were proposed by researchers like Zhou et al. (2020), but issues with data integrity and centralized control persisted. Blockchain technology has become an intriguing solution to these problems. Blockchain offers a decentralized, immutable ledger that guarantees security, openness, and confidence between all stakeholders. According to Singh and Sharma (2021), smart contracts in water distribution systems can simplify operations and prevent data manipulation using blockchain technology.

According to additional research by Patel et al. (2022), combining blockchain with IoT enables precise tracking of water quality and usage, enhancing accountability and reducing losses. Despite these developments, issues like scalability, cost, and system interoperability still prevent blockchain from being widely used in water management.

Overall, research indicates that integrating blockchain and IoT technologies can significantly improve data dependability, sustainability, and water management

efficiency. This provides a solid foundation for the suggested blockchain-based water management system.

By combining IoT-based smart water meters, blockchain technology, and smart contracts, the suggested methodology overcomes the drawbacks of conventional centralized water management systems to guarantee safe, transparent, and automated water resource management. Conventional systems rely on centralized databases and manual meter readings, which are vulnerable to data manipulation, inaccurate billing, slow processing, and a lack of accountability. Unauthorized parties may alter or remove data once it is centrally stored, resulting in disagreements and lost profits.

III. PROPOSED METHODOLOGY

In the proposed system, Internet of Things (IoT)-enabled sensors and smart water meters are deployed at various points in the water supply network, including sources, distribution pipelines, and consumer endpoints. These devices continuously collect real-time data such as water flow rate, consumption volume, pressure levels, and quality parameters. The collected data is transmitted securely to the blockchain network, where it is validated and permanently recorded as immutable transactions.

The system's main data layer is blockchain technology, which keeps a distributed ledger that keeps track of all water use and distribution records. Each transaction is protected by cryptography and a time stamp, which makes sure that the data is accurate and can be traced. Because the ledger is shared among many nodes, no one person or group has control over the data. This gets rid of the risks that come with centralized data manipulation and unauthorized access.

The suggested system uses a decentralized blockchain-based methodology to address these problems, recording water consumption data in an unchangeable manner and automating billing processes. Real-time data collection, secure transmission, blockchain storage, smart contract execution, and user interaction are the various phases of the methodology's operation. Throughout the water management lifecycle, every step is intended to remove single points of failure and guarantee data integrity.

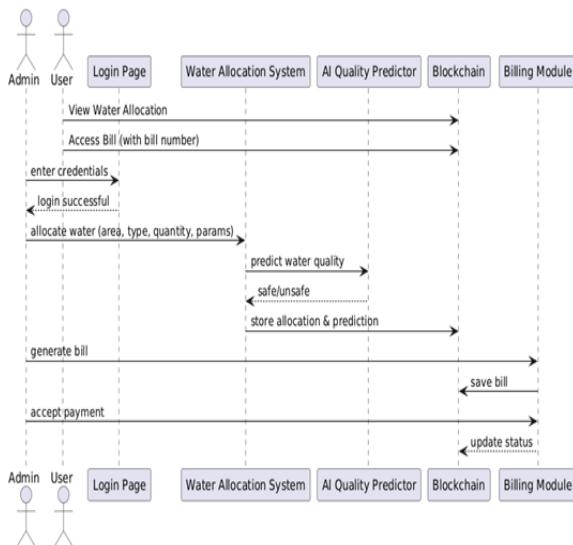


Figure 2. Methodology for Blockchain-Based System Blockchain-Based Identity Registration

Identity registration in blockchain is a secure and decentralized way to uniquely identify and authenticate the participants of water management. In the envisaged system, every user (administrators and consumers) authenticates via a blockchain-based identity system in order to be automatically identified, and no illegal access is permitted. As opposed to traditional identity systems that rely on central servers, this process decentralizes identity records throughout the blockchain, thereby eliminating points of failure and minimizing the potential for fraud as it relates to an individual's identity.

Upon registration, verification of user credentials and a transformed cryptographic representation for the blockchain ledger are performed. This procedure guarantees that private data shall be maintained as confidential, while identities can still be authenticated as deemed necessary. Once an identity is recorded, it

cannot be deleted or changed and stays forever, making it a reliable source of results over time. Every registered user is identified on the blockchain, allowing for the tracking of all activities within the system according to each user's profile.

All things considered, blockchain-based identity registration improves data security, builds trust, and streamlines authentication procedures. The system improves system integrity and operational efficiency by ensuring that only verified users can engage with water management operations through the provision of a transparent and tamper-resistant identity management solution.

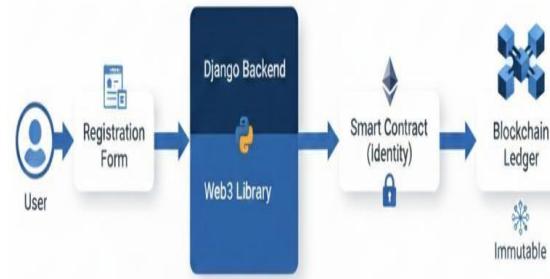


Figure 3. Identity Registration

3.1. IoT-Based Water Consumption Data Collection
 IoT-based smart water meters are used in the first step of the methodology to measure water consumption in real time. Water flow and consumption are continuously monitored by these meters, which are installed at consumer endpoints. In contrast to conventional meters, smart meters eliminate human error and manual intervention by automatically recording precise readings at regular intervals. The information gathered shows how much water is actually used and aids in the early identification of unusual consumption or leaks.

1	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidity	Potability
2	4.7865	204.89046	20791.32	7.30021187	368.5164	564.30865	10.37978308	86.99097046	2.963135	0
3	3.71608	129.42292	18630.06	6.63524588	364.5624	592.88536	15.18001312	56.32907628	4.500656	0
4	8.099124	224.23626	19909.54	9.2758836	325.7654	418.60621	16.86863693	66.42009251	3.055934	0
5	8.316766	214.37339	22018.42	8.05933238	356.8861	363.26652	18.4365245	100.3416744	4.628771	0
6	9.092223	181.10151	17978.99	6.54659997	310.1357	398.41081	11.55827944	31.99799273	4.075075	0
7	5.584087	188.31332	28748.69	7.54486879	326.6784	280.46792	8.39973464	54.91786184	2.559708	0
8	10.22386	248.07174	28749.72	7.51340847	393.6634	283.65163	13.78969532	84.60355617	2.672989	0
9	8.635849	203.36152	13672.09	4.56300869	303.3098	474.60764	12.3638167	62.79830896	4.401425	0
10	232.3764	118.98858	14285.58	7.80417355	268.6469	389.37557	12.70604897	53.92884577	3.595017	0
11	11.18028	227.23147	25484.51	9.07720002	404.0416	563.88548	17.92780641	71.97660103	4.370562	0
12	7.36064	165.5208	32452.61	7.55070091	326.6244	425.38342	15.58681044	78.74001566	3.662292	0
13	7.974522	218.6933	18767.66	8.1103845	345.5645	364.09823	14.5257457	76.48591118	4.011718	0
14	7.119824	156.70499	18730.81	3.60603609	282.3441	347.71503	15.92953591	79.50077834	3.445756	0
15	236.8766	150.17492	27331.36	6.83822347	299.4158	379.76183	19.37080718	76.50999553	4.413974	0

Table 1. Sample Water Quality Dataset for Potability Analysis

3.2. Blockchain-Based Data Storage

The water usage data is sent to the blockchain network after encryption. The encrypted consumption records are kept on the blockchain as unchangeable transactions rather than in a centralized database. Consumption value, timestamp, consumer identifier, and transaction hash are all included in each transaction. Data cannot be changed or removed once it has been recorded, guaranteeing openness and confidence between customers and water authorities.

3.3. Smart Contract-Based Billing and Payment Automation

The stored water consumption data is automatically processed by smart contracts that are implemented on the blockchain. The smart contract determines each customer's water bill automatically based on predetermined tariff rules. The user can access the generated bill via a mobile or web application. Payment confirmations are validated and stored on the blockchain, guaranteeing unchangeable billing and transaction records. Users can make payments digitally.

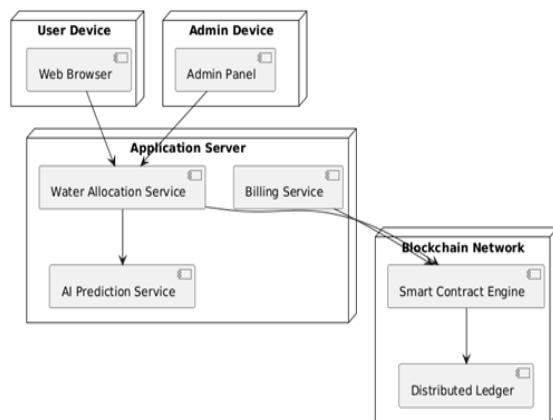


Figure 4. Smart Contract Authorization and Role-Based File Access Workflow

IV. PROPOSED METHODS

The proposed system introduces a set of integrated security methods designed to overcome the limitations of traditional perimeter-based and centralized authentication models. Each method contributes to eliminating implicit trust, preventing privilege persistence, and ensuring that access to resources is determined dynamically and verifiably. The approach combines decentralized identity management on the

blockchain, continuous request evaluation based on Zero Trust principles, smart contract-driven authorization, and encrypted off-chain data handling. Together, these methods establish a cryptographically enforced environment in which authentication, authorization, confidentiality, and auditing operate independently of administrators or centralized servers. The subsections that follow outline each method in detail and clarify its role in the overall security model.

4.1. Decentralized Identity Verification Using Blockchain

This method replaces centralized user identity storage with the whole thing starts when they put these IoT smart water meters out at people's homes or whatever. You know, the devices that keep track of water flow all the time and spit out data right as it happens. It's kind of different from the old school meters, where someone has to go read them every now and then by hand. These smart ones just collect info nonstop, and it seems more precise that way.

I think that helps catch stuff like leaks or when someone's using too much water, right away instead of later. Accuracy goes up, and you spot those weird patterns fast. The continuous part makes a big difference, I guess, even if it's not perfect. Sometimes it feels like the manual readings were just a hassle anyway.

4.2 Data Validation and Encryption

But before they actually store the water consumption information, they validate that information to ensure that everything is correct and nothing is missing. It just seems really important or something to prevent errors down the line. And then, once it's valid, they encrypt it using something like AES, which is symmetric encryption.

Encryption protects the water consumption information, particularly when it is being transmitted or stored elsewhere. Without this, unauthorized individuals could access information they should not. It affects consumer privacy significantly, at least this is what seems to be happening.

4.3 Decentralized Ledger-Based Storage

The encrypted water consumption data is stored within a blockchain instead of a database. Each entry is stored within a blockchain transaction that includes data on water consumption, along with timestamps and

“cryptographic hashes.” Moreover, thanks to blockchain technology’s immutable characteristics, data cannot be modified or deleted once it is verified. This decentralized approach to data storage prevents data from being managed by a central entity.

4.4 Automated Billing Through Smart Contracts

Automated billing is implemented using smart contracts deployed on the blockchain. The contract calculates bills based on predefined tariff rates and real-time consumption data, enabling automatic, unbiased, and time-efficient billing without human intervention. Access authorization is also enforced through Solidity smart contracts, where file access decisions are made automatically based on on-chain metadata. Public files are accessible to all authenticated users, while Private files are restricted to the uploader. Unauthorized access attempts are denied and permanently recorded on the blockchain, ensuring transparent and tamper-proof access control.

4.5 File-Centric Role Assignment Instead of User Roles

The system adopts a file-centric access control model where visibility rules are assigned at the time of file upload rather than through permanent user roles. Each file is classified as Public or Private, determining access independently of user identity or organizational role. These permissions are stored immutably on the blockchain, preventing post-upload modification and eliminating risks such as privilege escalation and role leakage. This approach enforces Zero Trust principles by binding access control directly to the resource.

4.6 Immutable Blockchain-Based Audit Trails

All file-related actions, including uploads, access requests, and denied attempts, are recorded as blockchain transactions through smart contracts. Each record contains the requester identity, action type, and access outcome. Due to blockchain immutability, audit logs cannot be altered or deleted, ensuring reliable forensic evidence and accountability. This decentralized audit mechanism removes dependence on centralized logging systems and provides a tamper-resistant security history.

4.7 Random Forest in Water Quality Prediction

The Random Forest algorithm is a machine learning algorithm and is employed for carrying out

classifications and predictions. In water quality prediction models, this algorithm is mainly utilized for classifications between potable and non-potable water based on various parameters of water quality.

It functions by building numerous decision trees on various subsets of data and attributes such as pH, hardness, solids, chloramines, sulphate, conductivity, organic carbon, trihalomethanes, and turbidity. A decision is reached for each decision tree independently, and then a consensus is reached by majority or averaging for classification and regression models respectively.

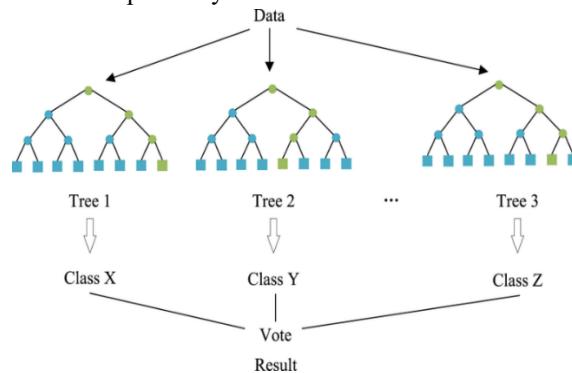


Figure 5. Random Forest Model for Water Quality Prediction

V. RESULTS

This is the screenshot of the home page of the Blockchain-Based Water Management System. This home page provides a brief idea about the system and acts as a gateway for the users and administrators to enter into the system. The facilities that are available on the home page are Admin Login, Access Water Allocation, and Access Your Bill through which users can shift to different functional modules of the system. The banner on the home page expresses the usage of blockchain technology in water management systems.

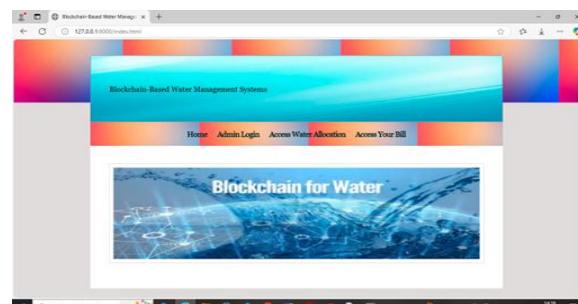


Figure 6. Home Page of Blockchain-Based Water Management System

This figure shows the system's Admin Login screen, which will let authorized administrators securely access the backend functionalities by providing valid credentials. Authentication allows only authorized personnel to perform sensitive operations such as water allocation, bill generation, and verification of payments. This module prevents unauthorized access and enhances the security of the system.

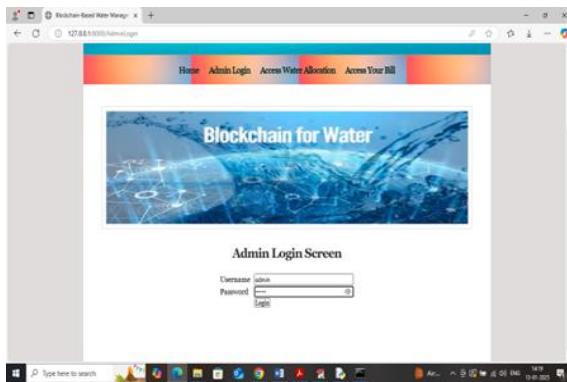


Figure 7. Admin Login Screen

The Admin Dashboard is the beginning of the main control panel, which gives access to various core functionalities that an administrator can perform when he/she intends to perform duties related to water allocation, water quality prediction, bill generation, and bill payments, and the options to log out. The welcome message confirms that he has successfully logged in by starting the session.

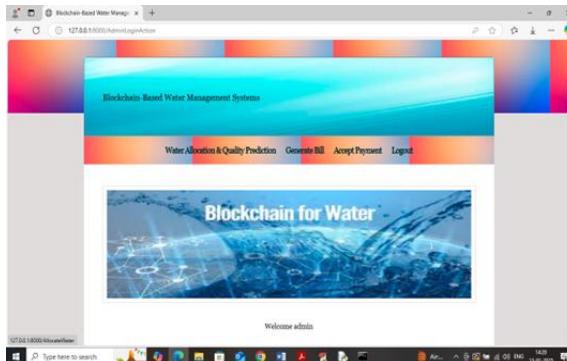


Figure 8. Admin Dashboard

The Water Resources Allocation Screen acts as the management interface that helps administrators in controlling and documenting the distribution of water resources. Under this module, the administrator is allowed to enter the key allocation information, such as area name, quantum of water allocated, allocation

category (residential or other types), date of allocation. The screen also provides records of important water quality parameters such as pH level, conductivity, turbidity, and organic carbon content besides the allocation details. In fact, all these parameters are very significant in assessing the safety and suitability of the supplied water.

Figure 9. Water Resources Allocation Screen

The blockchain transaction output, which is received after the water allocation information has been submitted, verifies that the information has been recorded on the blockchain network successfully. This output screen provides parameters of the completed transactions, such as the hash, block number, gas used, and execution status, which ensure that the information submitted has been processed through a blockchain-based transaction, which gives cryptographic evidence of the information integrity.

Figure 10. Blockchain Transaction Output for Water Quality Prediction

This screen is used by the administrator to generate water bills for citizens based on their use of water. The information provided on this screen includes customer ID number, customer name, water quantity used by the customer, amount due for water bill, and date for

which water bill is prepared. This provides an accurate and error-free system for water bill generation. After the needed information has been submitted, the process of processing the billing information starts, and it is prepared for storage.

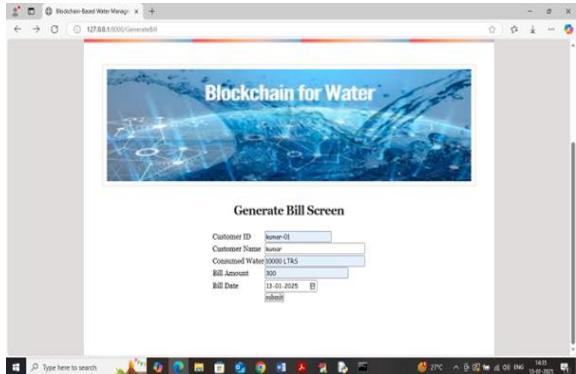


Figure 11: Generate Bill Screen

This image shows the transaction output in the blockchain created when the bill information is posted. This indicates successful storage of the billing information in the blockchain. The screen contains transaction information about hash, block number, gas consumed, and execution status.

All the above details serve as evidence to the fact that the bill data is immutable and secured. The system secures the traceability of the data by recording the billing details on the blockchain system.

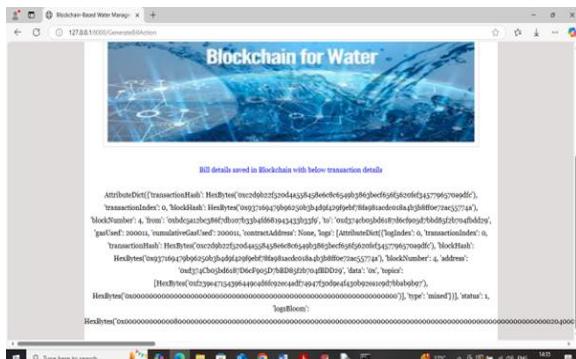


Figure 12. Blockchain Transaction Output for Bill Generation

The Accept Payment Screen displays the generated bill list along with customer information, consumed water, amount of bill, and the billing date. This page enables the administrator or user to start the payment process of the pending bill. There is a special feature available on this page to accept payments for different bills.

This interface is useful in monitoring pending payments and helps in proper monetary management. Payment handling is made easy, and the status of all bills within the system is clearly communicated.

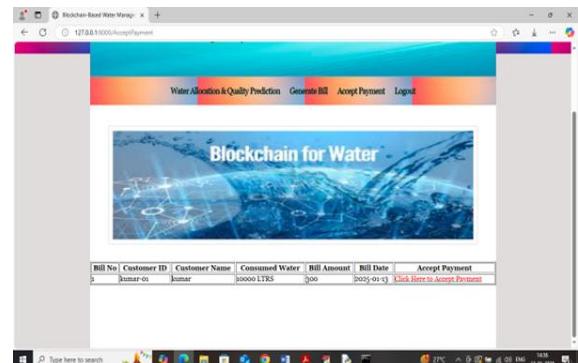


Figure 13. Accept Payment Screen

The above picture depicts the Payment Confirmation Screen. The confirmation screen is a screen from where it is verified whether a certain payment has been successfully processed or not. The confirmation message further ensures that all payments were processed without errors.

The status of the successful payment is also recorded by the system for accountability and transparency. The screen above confirms the finalization of the entire billing sequence right from the moment the bill is generated to the time it is settled through payment.



Figure 14. Payment Confirmation Screen

So, this screen provides information about areas and their stored water allocation and water quality prediction. Information provided includes area name, allocated water quantity, type of allocation, date of allocation, pH value, conductivity, turbidity, organic carbon, and finally the status of water quality.

With the allocation and prediction information of quality displayed on the same page, it becomes easy to

monitor water resources through this interface. This will also enable the authority to check the degree to which the water provided satisfies the required standard.

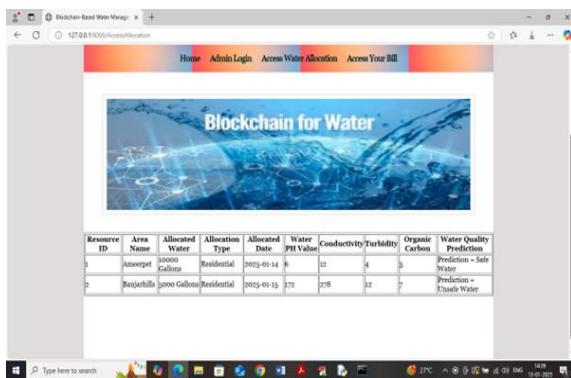


Figure 15. Water Allocation and Quality Prediction Details Screen

The View Bill Screen enables customers to view their billing details after providing a specific bill number. This screen provides an effective and secure way to get bill details to customers. The system also ensures that access to these billing details is controlled because, to get this information, one needs to provide the bill number.

This is quite transparency-effective as users will be able to verify their billing details without necessarily depending on other people. The water bills that will be raised utilizing the blockchain system will thus be quickly verified.

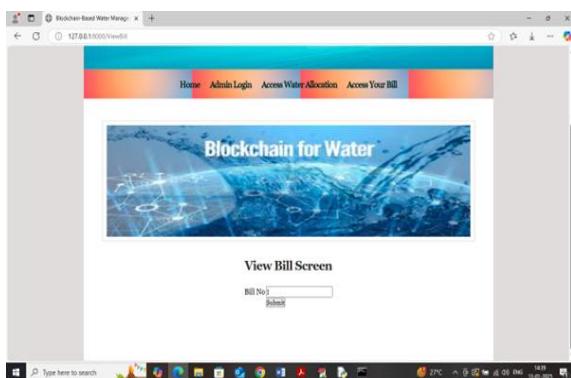


Figure 16. View Bill Screen

The View Bill Details Screen will display all bill details after a valid bill number is entered. This will include details such as bill number, Customer ID, Customer Name, Consumed Water Quantity, Amount, Date, and Payment Status.

The addition of payment status information verifies whether payment has been made on the bill, which resolves any concerns related to billing. Since the bill information comes from the blockchain, there is accuracy, transparency, and integrity associated with the billing process.

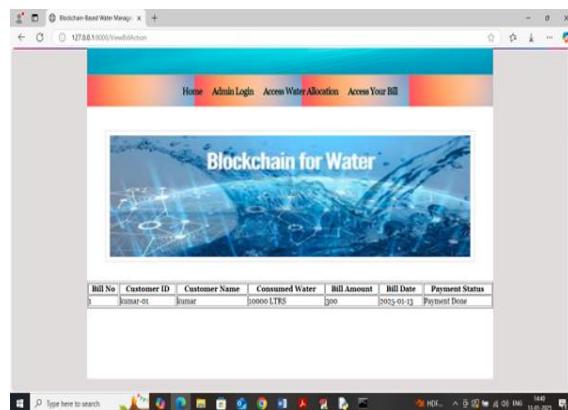


Figure 17. View Bill Details Screen

VI. CONCLUSION

The proposed blockchain-based water resource management system is a major improvement over the existing centralized system in terms of transparency, security, and efficiency. The proposed system allows all parties involved to view tamper-proof and immutable records of water usage, distribution, and billing because of the use of a decentralized ledger. The inclusion of IoT sensors in the system allows real-time data collection and enables timely leak or anomaly detection.

The smart contracts in this system are able to automate major aspects such as billing, enforcement of policies, and application of fines. It not only ensures a streamlined system but also helps in promoting responsible use of water resources by sending warnings and enforcing limits. The system has a scalable architecture and can thus be applied in disparate environments.

REFERENCES

- [1] S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System," Dec. 2008. [Online]. <https://bitcoin.org/bitcoin.pdf>
- [2] K. Christidis and M. Devetsikiotis, "Blockchains and Smart Contracts for the

Internet of Things," IEEE Access, vol. 4, pp. 2292–2303, 2016, doi: 10.1109/ACCESS.2016.2566339.

[3] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, "An Overview of Blockchain Technology: Architecture, Consensus, and Future Trends," in Proc. IEEE Int. Congr. Big Data, Honolulu, HI, USA, 2017, pp. 557–564, doi: 10.1109/BigDataCongress.2017.85.

[4] A. Reyna, C. Martín, J. Chen, E. Soler, and M. Díaz, "On Blockchain and Its Integration with IoT: Challenges and Opportunities," Future Generation Computer Systems, vol. 88, pp. 173–190, 2018.

[5] A. Dorri, S. S. Kanhere, and R. Jurdak, "Blockchain in Internet of Things: Challenges and Solutions," IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 1–24, 2019.

[6] S. Banerjee, J. Lee, and K. Yu, "Blockchain-Based Water Management System for Enhancing Transparency and Efficiency," Journal of Water Resources Planning and Management, vol. 146, no. 6, pp. 1–12, 2020.

[7] S. Sharma and S. Singh, "Smart Water Management Using Blockchain and IoT: A Review," International Journal of Advanced Computer Science and Applications, vol. 12, no. 3, pp. 469–475, 2021.

[8] M. Swan, Blockchain: Blueprint for a New Economy. Sebastopol, CA, USA: O'Reilly Media, 2015.

[9] IBM, "Blockchain for Water Management and Smart Cities," IBM White Paper, 2020. [Online]. <https://www.ibm.com/blockchain>

[10] World Bank, "Water Resource Management in Smart Cities," World Bank Report, 2021. [Online]. <https://www.worldbank.org>

[11] G. Wood, "Ethereum: A Secure Decentralized Generalized Transaction Ledger," Ethereum Yellow Paper, 2014.

[12] Hyperledger Foundation, "Hyperledger Fabric Documentation," Linux Foundation, 2022. [Online]. <https://www.hyperledger.org>