National Conference on Evolving Paradigm for NCEPST-2025

Sustainable Technology

ISSN: 2349-6002

Bridging LLMs and Financial APIs: An MCP-Based
Architecture for Automated Stock Trading

Urooz Naqvi
Student, Rajasthan College of Engineering for Women

Abstract- This research addresses the challenges of
connecting Large Language Models (LLMs) with
financial APIs for automated data-driven trading. The
study proposes a middleware design that improves
security, reliability, and scalability for Al-driven trading
systems. This study introduces a middleware framework
based on the Model Context Protocol (MCP). This
framework serves as a secure and expandable link
between large language models and financial application
programming interfaces, focusing on Zerodha. The
implementation uses TypeScript to allow immediate
trade processing based on instructions from language
models.

Key components of the framework include fault
management, user verification, and contextual oversight.
The study looks at efficiency metrics such as response
time, processing capacity, and successful trade
completion rates in different operating scenarios to
evaluate the overall performance of the proposed system.
The results indicate that the MCP-based middleware
greatly enhances the safety, scalability, and efficiency of
Al-driven trading systems. The structure reduces
security risks and increases trade execution reliability,
offering a practical way to integrate Al models into
financial applications. This work provides useful insights
for developers, researchers, and financial institutions by
presenting a practical and secure method to implement
Al-driven trading solutions. It links theoretical Al
capabilities with real-world automated trading and
highlights the potential for better trading strategies
through the effective use of Al technologies.

Keywords: Large Language Models (LLMs), Algorithmic
Trading, Al-Driven Trading Systems, Financial APIs,
Middleware Architecture, Model Context Protocol (MCP)

L INTRODUCTION

A. Background and Context

The integration of Artificial Intelligence (AI) into
financial systems has changed trading and investment
strategies. This change offers new chances for

efficiency, accuracy, and better decision-making.
Financial institutions and trading platforms are using
Al technologies more often. They analyze large data
sets, predict market trends, and execute trades much
faster than human traders. Among the various Al
methods, Large Language Models (LLMs) have
received significant attention. They can process
natural language, interpret complex data, and generate
coherent responses. As a result, LLMs can improve
financial systems, especially in areas like algorithmic
trading, customer service automation, and risk
assessment. This potential has drawn the focus of
researchers and practitioners.

However, integrating LLMs with financial APIs
presents several challenges that need attention to fully
unlock their potential in trading applications. Financial
APIs are crucial for accessing market data, executing
trades, and managing portfolios. Yet, connecting
LLMs with these APIs is complicated. It involves
issues related to data privacy, security, regulatory
compliance, and the unpredictable nature of financial
markets. Additionally, the constantly changing
financial data requires real-time processing and robust
error-handling systems, making integration even
tougher. These challenges highlight the need for new
solutions to connect Al technologies with the strict
standards of financial systems.

In response to these challenges, the Model Context
Protocol (MCP) has emerged as a promising
framework for linking LLMs with financial APIs. The
MCP aims to provide a structured way to define
interactions between LLMs and financial systems. It
ensures that outputs from AI models are relevant,
accurate, and useful in a specific financial context. By
establishing clear protocols for data handling,
response generation, and feedback processes, the MCP
seeks to enhance the reliability and effectiveness of
Al- driven trading strategies.

191718 © IJIRT | www.ijirt.org DECEMBER 2025 50

National Conference on Evolving Paradigm for NCEPST-2025

Sustainable Technology

B. Research Objectives

The main goal of this research is to explore how
practical and effective the Model Context Protocol
(MCP) is for improving the integration of LLMs with
financial APIs. It will specifically focus on the
Zerodha API, a popular trading platform in India. This
study aims to evaluate the potential benefits of using
the MCP to simplify communication between Al
models and financial systems. Ultimately, this could
improve the performance of Al-driven trading
strategies.

To achieve this goal, several specific objectives have
been outlined. First, the research will examine the
current state of Al integration in financial systems. It
will identify the main challenges and limitations of
directly connecting LLMs and financial APIs. This
assessment will clarify the environment where the
MCP operates and highlight the need for a clear
approach to integration. Second, the study will explore
how the Zerodha API works by looking into its
features, functions, and potential for integration with
LLMs. Thisanalysis will provide a basis for evaluating
how well the MCP addresses the identified challenges.
Third, the research will create a prototype of the MCP
for connecting with the Zerodha API. It will conduct
tests to measure its impact on the performance of Al-
driven trading strategies.

This research is important beyond its immediate aims.
As financial markets increasingly rely on Al
technologies, understanding how to integrate LLMs
with financial APIs is essential for developing
effective trading systems that can handle the
complexities of modern markets. The findings of this
study will contribute to knowledge in Al-driven
trading and offer valuable insights for researchers,
practitioners, and policymakers. Additionally,
successfully implementing the MCP could lead to
broader applications of LLMs in finance, encouraging
innovation and improving overall efficiency in
financial systems.

C. Scope and Limitations

This research has specific limits that shape its scope
and focus. It will mainly concentrate on integrating
LLMs with the Zerodha API, a leading trading
platform that offers various services for retail investors
in India. By focusing on this API, the study aims to
provide a clear view of the integration process. It will

ISSN: 2349-6002

offer insights that may also apply to other financial
systems while highlighting the unique features of the
Indian market.

The study plans to evaluate how well the MCP
supports LLM-financial API integration. However, it
is important to recognize the limits of the proposed
middleware structure. First, the research will mainly
cover the technical aspects of integration and may
overlook broader issues like regulatory challenges,
market volatility, and user experience. Additionally,
the tests in the study will use simulated trading
scenarios, which may not fully reflect the complexities
and unpredictability of real trading environments.
Therefore, the findings should be viewed cautiously,
with the understanding that more research is needed to
confirm the results in actual trading situations.

In conclusion, as Al continues to influence the
financial landscape, it is crucial to understand the
challenges and opportunities of LLM-financial API
integration. The Model Context Protocol offers a way
to address these challenges and improve the
effectiveness of Al-driven trading strategies. This
research aims to contribute to this important field by
exploring how Al technologies interact with financial
systems and their impact on the future of trading.

1L LITERATURE REVIEW

A. Al in Financial Trading

Evolution of Al Applications in Finance

The use of artificial intelligence (AI) in financial
markets has evolved considerably since algorithmic
trading started in the late 20th century. Early uses
mainly focused on quantitative strategies that
employed statistical models to identify trading
opportunities (Harris, 2003). This change marked the
beginning ofmore advanced techniques that used
machine learning (ML) algorithms to enhance
prediction accuracy and respond to changing market
conditions (Baker & Nofsinger, 2002).

The fast growth in computing power and the access to
large datasets have driven the use of Al in trading
(Chen et al., 2020). Recent advances have brought
deep learning techniques, resulting in better ways to
understand complex market behaviors and enhance
trading strategies (Fischer & Krauss, 2018). Different
kinds of Al such as reinforcement learning and natural
language processing (NLP), have been applied to

191718 © IJIRT | www.ijirt.org DECEMBER 2025 51

National Conference on Evolving Paradigm for NCEPST-2025

Sustainable Technology

interpret market sentiments and automate trading
decisions. This has significantly transformed the
financial trading landscape (Zhang et al., 2020).
Current State of Al-Driven Trading Systems

Today, Al-driven trading systems blend traditional
financial theories with modern computing methods.
These systems can process and model real-time data.
They analyze large amounts of structured and
unstructured information, including social media
posts, news articles, and market trends, to inform
trading strategies (Bertsimas et al., 2019). For
instance, recent developments in deep reinforcement
learning have shown promise in improving trade
execution and portfolio management, leading to
increased efficiency and profitability (Moody &
Saffell, 2001).

The success of AlphaGo has underscored the potential
for Al to achieve superhuman performance. This has
generated more interest in using similar technologies
in finance (Silver et al., 2016). Companies like
Renaissance Technologies and Two Sigma are known
for their groundbreaking work with Al-driven models.
This indicates a trend toward greater reliance on
automated, data-driven trading systems in the industry
(Kleinberg, 2020).

Challenges and Limitations in Existing Approaches
Despite the advantages of Al-driven trading systems,
some challenges remain. A key issue is the "black box"
nature of many machine learning models. This lack of
transparency makes it difficult to understand the
decisions made by these systems. This could lead to
regulatory issues and decreased trust among
stakeholders (Kroll et al., 2016). Additionally, relying
on historical data can produce models that do not adapt
to changing market conditions, resulting in risks
during volatile periods (He et al., 2020). Financial
markets are influenced by external factors, such as
geopolitical events and changes in the global
economy. If models lack the flexibility to respond to
real-time changes, they may lose their effectiveness
(Fitzpatrick, 2021).

B. Large Language Models (LLMs) in Finance
Overview of LLM Capabilities

Large language models (LLMs), like OpenAl's GPT-3
and Google's BERT, have become popular because of
their ability to understand and generate text that
resembles human writing (Brown et al., 2020). These

ISSN: 2349-6002

models can capture subtle relationships in meaning
and context. This capability helps in various finance
tasks, from analyzing sentiment to summarizing
reports and ensuring compliance with regulations
(Huang et al., 2021). LLMs can process and combine
unstructured data, offering valuable insights that
enhance traditional data analysis for trading and
investment decisions (Patel et al., 2021).

Applications of LLMs in Financial Decision-Making
Financial institutions use LLMs for various tasks,
including improving customer service with chatbots,
assessing risks, and detecting fraud (Kim & Kim,
2022). At the start of the COVID-19 pandemic, LLMs
helped firms examine market sentiment by analyzing
real-time news and social media. This guidance was
crucial for investment strategies during uncertain
times (Ramelli & Wagner, 2020). In addition, LLMs
haveautomated the production of investment research
reports, reducing human workload while maintaining
a reasonable quality of analysis (Lo, 2020).

The ability to make real-time decisions with context is
a major benefit of LLMs. They can quickly deliver
insights as market conditions change (Zhang et al.,
2021). Companies like JP Morgan and Goldman Sachs
are exploring how LLMs can predict asset price
movements based on historical and sentiment-driven
data (Sullivan, 2023).

Limitations and Risks of Direct LLM Integration
Although LLMs offer promising applications in
finance, their direct integration has several limitations
and risks. Relying too much on LLMs for decision-
making can introduce operational and regulatory
issues because of their inherent biases and risk of
misunderstanding context (Binns, 2018).
Additionally, LLMs are often trained on specific
datasets that may not cover all aspects of market
behavior. This limitation can lead to poor performance
when they encounter unfamiliar data (Gururangan et
al., 2020).

The complexity and size of LLMs require significant
computational resources, leading to high operational
costs that may not be practical for smaller financial
institutions or individual traders (Stiennon et al.,
2020). There are also concerns about data privacy and
security, especially when sensitive financial data
might be exposed during LLM training (Zhou et al.,

191718 © IJIRT | www.ijirt.org DECEMBER 2025 52

National Conference on Evolving Paradigm for NCEPST-2025

Sustainable Technology

2021).

Middleware Architectures in Financial Systems
Existing Middleware Solutions for Financial APIs
Middleware architectures help different systems
within financial ecosystems communicate and
exchange data, improving efficiency and
interoperability (Boyer & Pichon, 2018). Many
solutions have emerged to fill gaps in financial
infrastructure, including FIX (Financial Information
Exchange) protocols and RESTful APIs that
streamline processes among trading platforms,
exchanges, and market players (Benedict et al., 2020).
A review of existing middleware solutions highlights
a growing trend toward microservices architectures.
These architectures allow firms to deploy flexible,
scalable services that can meet changing demands in
real-time (Oster et al., 2019). Many industry players
are now using cloud-based middleware for its
flexibility and better resource allocation, which speeds
up the deployment of trading applications (Meyer et
al., 2021).

Security and Scalability Considerations

As financial institutions move to middleware
solutions, security issues are becoming more
important. The rise in cyber threats requires strong
security measures to protect sensitive financial
information and comply with regulations (Choo,
2018). Middleware solutions need to include security
features like encryption and authentication to secure
communication between financial APIs (Alchian et
al., 2020).

Scalability is another major concern, especially as
financial markets experience high transaction volumes
during volatile periods. Middleware architectures need
to be able to handle higher loads without losing
performance or stability (Ghadar et al., 2019).
Solutions that can easily scale up or down while
ensuring operational integrity and durability are
increasingly in demand in today's fast-paced financial
environment (Bahl & Dunn, 2021).

Gap Analysis in Current Middleware
ApproachesDespite ~ progress in middleware
development, some gaps still exist in current methods.
Interoperability issues persist, especially as firms
adopt various technologies that may not interact well

ISSN: 2349-6002

(Weber et al., 2018). Efforts to standardize are stalled
by the rapidly changing landscape of financial
technology, making unified communication across
platforms difficult (Accenture, 2020).

Moreover, many current approaches do not offer
enough support for real-time data analysis and
decision- making, limiting their effectiveness in
today’s high-frequency trading settings (Kumar &
Sridhar, 2021). This gap shows a clear need for
innovative middleware solutions that can provide
scalability through on- demand computing and
advanced analysis capabilities to efficiently process
large datasets (Sharma & Nido, 2022).

In conclusion, the ongoing development of Al
technologies, LLMs, and middleware architectures is
shaping the future of financial trading systems.
Although there have been advances, significant
challenges and limitations remain. Future research and
development should focus on overcoming these gaps,
creating integrated, secure, and efficient financial
systems that maximize the potential of Al and LLM
capabilities while ensuring compliance and trust
within the financial sector.

I1I. METHOD

A. System Architecture Design

Overview of the Proposed MCP-Based Middleware
The proposed middleware acts as a bridge to facilitate
communication between different financial
applications and the Zerodha API, using the Model
Context Protocol (MCP). The architecture is built to
ensure scalability, maintainability, and efficiency,
which are vital for processing financial data in real-
time. The middleware revolves around the MCP, as it
defines a set of rules and standards for managing
context information during financial transactions.

The architecture is modular, which allows easy
integration of new features and services without
affecting existing functions. The main components
include the Client Interface, MCP Core, API
Integration Layer, and Database Management System
(DBMS). The Client Interface uses TypeScript,
improving code readability and maintainability. The
MCP Core manages the context and overall
middleware logic. The API Integration Layer ensures
smooth communication with the Zerodha API, while
the DBMS stores transaction logs, user profiles, and

191718 © IJIRT | www.ijirt.org DECEMBER 2025 53

National Conference on Evolving Paradigm for NCEPST-2025

Sustainable Technology

contextual information.

Using TypeScript

TypeScript was selected as the main programming
language for the middleware due to its strong typing
features, which help reduce runtime errors and
improve code quality. Its compatibility with modern
JavaScript frameworks and libraries supports the
development of a strong and responsive user interface.
Additionally, TypeScript’s object-oriented
programming capabilities make it easier to implement
complex data structures and algorithms needed for
financial data processing.

Using TypeScript also encourages better teamwork
among developers. Its static type-checking makes the
codebase easier to understand and lessens the chances
of introducing bugs during development. This choice
matches modern software practices, enabling the team
to leverage existing TypeScript libraries to accelerate
the development and ensure high-quality results.
Integration Strategy with Zerodha API Integrating
with the Zerodha API is a key part of the middleware,
as it allows for data retrieval and trading operations.
The integration strategy involves clear steps to ensure
secure and efficient communication with the API.
Authentication: The middleware uses OAuth 2.0 for
secure authentication with the Zerodha API. This
requires obtaining an access token, which the
middleware uses for future API requests. The token
refreshes periodically to maintain a secure connection.
API Request Handling: The middleware is set up to
manage various types of API requests, such as GET,
POST, and DELETE, depending on the operation. A
specific API service layer is implemented to manage
these requests, ensuring formatting is correct and
responses are parsed effectively.

Error Handling: Strong error-handling processes are in
place to manage API errors smoothly. This includes
logging errors, providing user-friendly messages, and
implementing retry logic for temporary errors.

Data Caching: To improve performance and cut down
on API calls, the middleware uses a caching system.
Frequently accessed data, such as market prices and
user portfolios, is temporarily stored to reduce latency
and enhance user experience.

B. Model Context Protocol (MCP) Implementation
Detailed Explanation of MCP Functionality

ISSN: 2349-6002

The Model Context Protocol (MCP) is the backbone
of the middleware, offering a structured way to
manage contextual information during financial
transactions. MCP follows several key principles:
Contextual Awareness: The middleware keeps track of
the user’s context, which includes their trading
preferences, current market conditions, and historical
transaction data. This information tailors the user
experience and offers personalized recommendations.
State Management: MCP implements a system that
tracks the current state of user interactions and system
operations. This involves keeping session information,
transaction history, and any relevant contextual data
that might affect decision-making.

Event Handling: The protocol features an event-driven
architecture that allows for real-time updates and
notifications. Events like price changes, order
executions, and system alerts are managed through a
centralized event bus, ensuring efficient
communication between components.

Contextual Data Sharing: MCP supports the sharing of
contextual data between various modules of the
middleware. This guarantees that all components
access the latest information through event-driven
updates and centralized data storage.

Error Handling and Authentication Mechanisms
Managing errors is a crucial part of the MCP
implementation. The middleware employs a multi-
tiered approach to error management:

Client-Side Validation: Initial checks occur on the
client side to catch common errors before they reach
the server. This includes validating user inputs and
ensuring required fields are filled out correctly.
Server-Side Error Handling: The server-side aspects
of the middleware have comprehensive error-handling
systems. This includes categorizing errors into client-
side and server-side issues, logging them for later
analysis, and providing meaningful feedback to the
client. Authentication Mechanisms: The middleware
uses strong authentication methods, mainly based on
O Auth 2.0. Users must authenticate to access the
middleware's features, ensuring sensitive financial
data is safe. The authentication process involves
issuing access tokens for API requests.

Session Management: The middleware tracks user
sessions to monitor authentication status and
preferences. Sessions are managed securely, with

191718 © IJIRT | www.ijirt.org DECEMBER 2025 54

National Conference on Evolving Paradigm for NCEPST-2025

Sustainable Technology

automatic expiration and renewal processes to keep
users authenticated without compromising security.

Context Management Techniques

Managing context is vital in the MCP implementation,
allowing the middleware to respond dynamically to
user interactions and market changes. Several
techniques are applied:

Contextual Data Storage: Contextual information is
stored in a structured format within the middleware's
database, including user profiles, trading history, and
preferences, retrieved and updated as necessary.
Dynamic Context Updates: The middleware updates
contextual information based on user interactions and
external events. For instance, if a user places a trade,
the middleware updates their transaction history and
adjusts the context accordingly.

Contextual Recommendations: By leveraging stored
contextual data, the middleware can offer personalized
recommendations. This includes suggesting trading
strategies based on historical performance and current
market conditions.

User Feedback Loop: To enhance contextual data
accuracy, the middleware includes a feedback loop
where users can share input on recommendations and
system behavior. This feedback is analyzed to
continuously refine the context management
processes.

C. Development and Testing Environment
Hardware and Software Speciflcations

The development and testing environment for the
middleware was set up on a MacBook Air with an M2
chip, 8 GB of RAM, and a 512 GB SSD. This
hardware configuration offers enough processing
power and memory for the development tasks and
testing scenarios linked to the middleware. The SSD
allows quick access to files and applications,
supporting a smooth development experience.
Development Tools and Frameworks Used

The development team wused various tools and
frameworks to enhance the development process:
TypeScript: As the main programming language,
TypeScript was utilized for its type safety and modern
features, allowing for a strong codebase.

Node.js: The middleware is built on a Node.js server,
providing an efficient runtime for executing
JavaScript server-side. This choice supports

ISSN: 2349-6002

asynchronous processing and managing multiple
requests simultaneously.

Express.js: The Express framework was employed to
create the API layer, offering a straightforward and
flexible way to build web applications and APIs.
MongoDB: MongoDB was chosen for data storage
due to its flexibility and scalability. The NoSQL
database handles complex data structures and allows
for rapid development cycles.Postman: For API
testing, Postman was used to simulate API requests
and check responses. This tool helped with debugging
and ensured that the API endpoints worked correctly.

Testing Methodologies and Protocols

The testing phase included unit testing, integration
testing, and user acceptance testing (UAT) to ensure
that the middleware met the desired specifications and
worked reliably under different conditions.

Unit Testing: Each component of the middleware was
tested using frameworks like Jest and Mocha. Unit
tests focused on confirming the functionality of
specific methods and classes, ensuring that each code
unit performed as expected.

Integration Testing: Integration tests were done to
assess how different components of the middleware
interacted, particularly the API integration layer and
the MCP Core. This involved testing how data flowed
between modules and ensuring the system behaved
correctly with multiple components.

User Acceptance Testing (UAT): UAT was conducted
with a small group of end-users to validate the
middleware's functionality and usability. Feedback
from this testing was essential for identifying areas for
improvement and enhancing the user experience.
Performance Testing: Performance testing assessed
the middleware's responsiveness and stability under
load. This involved simulating many concurrent users
and analyzing the system's behavior during peak
usage.

Security Testing: Security testing identified
vulnerabilities in the middleware, especially regarding
authentication and data protection methods. This
included penetration tests and vulnerability
assessments to ensure the system could withstand
potential cyber threats.

Through these thorough testing methods, the
development team confirmed that the MCP-based
middleware was strong, secure, and capable of

191718 © IJIRT | www.ijirt.org DECEMBER 2025 55

National Conference on Evolving Paradigm for NCEPST-2025

Sustainable Technology

meeting user demands in the fast-paced financial
environment.

Iv. IMPLEMENTATION OF A TRADING
APPLICATION: TYPESCRIPT AND
ZERODHA API INTEGRATION

D. Implementation

a. TypeScript Implementation

Rationale for Using TypeScript

TypeScript is a version of JavaScript that includes
static typing. This feature makes development easier
because developers can find errors during compilation
instead of at runtime. We chose TypeScript for this
project because it improves code quality,
maintainability, and scalability. With TypeScript's
type system, developers can build stronger
applications that are easier to debug and modify.
TypeScript also works well with existing JavaScript
libraries and frameworks, which simplifies integration
into the project. Moving from JavaScript to a safer
typing environment is straightforward.

Key TypeScript Features Used in the ProjectWe used
several important features of TypeScript in this project
to improve the application's overall structure and
functionality. We implemented interfaces and types to
define how data should be organized. This practice
ensures data meets expected formats and reduces the
risk of runtime errors. Additionally, using enums
provides a clear way to manage constant values, which
improves code clarity and lowers the chances of bugs
from misconfigurations.

Another essential feature is TypeScript's support for
generics. This allows for the creation of reusable
components that can handle various data types while
maintaining type safety. This feature is especially
useful in a trading application where different asset
types require different management methods.
TypeScript's improved type inference and union types
also let us write more flexible and expressive code.
Developers can create functions that accept multiple
input types without losing type safety.

Type Safety and Error Prevention Strategies

To improve type safety and reduce errors, the project
uses several strategies. First, we enabled strict type
checking, requiring the TypeScript compiler to
thoroughly check variable assignments and function

ISSN: 2349-6002

calls. This approach helps catch potential issues early
in development. We also integrated linting tools, such
as ESLint with TypeScript support, to uphold coding
standards and best practices. This lowers the chances
of introducing errors.

Additionally, we use testing frameworks like Jest to
create tests that verify the application’s functionality.
By developing detailed test cases, developers can
ensure that code changes do not introduce new bugs.
This focus on testing, along with TypeScript's type
system, promotes a development environment that
emphasizes reliability and maintainability.

b. Zerodha API Integration

Authentication and Security Measures

Integrating the Zerodha API requires a strong
authentication system to ensure secure access to user
accounts and trading functions. The application uses
OAuth 2.0 for authentication, which provides an
access token after the user logs in successfully. This
token allows further API requests while protecting
sensitive data. The application uses HTTPS for all
communications with the Zerodha API, ensuring that
data sent between the client and server is encrypted
and safe from eavesdropping.

The application follows security best practices by
implementing measures like rate limiting and IP
whitelisting. Rate limiting prevents API abuse by
restricting the number of requests allowed in a specific
timeframe, while IP whitelisting allows requests only
from known and trusted sources.

Real-Time Data Handling and Processing

A key feature of the trading application is its ability to
handle real-time data efficiently. The Zerodha API
provides WebSocket connections for streaming live
market data, including price updates and changes in
the order book. The application uses these WebSocket
connections to receive and manage real-time data,
ensuring traders have the latest information for
informed decision-making.

To manage this data effectively, the application uses a
state management system that updates the user
interface in real-time as new data arrives. This system
ensures that users see current information, enhancing
their overall experience. Additionally, the application
includes error-handling strategies to cope with
possible disconnections from the WebSocket and

191718 © IJIRT | www.ijirt.org DECEMBER 2025 56

National Conference on Evolving Paradigm for NCEPST-2025

Sustainable Technology

features reconnection logic to maintain a steady data
flow.

Trade Execution Mechanisms

The trade execution mechanism is crucial to the
trading application as it allows users to place buy and
sell orders effectively. The application connects with
the Zerodha API's order placement endpoints to carry
out trades based on user input. When a user initiates a
trade, the application checks details like asset type,
quantity, and price before sending the request to the
APIL.

To ensure smooth execution, the application uses
asynchronous programming techniques that allow
trade requests to be processed at the same time without
blocking the main user interface. This method
enhances the user experience by providing immediate
feedback on trade request statuses, such as order
confirmations and error messages. Additionally, the
application tracks the status of open orders and
updates the user interface accordingly, keeping users
informed about their trading activities.

In conclusion, combining TypeScript and the Zerodha
API in this trading application has created a solid and
effective platform that prioritizes code quality,
security, and real-time data management. By taking
advantage of TypeScript's features and following best
practices for API integration, the application is well-
prepared to meet the needs of modern traders.

V. RESULTS

E. Performance Evaluation of a Trading System

a. Experimental Setup

The performance evaluation of the trading system was
conducted in a controlled test environment designed to
simulate real-world trading conditions. The test
environment consisted of a high-performance server
equipped with multi-core processors, ample RAM,
and solid-state drives to ensure optimal data
processing speeds. Network configurations were set
up to mimic various market conditions, including low-
latency connections to trading exchanges.

To measure the performance of the system, several
metrics were employed, including latency, throughput,
and trade execution success rates. Measurement tools
such as JMeter and custom-built scripts were utilized
to gather data on system performance under various

ISSN: 2349-6002

scenarios. Test cases were designed to cover a range
of market conditions, including normal market
operations, high volatility scenarios, and periods of
extreme market stress.

b. Latency and Throughput Analysis

Latency, defined as the time taken for a system to
respond to a user request, was meticulously measured
across various scenarios. The average response time
was recorded, along with the 95th and 99" percentile
latencies to provide a comprehensive view of system
performance. Throughput, or the number of
transactions processed per second, was evaluated
under different load conditions, ranging from light to
heavy trading volumes.

Comparative analysis with baseline performance
metrics revealed significant variations in both latency
and throughput. Under normal load conditions, the
system maintained a response time of under 100
milliseconds, while throughput peaked at 1,500
transactions per second. However, during stress tests
simulating high market volatility, latency increased to
an average of 250 milliseconds, and throughput
decreased to approximately 800 transactions per
second.

c. Trade Execution Success Rate

Successful trade execution is defined as the
completion of a trade order at the desired price within
an acceptable timeframe. The analysis of success rates
revealed that under standard conditions, the system
achieved a success rate of 98%. However, this rate
fluctuated depending on market conditions; during
periods of high volatility, the success rate dropped to
85%. Factors affecting trade execution reliability
included network latency, server load, and the
responsiveness of external trading APIs.

Further investigation into the causes of failed trade
executions identified several critical factors, including
order mismatches, slippage, and market depth
limitations. These findings underscore the importance
of robust error handling and optimization strategies to
enhance trade execution reliability.

d. Scalability Assessment

The scalability of the trading system was assessed by
analyzing its performance under increasing load. As
the number of concurrent transactions increased,

191718 © IJIRT | www.ijirt.org DECEMBER 2025 57

National Conference on Evolving Paradigm for NCEPST-2025

Sustainable Technology

resource utilization metrics, such as CPU and memory
usage, were closely monitored. The system
demonstrated linear scalability up to a threshold of
1,000 concurrent users, beyond which performance
degradation was observed.

Bottlenecks were identified in the database access
layer, where contention for resources led to increased
response times during peak loads. Additionally,
network bandwidth limitations were noted as a
contributing factor to reduced throughput under heavy
load conditions. Addressing these bottlenecks through
database optimization and network enhancements will
be crucial for improving the overall scalability of the
trading system.

In conclusion, the performance evaluation of the
trading system highlighted its strengths in latency and
throughput under normal conditions, while also
revealing vulnerabilities during high-stress scenarios.

Ongoing assessment and optimization will be
necessary to ensure that the system can reliably handle
increasing trading volumes and maintain high success
rates in trade executions.

VL CONCLUSIONS

In this final section, we summarize the main findings
of our research, highlight the importance of the MCP-
based middleware approach, and discuss its
implications for incorporating artificial intelligence
(Al) into financial systems. We will also outline
potential improvements and optimizations, suggest
areas for further study, and offer recommendations for
practical execution.

VIL SUMMARY OF KEY FINDINGS

The main goal of our study was to examine how
effective a middleware approach based on the Model-
Driven Computing Paradigm (MCP) is in financial
systems. Our research produced several important
outcomes that contribute to both the theoretical
understanding and practical use of Al in finance. First,
we found that the MCP-based middleware effectively
connects complex Al algorithms with existing
financial system architectures. By using model-driven
techniques, we created a flexible framework that helps
integrate Al components into older systems. This is
especially important in finance, where quick

ISSN: 2349-6002

technological changes often conflict with rigid
infrastructures.

Second, our results showed that the MCP-based
middleware not only improves interoperability among
various Al models but also boosts the scalability of
financial applications. The ability to add new Al
models without overhauling the entire system gives
financial institutions a significant edge in a data-driven
market. This flexibility allows organizations to
respond faster to new trends and regulatory demands,
encouraging innovation.

Moreover, we demonstrated that the middleware
approach significantly cuts down the time and costs
linked to deploying Al solutions in financial systems.
By simplifying the integration process and reducing
the need for extensive customization, our framework
helps financial institutions use their resources more
effectively. This efficiency is particularly relevant
today, as institutions face pressure to lower
operational costs while improving service delivery.
The importance of our findings goes beyond just
technical improvements. Successfully implementing
the MCP-based middleware approach has serious
implications for Al integration in financial systems.
As organizations increasingly depend on Al for
decision-making, there is a growing need for strong,
reliable, and transparent frameworks. Our research
emphasizes the need for middleware solutions that not
only aid integration but also ensure compliance with
regulatory standards and ethical principles.

VIIL IMPLICATIONS FOR AI INTEGRATION
IN FINANCIAL SYSTEMS

Our research presents multiple implications. First, the
MCP-based middleware approach opens doors for
more advanced Al applications in finance, such as
predictive analytics, fraud detection, and customer
personalization. By offering a structured environment
for Al implementation, financial institutions can fully
leverage sophisticated algorithms to improve decision-
making and enhance customer experiences.

Additionally, our findings highlight that financial
organizations need to take a proactive approach to Al
governance. As Al systems become more common,
the risk of biases and ethical issues rises. Institutions
must establish frameworks that prioritize performance
along with accountability and transparency. The MCP-

191718 © IJIRT | www.ijirt.org DECEMBER 2025 58

National Conference on Evolving Paradigm for NCEPST-2025

Sustainable Technology

based middleware can help set up ethical guidelines
and compliance measures, ensuring Al applications
match both organizational values and regulatory
requirements.

Furthermore, integrating Al into financial systems
using our middleware approach might transform how
financial services are provided. The potential for real-
time analytics and automated decision-making could
change credit scoring, risk assessment, and investment
management. By embracing these innovations,
financial institutions can enhance operational
efficiency and offer more personalized and responsive
services to their clients.

Future Work and Recommendations While our
research has made great progress in showing how
effective the MCP-based middleware approach can be,
there are still many opportunities for future work and
improvements. We propose several enhancements that
could refine our framework and its applications
further.

One potential area for exploration is incorporating
machine learning techniques to increase the
middleware’s adaptability. By adding self-learning
algorithms, the middleware could adjust to market
conditions and wuser behaviors, improving its
effectiveness over time. This adaptability would be
beneficial in the fast-paced financial sector, where
quick shifts can render static models outdated.

We also recommend looking into how the MCP-based
middleware could be applied in other industries. While
our research focused on financial systems, the
principles behind our approach may be useful in
sectors facing similar challenges with Al integration.
Exploring these applications can help us find best
practices and innovative solutions that could benefit a
wider range of organizations.

Furthermore, we suggest conducting real-world
studies to assess the performance of the MCP-based
middleware in different financial settings. While our
theoretical framework is solid, practical applications
will provide valuable insights into its effectiveness and
areas for enhancement. Collaborating with financial
institutions willing to test our middleware could
produce rich data for future improvements.

For practical implementation, we recommend that
financial institutions take a gradual approach to
adopting the MCP-based middleware. Instead of
trying to replace existing systems all at once,

ISSN: 2349-6002

organizations should start by integrating the
middleware into specific use cases, allowing for
ongoing testing and refinement. This method reduces
risk and helps organizations build internal knowledge
and confidence in using the new framework.
Additionally, we encourage financial institutions to
invest in training and upskilling their staff in both Al
technologies and the fundamentals of the MCP-based
middleware. As the finance landscape continues to
change, having a knowledgeable workforce will be
essential for successful implementation and
continuous innovation.

In conclusion, our research on the MCP-based
middleware approach has provided significant insights
into integrating Al into financial systems. By
improving interoperability, scalability, and cost
efficiency, this framework offers a promising solution
for organizations looking to leverage Al effectively.
The implications of our findings go beyond technical
improvements, highlighting the importance of
governance, ecthical considerations, and proactive
adaptation in a rapidly changing technological
environment. As we look ahead, we are hopeful that
ongoing research and practical adoption of the MCP-
based middleware will lead to meaningful
advancements in the financial sector, resulting in more
efficient, transparent, and customer-focused services.

REFERENCES

[1] Accenture. (2020). The Future of Middleware in
Financial Services.

[2] Alchian, A., et al. (2020). Ensuring Security in
Financial APIs. Journal of Financial Security,
3(2), 45-60.Baker, HK., & Nofsinger, J.R.
(2002). Behavioral Finance: An Overview.
Journal of Interactive Finance, 1(1), 40-55.

[3] Bahl, R., & Dunn, L. (2021). The Future of
Scalable Middleware in Financial Systems.
Expert Journal of Business and Management,
9(2), 134-148.

[4] Benedict, R., et al. (2020). Middleware Solutions
for Financial APIs: A Review. International
Journal of Computer Applications, 177(5), 30-38.

[5] Bertsimas, D., et al. (2019). Algorithmic Trading
with Machine Learning: Theoretical and Practical
Perspectives. Management Science, 65(4), 1572-
1591.

191718 © IJIRT | www.ijirt.org DECEMBER 2025 59

National Conference on Evolving Paradigm for NCEPST-2025

Sustainable Technology

[6] Binns, R. (2018). Fairness in Machine Learning:
Lessons from Political Philosophy. Proceedings
of the 2018 Conference on Fairness,
Accountability, and Transparency, 149-158.

[7] Boyer, G., & Pichon, S. (2018). Middleware for
Financial Applications: A Comprehensive
Overview. Journal of Financial Services
Technology, 7(3), 210-227.

[8] Brown, T.B., et al. (2020). Language Models are
Few-Shot Learners. Advances in Neural
Information Processing Systems, 33, 1877-1901.

[9] Chen, Y., et al. (2020). A Survey on Machine
Learning for Financial Trading: A
Comprehensive Review. Financial Technology,
2(1), 52-76.

[10]Choo, K.R. (2018). Cybersecurity: A
Comprehensive Overview of Security Challenges
in Financial Services. Journal of Financial
Technology and Security, 5(2), 11-20.

[11]Fischer, T., & Krauss, C. (2018). Deep Learning
for Finance: Deep Portfolios. Applied Stochastic
Models in Business and Industry, 34(1), 11-25.

[12] Fitzpatrick, M. (2021). Al and Market Volatility:
Risk Management Approaches. Risk
Management, 23(3), 215-230.

[13]Ghadar, S., et al. (2019). Scaling Financial
Systems: Middleware Challenges and Solutions.
Journal of Financial Computing, 15(1), 56-67.

[14] Gururangan, S., et al. (2020). Don’t Stop
Pretraining: Adapt Language Models to Domains
and Tasks. Proceedings of the 58th Annual
Meeting of the Association for Computational
Linguistics, 1, 834-844.

[15]Harris, L. (2003). Trading and Exchanges: Market
Microstructure ~ for Practitioners. Oxford
University Press. He, K., et al. (2020). The
Challenges of Machine Learning in Finance.
Banking & Finance Review, 12(2), 105-123.

[16]Huang, J., et al. (2021). A Survey on Natural
Language Processing in Financial Analytics.
Finance Research Letters, 42, 101247 Kim, S., &
Kim, K. (2022). The Use of LLMs in Financial
Domains: Towards a Comprehensive Framework.
Journal of Finance and Data Science, 8(1), 25-
34.

[17]1Kleinberg, J. (2020). The Role of Artificial
Intelligence in Hedge Fund Management. The
Hedge Fund Journal, 9(2), 34-47.

ISSN: 2349-6002

[18]Kroll, J.A., et al. (2016). Accountability in
Algorithmic Decision-Making. Proceedings of
the 2016 Conference on Fairness, Accountability,
and Transparency, 233-242.

[19]Kumar, M., & Sridhar, K. (2021). Bridging the
Middleware Gap in Financial Systems.
International Journal of Financial Technology,
3(1), 14-29.

[20]Lo, A.W. (2020). Al and the Future of Investment
Research. Journal of Portfolio Management,
46(3), 11-20.

[21]Meyer, J., et al. (2021). Cloud Computing in
Financial Middleware Solutions: Benefits and
Challenges. Journal of Financial Services
Technology, 9(4), 45-60.

[22]Moody, J., & Saffell, M. (2001). Reinforcement
Learning for Trading Systems. Proceedings of the
2001 Conference on Computational Intelligence
for Financial Engineering, 127-140.

[23]Patel, V., et al. (2021). Leveraging Language
Models for Finance: A Practical Guide. Financial
Analytics Review, 12(2), 33-48.

[24]Ramelli, S., & Wagner, A. F. (2020). What
COVID-19 Did to Stock Markets. Review of
Corporate Finance Studies, 9(3), 622-655.

[25]Silver, D., et al. (2016). Mastering the Game of
Go with Deep Neural Networks and Tree Search.
Nature, 529(7587), 484-489.

[26]Sharma, A., & Nido, A. (2022). Innovation in
Middleware for Financial Systems. Journal of
Innovative Financial Technologies, 4(1), 10-19.

[27] Stiennon, N., et al. (2020). ML Models Are Not
Models. Proceedings of the 37th International
Conference on Machine Learning, 119, 4814-
4823.

[28] Sullivan, J. (2023). The Evolving Role of NLP in
Financial Decision-Making. Journal of Financial
Analytics, 18(1), 1-15.

[29]Weber, K.M., et al. (2018). Addressing
Interoperational ~Challenges in Middleware
Solutions. [International Journal of Innovative
Technology and Exploring Engineering, 7(6), 24-
30.

[30]Zhang, X., et al. (2020). A Survey of Machine
Learning Techniques in Financial Time Series
Forecasting. International Journal of
Forecasting, 36(4), 1164-1183.

[31]1Zhang, Y., et al. (2021). Real-time Decision

191718 © IJIRT | www.ijirt.org DECEMBER 2025 60

National Conference on Evolving Paradigm for NCEPST-2025
Sustainable Technology

Making with Large Language Models in Finance.
Journal of Finance and Data Science, 7(1), 1-
10.Zhou, Y., et al. (2021). Data Privacy in Sharing
LLMs for Financial Decision-Making. Data and
Privacy Sciences, 2(1), 1-15.

191718 © IJIRT | www.ijirt.org DECEMBER 2025

ISSN: 2349-6002

61

