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Abstract—Deep fake audio, generated using advanced 

artificial intelligence techniques, can closely mimic real 

human voices and create serious risks for privacy, 

security, and trust in communication systems. Deep fake 

audio refers to the audio that is generally synthesized and 

artificially created that is similar to human audio which 

leads to the many unethical usage of such audio. Study of 

such fake audio using Deep Learning is essential in order 

to avoid many manipulative crimes that may occur which 

takes advantage of audio. The system employs neural 

network models to analyze these features and classify 

audio clips as real or fake. Experiments on benchmark 

datasets show that the method can identify manipulated 

audio with high accuracy, illustrating the promise of 

deep learning for protecting the authenticity of voice-

based digital media. 

 

Index Terms—Deep Fake, Deep learning, Convolutional 

Neural network, Long Short-Term memory(LSTM), 

synthesized audio, Mel frequency cepstral 

coefficients(MFCC). 

 

I. INTRODUCTION 

 

Deep fake audio refers to speech generated or 

manipulated by artificial intelligence models to 

closely resemble a real person’s voice. It has gained 

significant attention due to its potential misuse in areas 

such as fraud, political manipulation, impersonation, 

and misinformation. As these synthetic voices become 

more natural and convincing, humans alone often find 

it difficult to distinguish between genuine and fake 

audio, increasing the risk of deception in everyday 

digital interactions. Deep learning is changing the 

game when it comes to spotting deepfake audio. 

Instead of relying on simple, hand- picked features, 

today’s systems feed raw audio like spectrograms, 

Melspectrograms, and time frequency patterns straight 

into neural networks. Convolutional and recurrent 

models do a great job here. 

They pick up on both the details and the flow of 

sound, making it easier to catch weird glitches or 

subtle inconsistencies that AIgenerated voices tend to 

have. Researchers are constantly working to 

make these models more accurate and robust, so they 

keep working even if the speaker changes, the 

language is different, or someone tries a new voice 

synthesis trick. The goal is to build systems that catch 

deepfakes reliably, no matter what the real world 

throws at them Models like convolutional and 

recurrent networks can capture both spectral and 

temporal cues, allowing them to detect artifacts or 

inconsistencies introduced during the generation 

process. Ongoing research focuses on improving the 

accuracy, robustness, and generalization of these 

models across different speakers, languages, 

and synthesis methods, so that deep fake audio 

detection can work reliably in real-world conditions.. 

 

 
Figure.1 Illustration of deep fake audio detection 

 

Literature Survey 

Deep Fake Audio Detection Literature Survey that 

uses deep learning(DL) will usually cover how 

generative techniques have developed over the years, 

how the threat environment is, as well as looking at the 

main detection methods that have been proposed in 
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recent years. Initially, researchers studied classic voice 

spoofing and replay styles of attack, then looked at 

contemporary styles of deep fake made possible 

through neural networks. The initial findings from the 

initial studies showed that traditional forensic or signal 

processing techniques that rely on the use of manually 

created acoustic features and very basic classifier-like 

methods were often unable to detect the very realistic 

synthetic voices created by generative models. 

A sizable number of studies engage in the use of a 

spectrograms to analyze audio signals through 

temporal-frequency space via the use of Convolutional 

Neural Networks (CNN). The methods used for 

developing CNN on spectrograms allow for the use of 

convolution as if the image were not a signal but rather 

like an image to obtain local textures and frequency 

virgins smearing due to the likelihood of the artifacts 

being caused by generative models. Other studies have 

enhanced sensitivity for analyzing timbral and 

prosodic variations by creating hybrid models utilizing 

Mel-spectrograms and constant-Q transformations or 

other types of spectral features to aid in identifying 

subtleties in aural differences. Some researchers have 

looked to improve their models of temporal 

dependency on speech through the addition of 

Recurrent Neural networks and Temporal 

Convolutional Layers (TCNs) in order to analyze how 

the temporal manifestations of artifacts developing 

over time may affect its existence when viewed from 

an independent brief perspective.  

Recent research has also looked to combine multiple 

models or features into hybrid architectures or 

ensembles as a way to combine various feature types 

and achieve greater robustness. For example, 

researchers combined the use of CNNs based on 

spectrograms with those models based on higher-level 

voice representations of speaker embeddings and 

phonemes-level acoustic representations to capture 

both low-level acoustic artifacts in conjunction with 

inconsistencies on an individual linguistic basis. Some 

researchers have investigated the potential of attention 

mechanisms and transformer-based architectures, both 

of which allow the model to either choose based on the 

area that has the greatest value for the information 

collected and also the location of noise in relation to 

the distribution of noise in the signal. 

Overall, the literature shows a clear progression from 

basic spectral and statistical analyses toward 

sophisticated deep learning frameworks designed to 

handle diverse, high-quality deepfake audio. Existing 

methods have achieved high accuracy in controlled 

experimental settings, yet challenges remain in 

handling new synthesis techniques, low-quality or 

noisy audio, and adversarial attempts to evade 

detection. These open issues underline the need for 

continued research on more generalizable, robust, and 

transparent deepfake audio detection models that can 

reliably operate in real-world environments. 

 

II. PROPOSED METHODOLOGY 

 

This methodology provides a multi-step deep learning 

system that detectsdeep fake audio with great accuracy 

and effectiveness throughout multiple situations. 

Audio files are divided into fixed-length clips (3-5 

seconds) to extract the largest amount of speech data 

possible from each audio sample. Each of these clips 

must be preprocessed (normalizing for volume and 

removing silence) and must go through a process 

called voice activity detection. The main features 

extracted from the raw audio data include Mel-

frequency cepstral coefficients (MFCCs), short-time 

Fourier transform (STFT) spectrograms, 

chromagrams, and zero-crossingrates; each of these 

helps to identify subtle artifacts that indicate whether 

the vocal signal was generated through deep fake 

technology. 

 

2.1 Hybrid Neural Network Structure 

The hybrid model combines the benefits of 

convolutional neural networks (CNNs), which 

recognize spatial patterns in the STFT spectrogram, 

and long short-term memory (LSTM) units, which 

allow for temporal dependencies in speech. The CNN 

"backbone" consists of multiple ResNet-inspired 

blocks that automatically learn hierarchical 

representations of the input data, focusing on 

anomalies in texture and phase discrepancies that can 

be observed in synthetic audio. Once the features have 

been extracted from the input data using the CNN 

architecture, they are fed into the two bidirectional 

LSTM layers that learn to model temporal evolution 

and unnatural prosody and breathing patterns. 

 

System Overview and Architecture Design 

The proposed hybrid-network architecture is an 

advanced deep learning system designed to perform 

real-time audio detection of deep fakes. This 
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architecture combines the feature-extraction 

capabilities of CNNs with the pattern-recognition 

abilities of LSTMs together simultaneously within a 

single system. The proposed approach differs from 

current methods in that it does not only analyze 

spectral images in a traditional manner, but rather 

analyzes audio signals in two pathways at the same 

time. Acoustic features (local features), texture 

abnormalities can be extracted from frequency-

domain representations of the audio signal using CNN 

layers, while LSTM networks can be used to model 

long-term dependencies, as well as inconsistencies 

seen between how a machine generates speech over 

time and how a human does. 

Using the two pathways allows for dual analysis of all 

of the acoustic features of the audio signal and 

prosodic features of the utterance. Combined, these 

two forms of analysis provide the capability to 

separate real human speech from computed deep fakes 

at a much higher level of accuracy than either method 

alone. The full pipeline for generating predictions of 

authenticity from audio includes five integrated 

processes: preprocessing of the audio, extraction of 

multi- dimensional features, processing of the features 

through the network, probabilistic classification and 

visualization of the confidence level. Audios are first 

processed by a standardization method to reduce 

variability among recordings resulting from 

environmental conditions, before being converted to 

perceptually relevant forms of acoustic representation 

that are compatible with deep- learning 

networks.Audio Preprocessing and Signal 

Conditioning 

Raw audio files undergo comprehensive preprocessing 

ensuring consistent input quality across diverse 

recording conditions and devices. Variable-length 

recordings automatically segment into fixed 3.5-

second analysis windows using 75% overlap, 

preserving contextual continuity while maximizing 

computational efficiency. Voice Activity Detection 

(VAD) employing energy thresholding and spectral 

centroid analysis surgically isolates speech segments, 

eliminating silence regions exceeding 150ms that 

could bias temporal modeling. All signals resample to 

standardized 16kHz mono channel using highquality 

sinc interpolation, mitigating aliasing artifacts. 

 
Figure 2. Number of attributes used in the deep fake 

audio detection 

 

2.2 Data Source and Ledger Formation 

The ability to adjust or adapt the signal to whatever 

you want is actually done by adjusting the perceptual 

Normalisation of perceived loudness using the ITU-R 

BS.1770 Standard, which defines the adjustment of all 

types of recorded audio to -20 LUFS (Loudness Units 

Relative to Full Scale) so that recorded audio is 

comparable to each other. This will help to correct the 

typical unwanted dynamic range variances in audio 

files recorded on Smartphones, Professional 

Microphones, and Telephony Channels, which ranges 

from 60dB. 

The filtering with a high-pass filter is set at 25Hz, 

which will cut off the DC Offset and Rumble, and 

adaptive-Gain control prevents clipping/overloading, 

as it applies gain control without introducing 

compression artifacts. Pre-emphasis filtering (using a 

0.97 coefficient) boosts the higher frequency 

components due to the tilt in the spectrum when 

humans produce vocals, and will assist in separating 

the Fricative Consonants. This is an area that the 

current synthesis systems are lacking in. 

An Advanced Feature Extraction Pipeline has been 

implemented into the overall System as Feature 

Engineering represents the discriminatory 

characteristics of the feature space, creating rich multi-

channel representations designed for deep learning 

analysis. 

Transformations are made through the Feature 

Extraction Pipeline by taking an audio waveform from 

the Time Domain and processing it into Mel-

frequency cepstral Coefficients (MFCC) using 40 

coefficients, which consist of 13 Static Coefficients; 

13 First-order Deltas; 13 Second-order Accelerations; 

and an Energy Term, with a Hamming analysis 

window of 25ms and a frame advance of 10ms. 
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2.3 Advanced Feature Extraction Pipeline 

Complementary Spectral Features are included to 

augment the diversity of the CNN input: Log- Mel 

Spectrograms (128 Mel Bands) visually represent the 

evolution of energy distributions in dense Time-

frequency Matrices; Linear Frequency Cepstral 

Coefficients (LFCC), which contain 19 coefficients, 

give the ability to identify Fine Spectral Structures,in 

particular, during Phase Analysis; Chroma Features 

(12 pitch classes) show Harmonic Incongruities; and 

Spectral Contrast quantifies Timbre Variations (there 

are 7 Bands). 

 

 
Figure 3. Data pre-processing 

 

2.4 PROPOSED METHODS 

Data collection is a crucial step in developing a 

reliable deep fake audio detection system. In this 

phase, a comprehensive dataset consisting of both real 

human speech and deep fake (synthetically generated) 

audio is assembled. Real audio samples are obtained 

from authentic speech recordings that include different 

speakers, genders, speaking styles, accents, and 

recording environments. Deep fake audio samples are 

generated using modern text-to-speech and voice 

conversion techniques. 

The process of data preprocessing is critical in the 

audio detection pipeline for developing deep fake 

audio detection models because raw audio recordings 

typically contain silence, noise, and inconsistencies 

that negatively affect the learning of the models. The 

main objective of the data preprocessing stage is to 

enhance audio quality and ensure that the audio 

samples are converted to a consistent format, thus 

allowing them to be suitable for feature extraction and 

analysis using deep learning techniques. 

The audio detection pipeline begins by resampling all 

audio signals to a common sampling rate to ensure 

consistency during feature extraction. Next, silence at 

the beginning and end of recordings is removed so the 

model focuses only on relevant speech. Noise 

reduction techniques are then applied to eliminate 

unwanted background noise and improve speech 

quality. Finally, amplitude normalization is performed 

to standardize loudness levels across all recordings, 

preventing volume variations from affecting model 

training. 

 

Feature Extraction (MFCC) 

Feature extraction is a critical stage in the deepfake 

audio detection pipeline, as it transforms preprocessed 

audio signals into compact and discriminative 

representations that can be effectively analyzed by 

deep learning models. In the proposed system, Mel-

Frequency Cepstral Coefficients (MFCCs) are 

employed due to their proven effectiveness in 

capturing perceptually relevant speech characteristics 

and their widespread use in speech and speaker 

recognition tasks. The MFCC extraction process 

begins by dividing the audio signal into short, 

overlapping frames, since speech properties vary over 

time and can be considered quasi-stationary over small 

intervals. Each frame is then passed through a Fast 

Fourier Transform (FFT) to convert the signal from the 

time domain to the frequency domain, revealing its 

spectral components. The resulting frequency 

spectrum is mapped onto the Mel scale, which is 

designed to approximate the human auditory system 

by giving greater emphasis to lower frequencies that 

are more important for speech perception. 
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Figure.4 Illustration of deep fake audio detection 

 

The extracted MFCC feature vectors are arranged as 

two-dimensional matrices, preserving temporal order 

across frames. These representations serve as 

informative inputs to the CNN–LSTM model, 

enabling it to learn both local spectral patterns and 

long-term temporal dependencies. 

The proposed system adopts a hybrid CNN–LSTM 

architecture to effectively analyze deep fake audio 

by jointly modeling spectral patterns and temporal 

dependencies present in speech signals. This design 

is motivated by the fact that manipulated audio may 

appear locally realistic in short segments but often 

exhibits inconsistencies when examined over time. 

By integrating convolutional and recurrent 

components, the model is able to capture both 

aspects in a unified framework. es while 

guaranteeing accuracy and fairness. 

Model Design (CNN–LSTM) 

The CNN employs a matrix of MFCCs created from 

audio data. The MFCC data is structured as two-

dimensional maps of features or characteristics of the 

data. The convolutional methods utilize a group of 

learnable filters to identify small groups of acoustics 

(local patterns) in the data. Layer- by-layer application 

of convolution and pooling allows for the CNN to 

learn hierarchical structure regarding behaviours of 

abnormal frequency distributions, spectral smoothing, 

artificial transitions created by synthesising voices, 

etc., automatically. Pooling reduces the 

dimensionality of the data while retaining the most 

salient features. This will lead to more robust and 

efficient computations of the neural network. 

 

 

 
Figure 5. Division of class labels 

https://en.wikipedia.org/wiki/Gradient_boosting
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Long Short-Term Memory (LSTM) 

An LSTM is a type of recurrent neural network 

specifically designed to learn to represent 

sequential and time-based data. Unlike the standard 

recurrent approach to using recurrent networks, which 

are limited by vanishing or exploding gradients 

when learning from long sequences, LSTMs provide 

a structured memory mechanism to allow for retention 

of critical information over multiple time steps. This 

characteristic of LSTMs is ideal for analysing audio 

and speech, as the meaning and characteristics of an 

audio signal rely on temporal context over an extended 

period.Internal Structure of an LSTM Cell. In deep 

fake audio detection, short segments of speech may 

appear realistic in isolation. However, inconsistencies 

often emerge across longer time spans. LSTM excels 

at identifying such irregularities by analyzing how 

speech features evolve over time. By modeling 

sequential dependencies, LSTM enhances the 

system’s ability to detect unnatural transitions, timing 

anomalies, and prosodic inconsistencies, thereby 

improving overall detection accuracy. 

During the training phase, MFCC features along with 

their corresponding labels are used to train the CNN–

LSTM model. The training dataset is fed in batches, 

and model parameters are updated using gradient-

based optimization techniques to minimize 

classification loss. Validation data is used after each 

training epoch to monitor model performance and 

prevent overfitting. 

 
Figure 6. Training and Validation Accuracy for 

Deepfake Audio Detection 

 

III. RESULTS 

 

The proposed system was evaluated for identifying 

and classifying audio clips as REAL or FAKE using a 

CNN–LSTM hybrid model implemented in Python 

3.10. MFCC features were extracted from audio 

samples using Librosa, while model development and 

training were carried out using TensorFlow and Keras, 

supported by NumPy, Pandas, and Matplotlib. The 

model was trained using the Adam optimizer with a 

binary cross-entropy loss function, a learning rate of 

0.001, 50 epochs, and a batch size of 32. Experiments 

were conducted on an Intel Core i7 system with 16 GB 

RAM and an NVIDIA GPU (6 GB). The dataset 

comprised combined samples from ASVspoof 2019, 

FakeAVCeleb, and VoxCeleb. 

 

Table 1. Training and Validation Performance Trends 

Epoch 
Training Accuracy 

(%) 

Validation Accuracy 

(%) 
Training Loss Validation Loss 

10 85.42 83.60 0.42 0.45 

20 91.85 89.10 0.29 0.33 

30 94.37 92.48 0.21 0.27 

40 96.25 94.13 0.15 0.20 

50 97.10 95.45 0.12 0.18 

 

Training and validation results demonstrate a 

consistent improvement in performance across 

epochs. Training accuracy increased from 85.42% at 

epoch 10 to 97.10% at epoch 50, while validation 

accuracy improved from 83.60% to 95.45%. 

Correspondingly, training loss decreased from 0.42 to 

0.12 and validation loss from 0.45 to 0.18. These 

results indicate effective learning, good generalization 

capability, and the robustness of the proposed model 

in detecting real and fake audio samples. 
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Figure 7. Training and Validation Performance 

 

Table 2. Description of theaccuracy of various model 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

SVM 82.10 80.45 81.90 81.17 

LSTM 88.54 87.20 86.90 87.05 

CNN 91.73 90.85 91.20 91.02 

CNN-LSTM (Proposed) 95.62 94.18 96.30 95.23 

 

From the table, it is evident that the hybrid CNN-

LSTM model outperformed other techniques by a 

significant margin due to its ability to capture both 

spatial and temporal dependencies in the MFCC 

features. 

 

 
Figure.8 Performance Comparison of Audio 

Classification Models 

 

IV. CONCLUSION 

 

This work described a simple way to effectively create 

a model for deep fake audio detection based on a 

systematic pipeline of deep learning techniques. By 

systematically integrating the different components of 

data collection, preprocessing, MFCC based feature 

extraction, and a combined CNN- LSTM approach, 

the described approach is able to learn both temporal 

and spectral aspects of speech signals. This dual 

analysis enables the CNNLSTM model to identify 

subtle signs of manipulation that occur during the 

creation of synthetic audio, which cannot be easily 

detected by human listeners. The experimental results 

demonstrate that the CNN-LSTM method has 

demonstrated excellent performance with previously 

unseen audio samples and has shown to be able to 

generalize. The MFCC feature extraction used in this 

study provides an efficient and compact representation 

of speech; additionally, the combination of the CNN 
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and LSTM architectures captures local frequency 

trends as well as longer temporal dependencies. The 

performance metrics, including accuracy, precision, 

recall, and confusion matrix provide confidence that 

the model is able to accurately differentiate between 

genuine and manipulated audio. As a result, the deep 

fake audio detection framework proposed in this work 

is a strong and scalable option for maintaining the 

authenticity of voice-based communication systems 

and can be utilized in numerous applications including 

voice authentication, digital forensics, and secure 

communication platforms. 
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