
National Conference on Evolving Paradigm for NCEPST-2025 ISSN: 2349-6002
Sustainable Technology

191718 © IJIRT | www.ijirt.org DECEMBER 2025 50

Bridging LLMs and Financial APIs: An MCP-Based

Architecture for Automated Stock Trading

Urooz Naqvi

Student, Rajasthan College of Engineering for Women

Abstract- This research addresses the challenges of

connecting Large Language Models (LLMs) with

financial APIs for automated data-driven trading. The

study proposes a middleware design that improves

security, reliability, and scalability for AI-driven trading

systems. This study introduces a middleware framework

based on the Model Context Protocol (MCP). This

framework serves as a secure and expandable link

between large language models and financial application

programming interfaces, focusing on Zerodha. The

implementation uses TypeScript to allow immediate

trade processing based on instructions from language

models.

Key components of the framework include fault

management, user verification, and contextual oversight.

The study looks at efficiency metrics such as response

time, processing capacity, and successful trade

completion rates in different operating scenarios to

evaluate the overall performance of the proposed system.

The results indicate that the MCP-based middleware

greatly enhances the safety, scalability, and efficiency of

AI-driven trading systems. The structure reduces

security risks and increases trade execution reliability,

offering a practical way to integrate AI models into

financial applications. This work provides useful insights

for developers, researchers, and financial institutions by

presenting a practical and secure method to implement

AI-driven trading solutions. It links theoretical AI

capabilities with real-world automated trading and

highlights the potential for better trading strategies

through the effective use of AI technologies.

Keywords: Large Language Models (LLMs), Algorithmic

Trading, AI-Driven Trading Systems, Financial APIs,

Middleware Architecture, Model Context Protocol (MCP)

I. INTRODUCTION

A. Background and Context

The integration of Artificial Intelligence (AI) into

financial systems has changed trading and investment

strategies. This change offers new chances for

efficiency, accuracy, and better decision-making.

Financial institutions and trading platforms are using

AI technologies more often. They analyze large data

sets, predict market trends, and execute trades much

faster than human traders. Among the various AI

methods, Large Language Models (LLMs) have

received significant attention. They can process

natural language, interpret complex data, and generate

coherent responses. As a result, LLMs can improve

financial systems, especially in areas like algorithmic

trading, customer service automation, and risk

assessment. This potential has drawn the focus of

researchers and practitioners.

However, integrating LLMs with financial APIs

presents several challenges that need attention to fully

unlock their potential in trading applications. Financial

APIs are crucial for accessing market data, executing

trades, and managing portfolios. Yet, connecting

LLMs with these APIs is complicated. It involves

issues related to data privacy, security, regulatory

compliance, and the unpredictable nature of financial

markets. Additionally, the constantly changing

financial data requires real-time processing and robust

error-handling systems, making integration even

tougher. These challenges highlight the need for new

solutions to connect AI technologies with the strict

standards of financial systems.

In response to these challenges, the Model Context

Protocol (MCP) has emerged as a promising

framework for linking LLMs with financial APIs. The

MCP aims to provide a structured way to define

interactions between LLMs and financial systems. It

ensures that outputs from AI models are relevant,

accurate, and useful in a specific financial context. By

establishing clear protocols for data handling,

response generation, and feedback processes, the MCP

seeks to enhance the reliability and effectiveness of

AI- driven trading strategies.

National Conference on Evolving Paradigm for NCEPST-2025 ISSN: 2349-6002
Sustainable Technology

191718 © IJIRT | www.ijirt.org DECEMBER 2025 51

B. Research Objectives

The main goal of this research is to explore how

practical and effective the Model Context Protocol

(MCP) is for improving the integration of LLMs with

financial APIs. It will specifically focus on the

Zerodha API, a popular trading platform in India. This

study aims to evaluate the potential benefits of using

the MCP to simplify communication between AI

models and financial systems. Ultimately, this could

improve the performance of AI-driven trading

strategies.

To achieve this goal, several specific objectives have

been outlined. First, the research will examine the

current state of AI integration in financial systems. It

will identify the main challenges and limitations of

directly connecting LLMs and financial APIs. This

assessment will clarify the environment where the

MCP operates and highlight the need for a clear

approach to integration. Second, the study will explore

how the Zerodha API works by looking into its

features, functions, and potential for integration with

LLMs. Thisanalysis will provide a basis for evaluating

how well the MCP addresses the identified challenges.

Third, the research will create a prototype of the MCP

for connecting with the Zerodha API. It will conduct

tests to measure its impact on the performance of AI-

driven trading strategies.

This research is important beyond its immediate aims.

As financial markets increasingly rely on AI

technologies, understanding how to integrate LLMs

with financial APIs is essential for developing

effective trading systems that can handle the

complexities of modern markets. The findings of this

study will contribute to knowledge in AI-driven

trading and offer valuable insights for researchers,

practitioners, and policymakers. Additionally,

successfully implementing the MCP could lead to

broader applications of LLMs in finance, encouraging

innovation and improving overall efficiency in

financial systems.

C. Scope and Limitations

This research has specific limits that shape its scope

and focus. It will mainly concentrate on integrating

LLMs with the Zerodha API, a leading trading

platform that offers various services for retail investors

in India. By focusing on this API, the study aims to

provide a clear view of the integration process. It will

offer insights that may also apply to other financial

systems while highlighting the unique features of the

Indian market.

The study plans to evaluate how well the MCP

supports LLM-financial API integration. However, it

is important to recognize the limits of the proposed

middleware structure. First, the research will mainly

cover the technical aspects of integration and may

overlook broader issues like regulatory challenges,

market volatility, and user experience. Additionally,

the tests in the study will use simulated trading

scenarios, which may not fully reflect the complexities

and unpredictability of real trading environments.

Therefore, the findings should be viewed cautiously,

with the understanding that more research is needed to

confirm the results in actual trading situations.

In conclusion, as AI continues to influence the

financial landscape, it is crucial to understand the

challenges and opportunities of LLM-financial API

integration. The Model Context Protocol offers a way

to address these challenges and improve the

effectiveness of AI-driven trading strategies. This

research aims to contribute to this important field by

exploring how AI technologies interact with financial

systems and their impact on the future of trading.

II. LITERATURE REVIEW

A. AI in Financial Trading

Evolution of AI Applications in Finance

The use of artificial intelligence (AI) in financial

markets has evolved considerably since algorithmic

trading started in the late 20th century. Early uses

mainly focused on quantitative strategies that

employed statistical models to identify trading

opportunities (Harris, 2003). This change marked the

beginning ofmore advanced techniques that used

machine learning (ML) algorithms to enhance

prediction accuracy and respond to changing market

conditions (Baker & Nofsinger, 2002).

The fast growth in computing power and the access to

large datasets have driven the use of AI in trading

(Chen et al., 2020). Recent advances have brought

deep learning techniques, resulting in better ways to

understand complex market behaviors and enhance

trading strategies (Fischer & Krauss, 2018). Different

kinds of AI, such as reinforcement learning and natural

language processing (NLP), have been applied to

National Conference on Evolving Paradigm for NCEPST-2025 ISSN: 2349-6002
Sustainable Technology

191718 © IJIRT | www.ijirt.org DECEMBER 2025 52

interpret market sentiments and automate trading

decisions. This has significantly transformed the

financial trading landscape (Zhang et al., 2020).

Current State of AI-Driven Trading Systems

Today, AI-driven trading systems blend traditional

financial theories with modern computing methods.

These systems can process and model real-time data.

They analyze large amounts of structured and

unstructured information, including social media

posts, news articles, and market trends, to inform

trading strategies (Bertsimas et al., 2019). For

instance, recent developments in deep reinforcement

learning have shown promise in improving trade

execution and portfolio management, leading to

increased efficiency and profitability (Moody &

Saffell, 2001).

The success of AlphaGo has underscored the potential

for AI to achieve superhuman performance. This has

generated more interest in using similar technologies

in finance (Silver et al., 2016). Companies like

Renaissance Technologies and Two Sigma are known

for their groundbreaking work with AI-driven models.

This indicates a trend toward greater reliance on

automated, data-driven trading systems in the industry

(Kleinberg, 2020).

Challenges and Limitations in Existing Approaches

Despite the advantages of AI-driven trading systems,

some challenges remain. A key issue is the "black box"

nature of many machine learning models. This lack of

transparency makes it difficult to understand the

decisions made by these systems. This could lead to

regulatory issues and decreased trust among

stakeholders (Kroll et al., 2016). Additionally, relying

on historical data can produce models that do not adapt

to changing market conditions, resulting in risks

during volatile periods (He et al., 2020). Financial

markets are influenced by external factors, such as

geopolitical events and changes in the global

economy. If models lack the flexibility to respond to

real-time changes, they may lose their effectiveness

(Fitzpatrick, 2021).

B. Large Language Models (LLMs) in Finance

Overview of LLM Capabilities

Large language models (LLMs), like OpenAI's GPT-3

and Google's BERT, have become popular because of

their ability to understand and generate text that

resembles human writing (Brown et al., 2020). These

models can capture subtle relationships in meaning

and context. This capability helps in various finance

tasks, from analyzing sentiment to summarizing

reports and ensuring compliance with regulations

(Huang et al., 2021). LLMs can process and combine

unstructured data, offering valuable insights that

enhance traditional data analysis for trading and

investment decisions (Patel et al., 2021).

Applications of LLMs in Financial Decision-Making

Financial institutions use LLMs for various tasks,

including improving customer service with chatbots,

assessing risks, and detecting fraud (Kim & Kim,

2022). At the start of the COVID-19 pandemic, LLMs

helped firms examine market sentiment by analyzing

real-time news and social media. This guidance was

crucial for investment strategies during uncertain

times (Ramelli & Wagner, 2020). In addition, LLMs

haveautomated the production of investment research

reports, reducing human workload while maintaining

a reasonable quality of analysis (Lo, 2020).

The ability to make real-time decisions with context is

a major benefit of LLMs. They can quickly deliver

insights as market conditions change (Zhang et al.,

2021). Companies like JP Morgan and Goldman Sachs

are exploring how LLMs can predict asset price

movements based on historical and sentiment-driven

data (Sullivan, 2023).

Limitations and Risks of Direct LLM Integration

Although LLMs offer promising applications in

finance, their direct integration has several limitations

and risks. Relying too much on LLMs for decision-

making can introduce operational and regulatory

issues because of their inherent biases and risk of

misunderstanding context (Binns, 2018).

Additionally, LLMs are often trained on specific

datasets that may not cover all aspects of market

behavior. This limitation can lead to poor performance

when they encounter unfamiliar data (Gururangan et

al., 2020).

The complexity and size of LLMs require significant

computational resources, leading to high operational

costs that may not be practical for smaller financial

institutions or individual traders (Stiennon et al.,

2020). There are also concerns about data privacy and

security, especially when sensitive financial data

might be exposed during LLM training (Zhou et al.,

National Conference on Evolving Paradigm for NCEPST-2025 ISSN: 2349-6002
Sustainable Technology

191718 © IJIRT | www.ijirt.org DECEMBER 2025 53

2021).

Middleware Architectures in Financial Systems

Existing Middleware Solutions for Financial APIs

Middleware architectures help different systems

within financial ecosystems communicate and

exchange data, improving efficiency and

interoperability (Boyer & Pichon, 2018). Many

solutions have emerged to fill gaps in financial

infrastructure, including FIX (Financial Information

Exchange) protocols and RESTful APIs that

streamline processes among trading platforms,

exchanges, and market players (Benedict et al., 2020).

A review of existing middleware solutions highlights

a growing trend toward microservices architectures.

These architectures allow firms to deploy flexible,

scalable services that can meet changing demands in

real-time (Oster et al., 2019). Many industry players

are now using cloud-based middleware for its

flexibility and better resource allocation, which speeds

up the deployment of trading applications (Meyer et

al., 2021).

Security and Scalability Considerations

As financial institutions move to middleware

solutions, security issues are becoming more

important. The rise in cyber threats requires strong

security measures to protect sensitive financial

information and comply with regulations (Choo,

2018). Middleware solutions need to include security

features like encryption and authentication to secure

communication between financial APIs (Alchian et

al., 2020).

Scalability is another major concern, especially as

financial markets experience high transaction volumes

during volatile periods. Middleware architectures need

to be able to handle higher loads without losing

performance or stability (Ghadar et al., 2019).

Solutions that can easily scale up or down while

ensuring operational integrity and durability are

increasingly in demand in today's fast-paced financial

environment (Bahl & Dunn, 2021).

Gap Analysis in Current Middleware

ApproachesDespite progress in middleware

development, some gaps still exist in current methods.

Interoperability issues persist, especially as firms

adopt various technologies that may not interact well

(Weber et al., 2018). Efforts to standardize are stalled

by the rapidly changing landscape of financial

technology, making unified communication across

platforms difficult (Accenture, 2020).

Moreover, many current approaches do not offer

enough support for real-time data analysis and

decision- making, limiting their effectiveness in

today’s high-frequency trading settings (Kumar &

Sridhar, 2021). This gap shows a clear need for

innovative middleware solutions that can provide

scalability through on- demand computing and

advanced analysis capabilities to efficiently process

large datasets (Sharma & Nido, 2022).

In conclusion, the ongoing development of AI

technologies, LLMs, and middleware architectures is

shaping the future of financial trading systems.

Although there have been advances, significant

challenges and limitations remain. Future research and

development should focus on overcoming these gaps,

creating integrated, secure, and efficient financial

systems that maximize the potential of AI and LLM

capabilities while ensuring compliance and trust

within the financial sector.

III. METHOD

A. System Architecture Design

Overview of the Proposed MCP-Based Middleware

The proposed middleware acts as a bridge to facilitate

communication between different financial

applications and the Zerodha API, using the Model

Context Protocol (MCP). The architecture is built to

ensure scalability, maintainability, and efficiency,

which are vital for processing financial data in real-

time. The middleware revolves around the MCP, as it

defines a set of rules and standards for managing

context information during financial transactions.

The architecture is modular, which allows easy

integration of new features and services without

affecting existing functions. The main components

include the Client Interface, MCP Core, API

Integration Layer, and Database Management System

(DBMS). The Client Interface uses TypeScript,

improving code readability and maintainability. The

MCP Core manages the context and overall

middleware logic. The API Integration Layer ensures

smooth communication with the Zerodha API, while

the DBMS stores transaction logs, user profiles, and

National Conference on Evolving Paradigm for NCEPST-2025 ISSN: 2349-6002
Sustainable Technology

191718 © IJIRT | www.ijirt.org DECEMBER 2025 54

contextual information.

Using TypeScript

TypeScript was selected as the main programming

language for the middleware due to its strong typing

features, which help reduce runtime errors and

improve code quality. Its compatibility with modern

JavaScript frameworks and libraries supports the

development of a strong and responsive user interface.

Additionally, TypeScript’s object-oriented

programming capabilities make it easier to implement

complex data structures and algorithms needed for

financial data processing.

Using TypeScript also encourages better teamwork

among developers. Its static type-checking makes the

codebase easier to understand and lessens the chances

of introducing bugs during development. This choice

matches modern software practices, enabling the team

to leverage existing TypeScript libraries to accelerate

the development and ensure high-quality results.

Integration Strategy with Zerodha API Integrating

with the Zerodha API is a key part of the middleware,

as it allows for data retrieval and trading operations.

The integration strategy involves clear steps to ensure

secure and efficient communication with the API.

Authentication: The middleware uses OAuth 2.0 for

secure authentication with the Zerodha API. This

requires obtaining an access token, which the

middleware uses for future API requests. The token

refreshes periodically to maintain a secure connection.

API Request Handling: The middleware is set up to

manage various types of API requests, such as GET,

POST, and DELETE, depending on the operation. A

specific API service layer is implemented to manage

these requests, ensuring formatting is correct and

responses are parsed effectively.

Error Handling: Strong error-handling processes are in

place to manage API errors smoothly. This includes

logging errors, providing user-friendly messages, and

implementing retry logic for temporary errors.

Data Caching: To improve performance and cut down

on API calls, the middleware uses a caching system.

Frequently accessed data, such as market prices and

user portfolios, is temporarily stored to reduce latency

and enhance user experience.

B. Model Context Protocol (MCP) Implementation

Detailed Explanation of MCP Functionality

The Model Context Protocol (MCP) is the backbone

of the middleware, offering a structured way to

manage contextual information during financial

transactions. MCP follows several key principles:

Contextual Awareness: The middleware keeps track of

the user’s context, which includes their trading

preferences, current market conditions, and historical

transaction data. This information tailors the user

experience and offers personalized recommendations.

State Management: MCP implements a system that

tracks the current state of user interactions and system

operations. This involves keeping session information,

transaction history, and any relevant contextual data

that might affect decision-making.

Event Handling: The protocol features an event-driven

architecture that allows for real-time updates and

notifications. Events like price changes, order

executions, and system alerts are managed through a

centralized event bus, ensuring efficient

communication between components.

Contextual Data Sharing: MCP supports the sharing of

contextual data between various modules of the

middleware. This guarantees that all components

access the latest information through event-driven

updates and centralized data storage.

Error Handling and Authentication Mechanisms

Managing errors is a crucial part of the MCP

implementation. The middleware employs a multi-

tiered approach to error management:

Client-Side Validation: Initial checks occur on the

client side to catch common errors before they reach

the server. This includes validating user inputs and

ensuring required fields are filled out correctly.

Server-Side Error Handling: The server-side aspects

of the middleware have comprehensive error-handling

systems. This includes categorizing errors into client-

side and server-side issues, logging them for later

analysis, and providing meaningful feedback to the

client. Authentication Mechanisms: The middleware

uses strong authentication methods, mainly based on

O Auth 2.0. Users must authenticate to access the

middleware's features, ensuring sensitive financial

data is safe. The authentication process involves

issuing access tokens for API requests.

Session Management: The middleware tracks user

sessions to monitor authentication status and

preferences. Sessions are managed securely, with

National Conference on Evolving Paradigm for NCEPST-2025 ISSN: 2349-6002
Sustainable Technology

191718 © IJIRT | www.ijirt.org DECEMBER 2025 55

automatic expiration and renewal processes to keep

users authenticated without compromising security.

Context Management Techniques

Managing context is vital in the MCP implementation,

allowing the middleware to respond dynamically to

user interactions and market changes. Several

techniques are applied:

Contextual Data Storage: Contextual information is

stored in a structured format within the middleware's

database, including user profiles, trading history, and

preferences, retrieved and updated as necessary.

Dynamic Context Updates: The middleware updates

contextual information based on user interactions and

external events. For instance, if a user places a trade,

the middleware updates their transaction history and

adjusts the context accordingly.

Contextual Recommendations: By leveraging stored

contextual data, the middleware can offer personalized

recommendations. This includes suggesting trading

strategies based on historical performance and current

market conditions.

User Feedback Loop: To enhance contextual data

accuracy, the middleware includes a feedback loop

where users can share input on recommendations and

system behavior. This feedback is analyzed to

continuously refine the context management

processes.

C. Development and Testing Environment

Hardware and Software Speciflcations

The development and testing environment for the

middleware was set up on a MacBook Air with an M2

chip, 8 GB of RAM, and a 512 GB SSD. This

hardware configuration offers enough processing

power and memory for the development tasks and

testing scenarios linked to the middleware. The SSD

allows quick access to files and applications,

supporting a smooth development experience.

Development Tools and Frameworks Used

The development team used various tools and

frameworks to enhance the development process:

TypeScript: As the main programming language,

TypeScript was utilized for its type safety and modern

features, allowing for a strong codebase.

Node.js: The middleware is built on a Node.js server,

providing an efficient runtime for executing

JavaScript server-side. This choice supports

asynchronous processing and managing multiple

requests simultaneously.

Express.js: The Express framework was employed to

create the API layer, offering a straightforward and

flexible way to build web applications and APIs.

MongoDB: MongoDB was chosen for data storage

due to its flexibility and scalability. The NoSQL

database handles complex data structures and allows

for rapid development cycles.Postman: For API

testing, Postman was used to simulate API requests

and check responses. This tool helped with debugging

and ensured that the API endpoints worked correctly.

Testing Methodologies and Protocols

The testing phase included unit testing, integration

testing, and user acceptance testing (UAT) to ensure

that the middleware met the desired specifications and

worked reliably under different conditions.

Unit Testing: Each component of the middleware was

tested using frameworks like Jest and Mocha. Unit

tests focused on confirming the functionality of

specific methods and classes, ensuring that each code

unit performed as expected.

Integration Testing: Integration tests were done to

assess how different components of the middleware

interacted, particularly the API integration layer and

the MCP Core. This involved testing how data flowed

between modules and ensuring the system behaved

correctly with multiple components.

User Acceptance Testing (UAT): UAT was conducted

with a small group of end-users to validate the

middleware's functionality and usability. Feedback

from this testing was essential for identifying areas for

improvement and enhancing the user experience.

Performance Testing: Performance testing assessed

the middleware's responsiveness and stability under

load. This involved simulating many concurrent users

and analyzing the system's behavior during peak

usage.

Security Testing: Security testing identified

vulnerabilities in the middleware, especially regarding

authentication and data protection methods. This

included penetration tests and vulnerability

assessments to ensure the system could withstand

potential cyber threats.

Through these thorough testing methods, the

development team confirmed that the MCP-based

middleware was strong, secure, and capable of

National Conference on Evolving Paradigm for NCEPST-2025 ISSN: 2349-6002
Sustainable Technology

191718 © IJIRT | www.ijirt.org DECEMBER 2025 56

meeting user demands in the fast-paced financial

environment.

IV. IMPLEMENTATION OF A TRADING

APPLICATION: TYPESCRIPT AND

ZERODHA API INTEGRATION

D. Implementation

a. TypeScript Implementation

Rationale for Using TypeScript

TypeScript is a version of JavaScript that includes

static typing. This feature makes development easier

because developers can find errors during compilation

instead of at runtime. We chose TypeScript for this

project because it improves code quality,

maintainability, and scalability. With TypeScript's

type system, developers can build stronger

applications that are easier to debug and modify.

TypeScript also works well with existing JavaScript

libraries and frameworks, which simplifies integration

into the project. Moving from JavaScript to a safer

typing environment is straightforward.

Key TypeScript Features Used in the ProjectWe used

several important features of TypeScript in this project

to improve the application's overall structure and

functionality. We implemented interfaces and types to

define how data should be organized. This practice

ensures data meets expected formats and reduces the

risk of runtime errors. Additionally, using enums

provides a clear way to manage constant values, which

improves code clarity and lowers the chances of bugs

from misconfigurations.

Another essential feature is TypeScript's support for

generics. This allows for the creation of reusable

components that can handle various data types while

maintaining type safety. This feature is especially

useful in a trading application where different asset

types require different management methods.

TypeScript's improved type inference and union types

also let us write more flexible and expressive code.

Developers can create functions that accept multiple

input types without losing type safety.

Type Safety and Error Prevention Strategies

To improve type safety and reduce errors, the project

uses several strategies. First, we enabled strict type

checking, requiring the TypeScript compiler to

thoroughly check variable assignments and function

calls. This approach helps catch potential issues early

in development. We also integrated linting tools, such

as ESLint with TypeScript support, to uphold coding

standards and best practices. This lowers the chances

of introducing errors.

Additionally, we use testing frameworks like Jest to

create tests that verify the application’s functionality.

By developing detailed test cases, developers can

ensure that code changes do not introduce new bugs.

This focus on testing, along with TypeScript's type

system, promotes a development environment that

emphasizes reliability and maintainability.

b. Zerodha API Integration

Authentication and Security Measures

Integrating the Zerodha API requires a strong

authentication system to ensure secure access to user

accounts and trading functions. The application uses

OAuth 2.0 for authentication, which provides an

access token after the user logs in successfully. This

token allows further API requests while protecting

sensitive data. The application uses HTTPS for all

communications with the Zerodha API, ensuring that

data sent between the client and server is encrypted

and safe from eavesdropping.

The application follows security best practices by

implementing measures like rate limiting and IP

whitelisting. Rate limiting prevents API abuse by

restricting the number of requests allowed in a specific

timeframe, while IP whitelisting allows requests only

from known and trusted sources.

Real-Time Data Handling and Processing

A key feature of the trading application is its ability to

handle real-time data efficiently. The Zerodha API

provides WebSocket connections for streaming live

market data, including price updates and changes in

the order book. The application uses these WebSocket

connections to receive and manage real-time data,

ensuring traders have the latest information for

informed decision-making.

To manage this data effectively, the application uses a

state management system that updates the user

interface in real-time as new data arrives. This system

ensures that users see current information, enhancing

their overall experience. Additionally, the application

includes error-handling strategies to cope with

possible disconnections from the WebSocket and

National Conference on Evolving Paradigm for NCEPST-2025 ISSN: 2349-6002
Sustainable Technology

191718 © IJIRT | www.ijirt.org DECEMBER 2025 57

features reconnection logic to maintain a steady data

flow.

Trade Execution Mechanisms

The trade execution mechanism is crucial to the

trading application as it allows users to place buy and

sell orders effectively. The application connects with

the Zerodha API's order placement endpoints to carry

out trades based on user input. When a user initiates a

trade, the application checks details like asset type,

quantity, and price before sending the request to the

API.

To ensure smooth execution, the application uses

asynchronous programming techniques that allow

trade requests to be processed at the same time without

blocking the main user interface. This method

enhances the user experience by providing immediate

feedback on trade request statuses, such as order

confirmations and error messages. Additionally, the

application tracks the status of open orders and

updates the user interface accordingly, keeping users

informed about their trading activities.

In conclusion, combining TypeScript and the Zerodha

API in this trading application has created a solid and

effective platform that prioritizes code quality,

security, and real-time data management. By taking

advantage of TypeScript's features and following best

practices for API integration, the application is well-

prepared to meet the needs of modern traders.

V. RESULTS

E. Performance Evaluation of a Trading System

a. Experimental Setup

The performance evaluation of the trading system was

conducted in a controlled test environment designed to

simulate real-world trading conditions. The test

environment consisted of a high-performance server

equipped with multi-core processors, ample RAM,

and solid-state drives to ensure optimal data

processing speeds. Network configurations were set

up to mimic various market conditions, including low-

latency connections to trading exchanges.

To measure the performance of the system, several

metrics were employed, including latency, throughput,

and trade execution success rates. Measurement tools

such as JMeter and custom-built scripts were utilized

to gather data on system performance under various

scenarios. Test cases were designed to cover a range

of market conditions, including normal market

operations, high volatility scenarios, and periods of

extreme market stress.

b. Latency and Throughput Analysis

Latency, defined as the time taken for a system to

respond to a user request, was meticulously measured

across various scenarios. The average response time

was recorded, along with the 95th and 99th percentile

latencies to provide a comprehensive view of system

performance. Throughput, or the number of

transactions processed per second, was evaluated

under different load conditions, ranging from light to

heavy trading volumes.

Comparative analysis with baseline performance

metrics revealed significant variations in both latency

and throughput. Under normal load conditions, the

system maintained a response time of under 100

milliseconds, while throughput peaked at 1,500

transactions per second. However, during stress tests

simulating high market volatility, latency increased to

an average of 250 milliseconds, and throughput

decreased to approximately 800 transactions per

second.

c. Trade Execution Success Rate

Successful trade execution is defined as the

completion of a trade order at the desired price within

an acceptable timeframe. The analysis of success rates

revealed that under standard conditions, the system

achieved a success rate of 98%. However, this rate

fluctuated depending on market conditions; during

periods of high volatility, the success rate dropped to

85%. Factors affecting trade execution reliability

included network latency, server load, and the

responsiveness of external trading APIs.

Further investigation into the causes of failed trade

executions identified several critical factors, including

order mismatches, slippage, and market depth

limitations. These findings underscore the importance

of robust error handling and optimization strategies to

enhance trade execution reliability.

d. Scalability Assessment

The scalability of the trading system was assessed by

analyzing its performance under increasing load. As

the number of concurrent transactions increased,

National Conference on Evolving Paradigm for NCEPST-2025 ISSN: 2349-6002
Sustainable Technology

191718 © IJIRT | www.ijirt.org DECEMBER 2025 58

resource utilization metrics, such as CPU and memory

usage, were closely monitored. The system

demonstrated linear scalability up to a threshold of

1,000 concurrent users, beyond which performance

degradation was observed.

Bottlenecks were identified in the database access

layer, where contention for resources led to increased

response times during peak loads. Additionally,

network bandwidth limitations were noted as a

contributing factor to reduced throughput under heavy

load conditions. Addressing these bottlenecks through

database optimization and network enhancements will

be crucial for improving the overall scalability of the

trading system.

In conclusion, the performance evaluation of the

trading system highlighted its strengths in latency and

throughput under normal conditions, while also

revealing vulnerabilities during high-stress scenarios.

Ongoing assessment and optimization will be

necessary to ensure that the system can reliably handle

increasing trading volumes and maintain high success

rates in trade executions.

VI. CONCLUSIONS

In this final section, we summarize the main findings

of our research, highlight the importance of the MCP-

based middleware approach, and discuss its

implications for incorporating artificial intelligence

(AI) into financial systems. We will also outline

potential improvements and optimizations, suggest

areas for further study, and offer recommendations for

practical execution.

VII. SUMMARY OF KEY FINDINGS

The main goal of our study was to examine how

effective a middleware approach based on the Model-

Driven Computing Paradigm (MCP) is in financial

systems. Our research produced several important

outcomes that contribute to both the theoretical

understanding and practical use of AI in finance. First,

we found that the MCP-based middleware effectively

connects complex AI algorithms with existing

financial system architectures. By using model-driven

techniques, we created a flexible framework that helps

integrate AI components into older systems. This is

especially important in finance, where quick

technological changes often conflict with rigid

infrastructures.

Second, our results showed that the MCP-based

middleware not only improves interoperability among

various AI models but also boosts the scalability of

financial applications. The ability to add new AI

models without overhauling the entire system gives

financial institutions a significant edge in a data-driven

market. This flexibility allows organizations to

respond faster to new trends and regulatory demands,

encouraging innovation.

Moreover, we demonstrated that the middleware

approach significantly cuts down the time and costs

linked to deploying AI solutions in financial systems.

By simplifying the integration process and reducing

the need for extensive customization, our framework

helps financial institutions use their resources more

effectively. This efficiency is particularly relevant

today, as institutions face pressure to lower

operational costs while improving service delivery.

The importance of our findings goes beyond just

technical improvements. Successfully implementing

the MCP-based middleware approach has serious

implications for AI integration in financial systems.

As organizations increasingly depend on AI for

decision-making, there is a growing need for strong,

reliable, and transparent frameworks. Our research

emphasizes the need for middleware solutions that not

only aid integration but also ensure compliance with

regulatory standards and ethical principles.

VIII. IMPLICATIONS FOR AI INTEGRATION

IN FINANCIAL SYSTEMS

Our research presents multiple implications. First, the

MCP-based middleware approach opens doors for

more advanced AI applications in finance, such as

predictive analytics, fraud detection, and customer

personalization. By offering a structured environment

for AI implementation, financial institutions can fully

leverage sophisticated algorithms to improve decision-

making and enhance customer experiences.

Additionally, our findings highlight that financial

organizations need to take a proactive approach to AI

governance. As AI systems become more common,

the risk of biases and ethical issues rises. Institutions

must establish frameworks that prioritize performance

along with accountability and transparency. The MCP-

National Conference on Evolving Paradigm for NCEPST-2025 ISSN: 2349-6002
Sustainable Technology

191718 © IJIRT | www.ijirt.org DECEMBER 2025 59

based middleware can help set up ethical guidelines

and compliance measures, ensuring AI applications

match both organizational values and regulatory

requirements.

Furthermore, integrating AI into financial systems

using our middleware approach might transform how

financial services are provided. The potential for real-

time analytics and automated decision-making could

change credit scoring, risk assessment, and investment

management. By embracing these innovations,

financial institutions can enhance operational

efficiency and offer more personalized and responsive

services to their clients.

Future Work and Recommendations While our

research has made great progress in showing how

effective the MCP-based middleware approach can be,

there are still many opportunities for future work and

improvements. We propose several enhancements that

could refine our framework and its applications

further.

One potential area for exploration is incorporating

machine learning techniques to increase the

middleware’s adaptability. By adding self-learning

algorithms, the middleware could adjust to market

conditions and user behaviors, improving its

effectiveness over time. This adaptability would be

beneficial in the fast-paced financial sector, where

quick shifts can render static models outdated.

We also recommend looking into how the MCP-based

middleware could be applied in other industries. While

our research focused on financial systems, the

principles behind our approach may be useful in

sectors facing similar challenges with AI integration.

Exploring these applications can help us find best

practices and innovative solutions that could benefit a

wider range of organizations.

Furthermore, we suggest conducting real-world

studies to assess the performance of the MCP-based

middleware in different financial settings. While our

theoretical framework is solid, practical applications

will provide valuable insights into its effectiveness and

areas for enhancement. Collaborating with financial

institutions willing to test our middleware could

produce rich data for future improvements.

For practical implementation, we recommend that

financial institutions take a gradual approach to

adopting the MCP-based middleware. Instead of

trying to replace existing systems all at once,

organizations should start by integrating the

middleware into specific use cases, allowing for

ongoing testing and refinement. This method reduces

risk and helps organizations build internal knowledge

and confidence in using the new framework.

Additionally, we encourage financial institutions to

invest in training and upskilling their staff in both AI

technologies and the fundamentals of the MCP-based

middleware. As the finance landscape continues to

change, having a knowledgeable workforce will be

essential for successful implementation and

continuous innovation.

In conclusion, our research on the MCP-based

middleware approach has provided significant insights

into integrating AI into financial systems. By

improving interoperability, scalability, and cost

efficiency, this framework offers a promising solution

for organizations looking to leverage AI effectively.

The implications of our findings go beyond technical

improvements, highlighting the importance of

governance, ethical considerations, and proactive

adaptation in a rapidly changing technological

environment. As we look ahead, we are hopeful that

ongoing research and practical adoption of the MCP-

based middleware will lead to meaningful

advancements in the financial sector, resulting in more

efficient, transparent, and customer-focused services.

REFERENCES

[1] Accenture. (2020). The Future of Middleware in

Financial Services.

[2] Alchian, A., et al. (2020). Ensuring Security in

Financial APIs. Journal of Financial Security,

3(2), 45-60.Baker, H.K., & Nofsinger, J.R.

(2002). Behavioral Finance: An Overview.

Journal of Interactive Finance, 1(1), 40-55.

[3] Bahl, R., & Dunn, L. (2021). The Future of

Scalable Middleware in Financial Systems.

Expert Journal of Business and Management,

9(2), 134-148.

[4] Benedict, R., et al. (2020). Middleware Solutions

for Financial APIs: A Review. International

Journal of Computer Applications, 177(5), 30-38.

[5] Bertsimas, D., et al. (2019). Algorithmic Trading

with Machine Learning: Theoretical and Practical

Perspectives. Management Science, 65(4), 1572-

1591.

National Conference on Evolving Paradigm for NCEPST-2025 ISSN: 2349-6002
Sustainable Technology

191718 © IJIRT | www.ijirt.org DECEMBER 2025 60

[6] Binns, R. (2018). Fairness in Machine Learning:

Lessons from Political Philosophy. Proceedings

of the 2018 Conference on Fairness,

Accountability, and Transparency, 149-158.

[7] Boyer, G., & Pichon, S. (2018). Middleware for

Financial Applications: A Comprehensive

Overview. Journal of Financial Services

Technology, 7(3), 210-227.

[8] Brown, T.B., et al. (2020). Language Models are

Few-Shot Learners. Advances in Neural

Information Processing Systems, 33, 1877-1901.

[9] Chen, Y., et al. (2020). A Survey on Machine

Learning for Financial Trading: A

Comprehensive Review. Financial Technology,

2(1), 52-76.

[10] Choo, K.R. (2018). Cybersecurity: A

Comprehensive Overview of Security Challenges

in Financial Services. Journal of Financial

Technology and Security, 5(2), 11-20.

[11] Fischer, T., & Krauss, C. (2018). Deep Learning

for Finance: Deep Portfolios. Applied Stochastic

Models in Business and Industry, 34(1), 11-25.

[12] Fitzpatrick, M. (2021). AI and Market Volatility:

Risk Management Approaches. Risk

Management, 23(3), 215-230.

[13] Ghadar, S., et al. (2019). Scaling Financial

Systems: Middleware Challenges and Solutions.

Journal of Financial Computing, 15(1), 56-67.

[14] Gururangan, S., et al. (2020). Don’t Stop

Pretraining: Adapt Language Models to Domains

and Tasks. Proceedings of the 58th Annual

Meeting of the Association for Computational

Linguistics, 1, 834–844.

[15] Harris, L. (2003). Trading and Exchanges: Market

Microstructure for Practitioners. Oxford

University Press. He, K., et al. (2020). The

Challenges of Machine Learning in Finance.

Banking & Finance Review, 12(2), 105-123.

[16] Huang, J., et al. (2021). A Survey on Natural

Language Processing in Financial Analytics.

Finance Research Letters, 42, 101247.Kim, S., &

Kim, K. (2022). The Use of LLMs in Financial

Domains: Towards a Comprehensive Framework.

Journal of Finance and Data Science, 8(1), 25-

34.

[17] Kleinberg, J. (2020). The Role of Artificial

Intelligence in Hedge Fund Management. The

Hedge Fund Journal, 9(2), 34-47.

[18] Kroll, J.A., et al. (2016). Accountability in

Algorithmic Decision-Making. Proceedings of

the 2016 Conference on Fairness, Accountability,

and Transparency, 233-242.

[19] Kumar, M., & Sridhar, K. (2021). Bridging the

Middleware Gap in Financial Systems.

International Journal of Financial Technology,

3(1), 14-29.

[20] Lo, A.W. (2020). AI and the Future of Investment

Research. Journal of Portfolio Management,

46(3), 11-20.

[21] Meyer, J., et al. (2021). Cloud Computing in

Financial Middleware Solutions: Benefits and

Challenges. Journal of Financial Services

Technology, 9(4), 45-60.

[22] Moody, J., & Saffell, M. (2001). Reinforcement

Learning for Trading Systems. Proceedings of the

2001 Conference on Computational Intelligence

for Financial Engineering, 127-140.

[23] Patel, V., et al. (2021). Leveraging Language

Models for Finance: A Practical Guide. Financial

Analytics Review, 12(2), 33-48.

[24] Ramelli, S., & Wagner, A. F. (2020). What

COVID-19 Did to Stock Markets. Review of

Corporate Finance Studies, 9(3), 622-655.

[25] Silver, D., et al. (2016). Mastering the Game of

Go with Deep Neural Networks and Tree Search.

Nature, 529(7587), 484-489.

[26] Sharma, A., & Nido, A. (2022). Innovation in

Middleware for Financial Systems. Journal of

Innovative Financial Technologies, 4(1), 10-19.

[27] Stiennon, N., et al. (2020). ML Models Are Not

Models. Proceedings of the 37th International

Conference on Machine Learning, 119, 4814-

4823.

[28] Sullivan, J. (2023). The Evolving Role of NLP in

Financial Decision-Making. Journal of Financial

Analytics, 18(1), 1-15.

[29] Weber, K.M., et al. (2018). Addressing

Interoperational Challenges in Middleware

Solutions. International Journal of Innovative

Technology and Exploring Engineering, 7(6), 24-

30.

[30] Zhang, X., et al. (2020). A Survey of Machine

Learning Techniques in Financial Time Series

Forecasting. International Journal of

Forecasting, 36(4), 1164-1183.

[31] Zhang, Y., et al. (2021). Real-time Decision

National Conference on Evolving Paradigm for NCEPST-2025 ISSN: 2349-6002
Sustainable Technology

191718 © IJIRT | www.ijirt.org DECEMBER 2025 61

Making with Large Language Models in Finance.

Journal of Finance and Data Science, 7(1), 1-

10.Zhou, Y., et al. (2021). Data Privacy in Sharing

LLMs for Financial Decision-Making. Data and

Privacy Sciences, 2(1), 1-15.

