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Abstract- This research addresses the challenges of 

connecting Large Language Models (LLMs) with 

financial APIs for automated data-driven trading. The 

study proposes a middleware design that improves 

security, reliability, and scalability for AI-driven trading 

systems. This study introduces a middleware framework 

based on the Model Context Protocol (MCP). This 

framework serves as a secure and expandable link 

between large language models and financial application 

programming interfaces, focusing on Zerodha. The 

implementation uses TypeScript to allow immediate 

trade processing based on instructions from language 

models. 

Key components of the framework include fault 

management, user verification, and contextual oversight. 

The study looks at efficiency metrics such as response 

time, processing capacity, and successful trade 

completion rates in different operating scenarios to 

evaluate the overall performance of the proposed system. 

The results indicate that the MCP-based middleware 

greatly enhances the safety, scalability, and efficiency of 

AI-driven trading systems. The structure reduces 

security risks and increases trade execution reliability, 

offering a practical way to integrate AI models into 

financial applications. This work provides useful insights 

for developers, researchers, and financial institutions by 

presenting a practical and secure method to implement 

AI-driven trading solutions. It links theoretical AI 

capabilities with real-world automated trading and 

highlights the potential for better trading strategies 

through the effective use of AI technologies. 
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I. INTRODUCTION 

 
A. Background and Context 

The integration of Artificial Intelligence (AI) into 

financial systems has changed trading and investment 

strategies. This change offers new chances for 

efficiency, accuracy, and better decision-making. 

Financial institutions and trading platforms are using 

AI technologies more often. They analyze large data 

sets, predict market trends, and execute trades much 

faster than human traders. Among the various AI 

methods, Large Language Models (LLMs) have 

received significant attention. They can process 

natural language, interpret complex data, and generate 

coherent responses. As a result, LLMs can improve 

financial systems, especially in areas like algorithmic 

trading, customer service automation, and risk 

assessment. This potential has drawn the focus of 

researchers and practitioners. 

However, integrating LLMs with financial APIs 

presents several challenges that need attention to fully 

unlock their potential in trading applications. Financial 

APIs are crucial for accessing market data, executing 

trades, and managing portfolios. Yet, connecting 

LLMs with these APIs is complicated. It involves 

issues related to data privacy, security, regulatory 

compliance, and the unpredictable nature of financial 

markets. Additionally, the constantly changing 

financial data requires real-time processing and robust 

error-handling systems, making integration even 

tougher. These challenges highlight the need for new 

solutions to connect AI technologies with the strict 

standards of financial systems. 

In response to these challenges, the Model Context 

Protocol (MCP) has emerged as a promising 

framework for linking LLMs with financial APIs. The 

MCP aims to provide a structured way to define 

interactions between LLMs and financial systems. It 

ensures that outputs from AI models are relevant, 

accurate, and useful in a specific financial context. By 

establishing clear protocols for data handling, 

response generation, and feedback processes, the MCP 

seeks to enhance the reliability and effectiveness of 

AI- driven trading strategies. 
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B. Research Objectives 

The main goal of this research is to explore how 

practical and effective the Model Context Protocol 

(MCP) is for improving the integration of LLMs with 

financial APIs. It will specifically focus on the 

Zerodha API, a popular trading platform in India. This 

study aims to evaluate the potential benefits of using 

the MCP to simplify communication between AI 

models and financial systems. Ultimately, this could 

improve the performance of AI-driven trading 

strategies. 

To achieve this goal, several specific objectives have 

been outlined. First, the research will examine the 

current state of AI integration in financial systems. It 

will identify the main challenges and limitations of 

directly connecting LLMs and financial APIs. This 

assessment will clarify the environment where the 

MCP operates and highlight the need for a clear 

approach to integration. Second, the study will explore 

how the Zerodha API works by looking into its 

features, functions, and potential for integration with 

LLMs. Thisanalysis will provide a basis for evaluating 

how well the MCP addresses the identified challenges. 

Third, the research will create a prototype of the MCP 

for connecting with the Zerodha API. It will conduct 

tests to measure its impact on the performance of AI-

driven trading strategies. 

This research is important beyond its immediate aims. 

As financial markets increasingly rely on AI 

technologies, understanding how to integrate LLMs 

with financial APIs is essential for developing 

effective trading systems that can handle the 

complexities of modern markets. The findings of this 

study will contribute to knowledge in AI-driven 

trading and offer valuable insights for researchers, 

practitioners, and policymakers. Additionally, 

successfully implementing the MCP could lead to 

broader applications of LLMs in finance, encouraging 

innovation and improving overall efficiency in 

financial systems. 

 

C. Scope and Limitations 

This research has specific limits that shape its scope 

and focus. It will mainly concentrate on integrating 

LLMs with the Zerodha API, a leading trading 

platform that offers various services for retail investors 

in India. By focusing on this API, the study aims to 

provide a clear view of the integration process. It will 

offer insights that may also apply to other financial 

systems while highlighting the unique features of the 

Indian market. 

The study plans to evaluate how well the MCP 

supports LLM-financial API integration. However, it 

is important to recognize the limits of the proposed 

middleware structure. First, the research will mainly 

cover the technical aspects of integration and may 

overlook broader issues like regulatory challenges, 

market volatility, and user experience. Additionally, 

the tests in the study will use simulated trading 

scenarios, which may not fully reflect the complexities 

and unpredictability of real trading environments. 

Therefore, the findings should be viewed cautiously, 

with the understanding that more research is needed to 

confirm the results in actual trading situations. 

In conclusion, as AI continues to influence the 

financial landscape, it is crucial to understand the 

challenges and opportunities of LLM-financial API 

integration. The Model Context Protocol offers a way 

to address these challenges and improve the 

effectiveness of AI-driven trading strategies. This 

research aims to contribute to this important field by 

exploring how AI technologies interact with financial 

systems and their impact on the future of trading. 

 

II. LITERATURE REVIEW 

 

A. AI in Financial Trading 

Evolution of AI Applications in Finance 

The use of artificial intelligence (AI) in financial 

markets has evolved considerably since algorithmic 

trading started in the late 20th century. Early uses 

mainly focused on quantitative strategies that 

employed statistical models to identify trading 

opportunities (Harris, 2003). This change marked the 

beginning ofmore advanced techniques that used 

machine learning (ML) algorithms to enhance 

prediction accuracy and respond to changing market 

conditions (Baker & Nofsinger, 2002). 

The fast growth in computing power and the access to 

large datasets have driven the use of AI in trading 

(Chen et al., 2020). Recent advances have brought 

deep learning techniques, resulting in better ways to 

understand complex market behaviors and enhance 

trading strategies (Fischer & Krauss, 2018). Different 

kinds of AI, such as reinforcement learning and natural 

language processing (NLP), have been applied to 
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interpret market sentiments and automate trading 

decisions. This has significantly transformed the 

financial trading landscape (Zhang et al., 2020). 

Current State of AI-Driven Trading Systems 

Today, AI-driven trading systems blend traditional 

financial theories with modern computing methods. 

These systems can process and model real-time data. 

They analyze large amounts of structured and 

unstructured information, including social media 

posts, news articles, and market trends, to inform 

trading strategies (Bertsimas et al., 2019). For 

instance, recent developments in deep reinforcement 

learning have shown promise in improving trade 

execution and portfolio management, leading to 

increased efficiency and profitability (Moody & 

Saffell, 2001). 

The success of AlphaGo has underscored the potential 

for AI to achieve superhuman performance. This has 

generated more interest in using similar technologies 

in finance (Silver et al., 2016). Companies like 

Renaissance Technologies and Two Sigma are known 

for their groundbreaking work with AI-driven models. 

This indicates a trend toward greater reliance on 

automated, data-driven trading systems in the industry 

(Kleinberg, 2020). 

 

Challenges and Limitations in Existing Approaches 

Despite the advantages of AI-driven trading systems, 

some challenges remain. A key issue is the "black box" 

nature of many machine learning models. This lack of 

transparency makes it difficult to understand the 

decisions made by these systems. This could lead to 

regulatory issues and decreased trust among 

stakeholders (Kroll et al., 2016). Additionally, relying 

on historical data can produce models that do not adapt 

to changing market conditions, resulting in risks 

during volatile periods (He et al., 2020). Financial 

markets are influenced by external factors, such as 

geopolitical events and changes in the global 

economy. If models lack the flexibility to respond to 

real-time changes, they may lose their effectiveness 

(Fitzpatrick, 2021). 

 

B. Large Language Models (LLMs) in Finance 

Overview of LLM Capabilities 

Large language models (LLMs), like OpenAI's GPT-3 

and Google's BERT, have become popular because of 

their ability to understand and generate text that 

resembles human writing (Brown et al., 2020). These 

models can capture subtle relationships in meaning 

and context. This capability helps in various finance 

tasks, from analyzing sentiment to summarizing 

reports and ensuring compliance with regulations 

(Huang et al., 2021). LLMs can process and combine 

unstructured data, offering valuable insights that 

enhance traditional data analysis for trading and 

investment decisions (Patel et al., 2021). 

 

Applications of LLMs in Financial Decision-Making 

Financial institutions use LLMs for various tasks, 

including improving customer service with chatbots, 

assessing risks, and detecting fraud (Kim & Kim, 

2022). At the start of the COVID-19 pandemic, LLMs 

helped firms examine market sentiment by analyzing 

real-time news and social media. This guidance was 

crucial for investment strategies during uncertain 

times (Ramelli & Wagner, 2020). In addition, LLMs 

haveautomated the production of investment research 

reports, reducing human workload while maintaining 

a reasonable quality of analysis (Lo, 2020). 

The ability to make real-time decisions with context is 

a major benefit of LLMs. They can quickly deliver 

insights as market conditions change (Zhang et al., 

2021). Companies like JP Morgan and Goldman Sachs 

are exploring how LLMs can predict asset price 

movements based on historical and sentiment-driven 

data (Sullivan, 2023). 

 

Limitations and Risks of Direct LLM Integration 

Although LLMs offer promising applications in 

finance, their direct integration has several limitations 

and risks. Relying too much on LLMs for decision-

making can introduce operational and regulatory 

issues because of their inherent biases and risk of 

misunderstanding context (Binns, 2018). 

Additionally, LLMs are often trained on specific 

datasets that may not cover all aspects of market 

behavior. This limitation can lead to poor performance 

when they encounter unfamiliar data (Gururangan et 

al., 2020). 

The complexity and size of LLMs require significant 

computational resources, leading to high operational 

costs that may not be practical for smaller financial 

institutions or individual traders (Stiennon et al., 

2020). There are also concerns about data privacy and 

security, especially when sensitive financial data 

might be exposed during LLM training (Zhou et al., 
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2021). 

 

 
Middleware Architectures in Financial Systems 

Existing Middleware Solutions for Financial APIs 

Middleware architectures help different systems 

within financial ecosystems communicate and 

exchange data, improving efficiency and 

interoperability (Boyer & Pichon, 2018). Many 

solutions have emerged to fill gaps in financial 

infrastructure, including FIX (Financial Information 

Exchange) protocols and RESTful APIs that 

streamline processes among trading platforms, 

exchanges, and market players (Benedict et al., 2020). 

A review of existing middleware solutions highlights 

a growing trend toward microservices architectures. 

These architectures allow firms to deploy flexible, 

scalable services that can meet changing demands in 

real-time (Oster et al., 2019). Many industry players 

are now using cloud-based middleware for its 

flexibility and better resource allocation, which speeds 

up the deployment of trading applications (Meyer et 

al., 2021). 

 

Security and Scalability Considerations 

As financial institutions move to middleware 

solutions, security issues are becoming more 

important. The rise in cyber threats requires strong 

security measures to protect sensitive financial 

information and comply with regulations (Choo, 

2018). Middleware solutions need to include security 

features like encryption and authentication to secure 

communication between financial APIs (Alchian et 

al., 2020). 

Scalability is another major concern, especially as 

financial markets experience high transaction volumes 

during volatile periods. Middleware architectures need 

to be able to handle higher loads without losing 

performance or stability (Ghadar et al., 2019). 

Solutions that can easily scale up or down while 

ensuring operational integrity and durability are 

increasingly in demand in today's fast-paced financial 

environment (Bahl & Dunn, 2021). 

Gap Analysis in Current Middleware 

ApproachesDespite progress in middleware 

development, some gaps still exist in current methods. 

Interoperability issues persist, especially as firms 

adopt various technologies that may not interact well 

(Weber et al., 2018). Efforts to standardize are stalled 

by the rapidly changing landscape of financial 

technology, making unified communication across 

platforms difficult (Accenture, 2020). 

Moreover, many current approaches do not offer 

enough support for real-time data analysis and 

decision- making, limiting their effectiveness in 

today’s high-frequency trading settings (Kumar & 

Sridhar, 2021). This gap shows a clear need for 

innovative middleware solutions that can provide 

scalability through on- demand computing and 

advanced analysis capabilities to efficiently process 

large datasets (Sharma & Nido, 2022). 

In conclusion, the ongoing development of AI 

technologies, LLMs, and middleware architectures is 

shaping the future of financial trading systems. 

Although there have been advances, significant 

challenges and limitations remain. Future research and 

development should focus on overcoming these gaps, 

creating integrated, secure, and efficient financial 

systems that maximize the potential of AI and LLM 

capabilities while ensuring compliance and trust 

within the financial sector. 

 

III. METHOD 

 
A. System Architecture Design 

Overview of the Proposed MCP-Based Middleware 

The proposed middleware acts as a bridge to facilitate 

communication between different financial 

applications and the Zerodha API, using the Model 

Context Protocol (MCP). The architecture is built to 

ensure scalability, maintainability, and efficiency, 

which are vital for processing financial data in real-

time. The middleware revolves around the MCP, as it 

defines a set of rules and standards for managing 

context information during financial transactions. 

The architecture is modular, which allows easy 

integration of new features and services without 

affecting existing functions. The main components 

include the Client Interface, MCP Core, API 

Integration Layer, and Database Management System 

(DBMS). The Client Interface uses TypeScript, 

improving code readability and maintainability. The 

MCP Core manages the context and overall 

middleware logic. The API Integration Layer ensures 

smooth communication with the Zerodha API, while 

the DBMS stores transaction logs, user profiles, and 
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contextual information. 

 

Using TypeScript 

TypeScript was selected as the main programming 

language for the middleware due to its strong typing 

features, which help reduce runtime errors and 

improve code quality. Its compatibility with modern 

JavaScript frameworks and libraries supports the 

development of a strong and responsive user interface. 

Additionally, TypeScript’s object-oriented 

programming capabilities make it easier to implement 

complex data structures and algorithms needed for 

financial data processing. 

Using TypeScript also encourages better teamwork 

among developers. Its static type-checking makes the 

codebase easier to understand and lessens the chances 

of introducing bugs during development. This choice 

matches modern software practices, enabling the team 

to leverage existing TypeScript libraries to accelerate 

the development and ensure high-quality results. 

Integration Strategy with Zerodha API Integrating 

with the Zerodha API is a key part of the middleware, 

as it allows for data retrieval and trading operations. 

The integration strategy involves clear steps to ensure 

secure and efficient communication with the API. 

Authentication: The middleware uses OAuth 2.0 for 

secure authentication with the Zerodha API. This 

requires obtaining an access token, which the 

middleware uses for future API requests. The token 

refreshes periodically to maintain a secure connection. 

API Request Handling: The middleware is set up to 

manage various types of API requests, such as GET, 

POST, and DELETE, depending on the operation. A 

specific API service layer is implemented to manage 

these requests, ensuring formatting is correct and 

responses are parsed effectively. 

Error Handling: Strong error-handling processes are in 

place to manage API errors smoothly. This includes 

logging errors, providing user-friendly messages, and 

implementing retry logic for temporary errors. 

Data Caching: To improve performance and cut down 

on API calls, the middleware uses a caching system. 

Frequently accessed data, such as market prices and 

user portfolios, is temporarily stored to reduce latency 

and enhance user experience. 

 

B. Model Context Protocol (MCP) Implementation 

Detailed Explanation of MCP Functionality 

The Model Context Protocol (MCP) is the backbone 

of the middleware, offering a structured way to 

manage contextual information during financial 

transactions. MCP follows several key principles: 

Contextual Awareness: The middleware keeps track of 

the user’s context, which includes their trading 

preferences, current market conditions, and historical 

transaction data. This information tailors the user 

experience and offers personalized recommendations. 

State Management: MCP implements a system that 

tracks the current state of user interactions and system 

operations. This involves keeping session information, 

transaction history, and any relevant contextual data 

that might affect decision-making. 

Event Handling: The protocol features an event-driven 

architecture that allows for real-time updates and 

notifications. Events like price changes, order 

executions, and system alerts are managed through a 

centralized event bus, ensuring efficient 

communication between components. 

Contextual Data Sharing: MCP supports the sharing of 

contextual data between various modules of the 

middleware. This guarantees that all components 

access the latest information through event-driven 

updates and centralized data storage. 

 

Error Handling and Authentication Mechanisms 

Managing errors is a crucial part of the MCP 

implementation. The middleware employs a multi-

tiered approach to error management: 

Client-Side Validation: Initial checks occur on the 

client side to catch common errors before they reach 

the server. This includes validating user inputs and 

ensuring required fields are filled out correctly. 

Server-Side Error Handling: The server-side aspects 

of the middleware have comprehensive error-handling 

systems. This includes categorizing errors into client-

side and server-side issues, logging them for later 

analysis, and providing meaningful feedback to the 

client. Authentication Mechanisms: The middleware 

uses strong authentication methods, mainly based on 

O Auth 2.0. Users must authenticate to access the 

middleware's features, ensuring sensitive financial 

data is safe. The authentication process involves 

issuing access tokens for API requests. 

Session Management: The middleware tracks user 

sessions to monitor authentication status and 

preferences. Sessions are managed securely, with 
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automatic expiration and renewal processes to keep 

users authenticated without compromising security. 

 

Context Management Techniques 

Managing context is vital in the MCP implementation, 

allowing the middleware to respond dynamically to 

user interactions and market changes. Several 

techniques are applied: 

Contextual Data Storage: Contextual information is 

stored in a structured format within the middleware's 

database, including user profiles, trading history, and 

preferences, retrieved and updated as necessary. 

Dynamic Context Updates: The middleware updates 

contextual information based on user interactions and 

external events. For instance, if a user places a trade, 

the middleware updates their transaction history and 

adjusts the context accordingly. 

Contextual Recommendations: By leveraging stored 

contextual data, the middleware can offer personalized 

recommendations. This includes suggesting trading 

strategies based on historical performance and current 

market conditions. 

User Feedback Loop: To enhance contextual data 

accuracy, the middleware includes a feedback loop 

where users can share input on recommendations and 

system behavior. This feedback is analyzed to 

continuously refine the context management 

processes. 

 

C. Development and Testing Environment 

Hardware and Software Speciflcations 

The development and testing environment for the 

middleware was set up on a MacBook Air with an M2 

chip, 8 GB of RAM, and a 512 GB SSD. This 

hardware configuration offers enough processing 

power and memory for the development tasks and 

testing scenarios linked to the middleware. The SSD 

allows quick access to files and applications, 

supporting a smooth development experience. 

Development Tools and Frameworks Used 

The development team used various tools and 

frameworks to enhance the development process: 

TypeScript: As the main programming language, 

TypeScript was utilized for its type safety and modern 

features, allowing for a strong codebase. 

Node.js: The middleware is built on a Node.js server, 

providing an efficient runtime for executing 

JavaScript server-side. This choice supports 

asynchronous processing and managing multiple 

requests simultaneously. 

Express.js: The Express framework was employed to 

create the API layer, offering a straightforward and 

flexible way to build web applications and APIs. 

MongoDB: MongoDB was chosen for data storage 

due to its flexibility and scalability. The NoSQL 

database handles complex data structures and allows 

for rapid development cycles.Postman: For API 

testing, Postman was used to simulate API requests 

and check responses. This tool helped with debugging 

and ensured that the API endpoints worked correctly. 

 

Testing Methodologies and Protocols 

The testing phase included unit testing, integration 

testing, and user acceptance testing (UAT) to ensure 

that the middleware met the desired specifications and 

worked reliably under different conditions. 

Unit Testing: Each component of the middleware was 

tested using frameworks like Jest and Mocha. Unit 

tests focused on confirming the functionality of 

specific methods and classes, ensuring that each code 

unit performed as expected. 

Integration Testing: Integration tests were done to 

assess how different components of the middleware 

interacted, particularly the API integration layer and 

the MCP Core. This involved testing how data flowed 

between modules and ensuring the system behaved 

correctly with multiple components. 

User Acceptance Testing (UAT): UAT was conducted 

with a small group of end-users to validate the 

middleware's functionality and usability. Feedback 

from this testing was essential for identifying areas for 

improvement and enhancing the user experience. 

Performance Testing: Performance testing assessed 

the middleware's responsiveness and stability under 

load. This involved simulating many concurrent users 

and analyzing the system's behavior during peak 

usage. 

Security Testing: Security testing identified 

vulnerabilities in the middleware, especially regarding 

authentication and data protection methods. This 

included penetration tests and vulnerability 

assessments to ensure the system could withstand 

potential cyber threats. 

Through these thorough testing methods, the 

development team confirmed that the MCP-based 

middleware was strong, secure, and capable of 



National Conference on Evolving Paradigm for NCEPST-2025   ISSN: 2349-6002 
Sustainable Technology 

 

191718 © IJIRT | www.ijirt.org DECEMBER 2025 56 

meeting user demands in the fast-paced financial 

environment. 

 

IV. IMPLEMENTATION OF A TRADING 

APPLICATION: TYPESCRIPT AND 

ZERODHA API INTEGRATION 

 
D. Implementation 

a. TypeScript Implementation 

Rationale for Using TypeScript 

TypeScript is a version of JavaScript that includes 

static typing. This feature makes development easier 

because developers can find errors during compilation 

instead of at runtime. We chose TypeScript for this 

project because it improves code quality, 

maintainability, and scalability. With TypeScript's 

type system, developers can build stronger 

applications that are easier to debug and modify. 

TypeScript also works well with existing JavaScript 

libraries and frameworks, which simplifies integration 

into the project. Moving from JavaScript to a safer 

typing environment is straightforward. 

Key TypeScript Features Used in the ProjectWe used 

several important features of TypeScript in this project 

to improve the application's overall structure and 

functionality. We implemented interfaces and types to 

define how data should be organized. This practice 

ensures data meets expected formats and reduces the 

risk of runtime errors. Additionally, using enums 

provides a clear way to manage constant values, which 

improves code clarity and lowers the chances of bugs 

from misconfigurations. 

Another essential feature is TypeScript's support for 

generics. This allows for the creation of reusable 

components that can handle various data types while 

maintaining type safety. This feature is especially 

useful in a trading application where different asset 

types require different management methods. 

TypeScript's improved type inference and union types 

also let us write more flexible and expressive code. 

Developers can create functions that accept multiple 

input types without losing type safety. 

 

Type Safety and Error Prevention Strategies 

To improve type safety and reduce errors, the project 

uses several strategies. First, we enabled strict type 

checking, requiring the TypeScript compiler to 

thoroughly check variable assignments and function 

calls. This approach helps catch potential issues early 

in development. We also integrated linting tools, such 

as ESLint with TypeScript support, to uphold coding 

standards and best practices. This lowers the chances 

of introducing errors. 

Additionally, we use testing frameworks like Jest to 

create tests that verify the application’s functionality. 

By developing detailed test cases, developers can 

ensure that code changes do not introduce new bugs. 

This focus on testing, along with TypeScript's type 

system, promotes a development environment that 

emphasizes reliability and maintainability. 

 

b. Zerodha API Integration 

Authentication and Security Measures 

Integrating the Zerodha API requires a strong 

authentication system to ensure secure access to user 

accounts and trading functions. The application uses 

OAuth 2.0 for authentication, which provides an 

access token after the user logs in successfully. This 

token allows further API requests while protecting 

sensitive data. The application uses HTTPS for all 

communications with the Zerodha API, ensuring that 

data sent between the client and server is encrypted 

and safe from eavesdropping. 

The application follows security best practices by 

implementing measures like rate limiting and IP 

whitelisting. Rate limiting prevents API abuse by 

restricting the number of requests allowed in a specific 

timeframe, while IP whitelisting allows requests only 

from known and trusted sources. 

 

Real-Time Data Handling and Processing 

A key feature of the trading application is its ability to 

handle real-time data efficiently. The Zerodha API 

provides WebSocket connections for streaming live 

market data, including price updates and changes in 

the order book. The application uses these WebSocket 

connections to receive and manage real-time data, 

ensuring traders have the latest information for 

informed decision-making. 

To manage this data effectively, the application uses a 

state management system that updates the user 

interface in real-time as new data arrives. This system 

ensures that users see current information, enhancing 

their overall experience. Additionally, the application 

includes error-handling strategies to cope with 

possible disconnections from the WebSocket and 
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features reconnection logic to maintain a steady data 

flow.  

 
Trade Execution Mechanisms 

The trade execution mechanism is crucial to the 

trading application as it allows users to place buy and 

sell orders effectively. The application connects with 

the Zerodha API's order placement endpoints to carry 

out trades based on user input. When a user initiates a 

trade, the application checks details like asset type, 

quantity, and price before sending the request to the 

API. 

To ensure smooth execution, the application uses 

asynchronous programming techniques that allow 

trade requests to be processed at the same time without 

blocking the main user interface. This method 

enhances the user experience by providing immediate 

feedback on trade request statuses, such as order 

confirmations and error messages. Additionally, the 

application tracks the status of open orders and 

updates the user interface accordingly, keeping users 

informed about their trading activities. 

In conclusion, combining TypeScript and the Zerodha 

API in this trading application has created a solid and 

effective platform that prioritizes code quality, 

security, and real-time data management. By taking 

advantage of TypeScript's features and following best 

practices for API integration, the application is well-

prepared to meet the needs of modern traders. 

 

V. RESULTS 

 
E. Performance Evaluation of a Trading System 

a. Experimental Setup 

The performance evaluation of the trading system was 

conducted in a controlled test environment designed to 

simulate real-world trading conditions. The test 

environment consisted of a high-performance server 

equipped with multi-core processors, ample RAM, 

and solid-state drives to ensure optimal data 

processing speeds. Network configurations were set 

up to mimic various market conditions, including low-

latency connections to trading exchanges. 

To measure the performance of the system, several 

metrics were employed, including latency, throughput, 

and trade execution success rates. Measurement tools 

such as JMeter and custom-built scripts were utilized 

to gather data on system performance under various 

scenarios. Test cases were designed to cover a range 

of market conditions, including normal market 

operations, high volatility scenarios, and periods of 

extreme market stress. 

 

b. Latency and Throughput Analysis 

Latency, defined as the time taken for a system to 

respond to a user request, was meticulously measured 

across various scenarios. The average response time 

was recorded, along with the 95th and 99th percentile 

latencies to provide a comprehensive view of system 

performance. Throughput, or the number of 

transactions processed per second, was evaluated 

under different load conditions, ranging from light to 

heavy trading volumes. 

Comparative analysis with baseline performance 

metrics revealed significant variations in both latency 

and throughput. Under normal load conditions, the 

system maintained a response time of under 100 

milliseconds, while throughput peaked at 1,500 

transactions per second. However, during stress tests 

simulating high market volatility, latency increased to 

an average of 250 milliseconds, and throughput 

decreased to approximately 800 transactions per 

second. 

 

c. Trade Execution Success Rate 

Successful trade execution is defined as the 

completion of a trade order at the desired price within 

an acceptable timeframe. The analysis of success rates 

revealed that under standard conditions, the system 

achieved a success rate of 98%. However, this rate 

fluctuated depending on market conditions; during 

periods of high volatility, the success rate dropped to 

85%. Factors affecting trade execution reliability 

included network latency, server load, and the 

responsiveness of external trading APIs. 

Further investigation into the causes of failed trade 

executions identified several critical factors, including 

order mismatches, slippage, and market depth 

limitations. These findings underscore the importance 

of robust error handling and optimization strategies to 

enhance trade execution reliability. 

 

d. Scalability Assessment 

The scalability of the trading system was assessed by 

analyzing its performance under increasing load. As 

the number of concurrent transactions increased, 
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resource utilization metrics, such as CPU and memory 

usage, were closely monitored. The system 

demonstrated linear scalability up to a threshold of 

1,000 concurrent users, beyond which performance 

degradation was observed. 

Bottlenecks were identified in the database access 

layer, where contention for resources led to increased 

response times during peak loads. Additionally, 

network bandwidth limitations were noted as a 

contributing factor to reduced throughput under heavy 

load conditions. Addressing these bottlenecks through 

database optimization and network enhancements will 

be crucial for improving the overall scalability of the 

trading system. 

In conclusion, the performance evaluation of the 

trading system highlighted its strengths in latency and 

throughput under normal conditions, while also 

revealing vulnerabilities during high-stress scenarios. 

Ongoing assessment and optimization will be 

necessary to ensure that the system can reliably handle 

increasing trading volumes and maintain high success 

rates in trade executions. 

 

VI. CONCLUSIONS 

 

In this final section, we summarize the main findings 

of our research, highlight the importance of the MCP- 

based middleware approach, and discuss its 

implications for incorporating artificial intelligence 

(AI) into financial systems. We will also outline 

potential improvements and optimizations, suggest 

areas for further study, and offer recommendations for 

practical execution. 

 

VII. SUMMARY OF KEY FINDINGS 

 

The main goal of our study was to examine how 

effective a middleware approach based on the Model- 

Driven Computing Paradigm (MCP) is in financial 

systems. Our research produced several important 

outcomes that contribute to both the theoretical 

understanding and practical use of AI in finance. First, 

we found that the MCP-based middleware effectively 

connects complex AI algorithms with existing 

financial system architectures. By using model-driven 

techniques, we created a flexible framework that helps 

integrate AI components into older systems. This is 

especially important in finance, where quick 

technological changes often conflict with rigid 

infrastructures. 

Second, our results showed that the MCP-based 

middleware not only improves interoperability among 

various AI models but also boosts the scalability of 

financial applications. The ability to add new AI 

models without overhauling the entire system gives 

financial institutions a significant edge in a data-driven 

market. This flexibility allows organizations to 

respond faster to new trends and regulatory demands, 

encouraging innovation. 

Moreover, we demonstrated that the middleware 

approach significantly cuts down the time and costs 

linked to deploying AI solutions in financial systems. 

By simplifying the integration process and reducing 

the need for extensive customization, our framework 

helps financial institutions use their resources more 

effectively. This efficiency is particularly relevant 

today, as institutions face pressure to lower 

operational costs while improving service delivery. 

The importance of our findings goes beyond just 

technical improvements. Successfully implementing 

the MCP-based middleware approach has serious 

implications for AI integration in financial systems. 

As organizations increasingly depend on AI for 

decision-making, there is a growing need for strong, 

reliable, and transparent frameworks. Our research 

emphasizes the need for middleware solutions that not 

only aid integration but also ensure compliance with 

regulatory standards and ethical principles. 

 

VIII. IMPLICATIONS FOR AI INTEGRATION 

IN FINANCIAL SYSTEMS 

 

Our research presents multiple implications. First, the 

MCP-based middleware approach opens doors for 

more advanced AI applications in finance, such as 

predictive analytics, fraud detection, and customer 

personalization. By offering a structured environment 

for AI implementation, financial institutions can fully 

leverage sophisticated algorithms to improve decision-

making and enhance customer experiences. 

Additionally, our findings highlight that financial 

organizations need to take a proactive approach to AI 

governance. As AI systems become more common, 

the risk of biases and ethical issues rises. Institutions 

must establish frameworks that prioritize performance 

along with accountability and transparency. The MCP-
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based middleware can help set up ethical guidelines 

and compliance measures, ensuring AI applications 

match both organizational values and regulatory 

requirements. 

Furthermore, integrating AI into financial systems 

using our middleware approach might transform how 

financial services are provided. The potential for real-

time analytics and automated decision-making could 

change credit scoring, risk assessment, and investment 

management. By embracing these innovations, 

financial institutions can enhance operational 

efficiency and offer more personalized and responsive 

services to their clients. 

Future Work and Recommendations While our 

research has made great progress in showing how 

effective the MCP-based middleware approach can be, 

there are still many opportunities for future work and 

improvements. We propose several enhancements that 

could refine our framework and its applications 

further. 

One potential area for exploration is incorporating 

machine learning techniques to increase the 

middleware’s adaptability. By adding self-learning 

algorithms, the middleware could adjust to market 

conditions and user behaviors, improving its 

effectiveness over time. This adaptability would be 

beneficial in the fast-paced financial sector, where 

quick shifts can render static models outdated. 

We also recommend looking into how the MCP-based 

middleware could be applied in other industries. While 

our research focused on financial systems, the 

principles behind our approach may be useful in 

sectors facing similar challenges with AI integration. 

Exploring these applications can help us find best 

practices and innovative solutions that could benefit a 

wider range of organizations. 

Furthermore, we suggest conducting real-world 

studies to assess the performance of the MCP-based 

middleware in different financial settings. While our 

theoretical framework is solid, practical applications 

will provide valuable insights into its effectiveness and 

areas for enhancement. Collaborating with financial 

institutions willing to test our middleware could 

produce rich data for future improvements. 

For practical implementation, we recommend that 

financial institutions take a gradual approach to 

adopting the MCP-based middleware. Instead of 

trying to replace existing systems all at once, 

organizations should start by integrating the 

middleware into specific use cases, allowing for 

ongoing testing and refinement. This method reduces 

risk and helps organizations build internal knowledge 

and confidence in using the new framework. 

Additionally, we encourage financial institutions to 

invest in training and upskilling their staff in both AI 

technologies and the fundamentals of the MCP-based 

middleware. As the finance landscape continues to 

change, having a knowledgeable workforce will be 

essential for successful implementation and 

continuous innovation. 

In conclusion, our research on the MCP-based 

middleware approach has provided significant insights 

into integrating AI into financial systems. By 

improving interoperability, scalability, and cost 

efficiency, this framework offers a promising solution 

for organizations looking to leverage AI effectively. 

The implications of our findings go beyond technical 

improvements, highlighting the importance of 

governance, ethical considerations, and proactive 

adaptation in a rapidly changing technological 

environment. As we look ahead, we are hopeful that 

ongoing research and practical adoption of the MCP-

based middleware will lead to meaningful 

advancements in the financial sector, resulting in more 

efficient, transparent, and customer-focused services. 
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