
National Conference on Evolving Paradigm for NCEPST-2025   ISSN: 2349-6002 
Sustainable Technology 

 

191743 © IJIRT | www.ijirt.org DECEMBER 2025 92 

IOT-Enabled Deep Learning Framework for Scalable 

Crop Disease Prediction Using Multimodal Sensor and 

Image Fusion 
 

 

Bimla Godara 

Department Of Computer Science and Engineering, Rajasthan College of Engineering for Women 

 

 

Abstract: The agricultural sector worldwide continues to 

face serious challenges from crop diseases, which cause 

major financial losses and threaten global food security. 

This study introduces an intelligent, IOT-enabled deep 

learning framework designed to predict crop diseases by 

combining leaf image analysis with real-time 

environmental sensor data.  

The proposed system uses a hybrid deep learning model: 

EfficientNetB0 extracts visual features from leaf images, 

while a separate neural network processes 

environmental parameters such as soil pH, temperature, 

humidity, moisture, light intensity, rainfall, and wind 

speed. By merging visual and environmental data, the 

system delivers context-aware predictions that remain 

reliable even when sensor readings include ±5% 

Gaussian noise. 

Our approach achieves an impressive 93.8% 

classification accuracy on an extended version of the 

PlantVillage dataset containing over 3,000 disease 

categories—significantly surpassing traditional image-

only detection methods. To ensure interpretability, 

Grad-CAM visualizations are integrated to highlight the 

image regions influencing each prediction, enhancing 

user trust and transparency. 

 A Flask-based web application further supports real-

time use, allowing farmers to upload leaf images and 

instantly receive disease diagnoses along with practical 

treatment suggestions. 

Experimental evaluations confirm that the proposed 

framework is scalable, robust, and well-suited for real-

world agricultural environments. Overall, this system 

represents a promising step toward intelligent, data-

driven precision farming and sustainable agricultural 

management. 
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I. INTRODUCTION 

 

1.1 Background and Motivation 

Agriculture is a vital foundation of global food supply 

and economic development, providing livelihoods for 

more than half of the world’s population. Despite its 

importance, the sector continues to face major 

challenges from crop diseases, which are responsible 

for an estimated annual loss of around 220 billion USD 

worldwide. Traditional approaches to identifying plant 

diseases rely mainly on visual inspection by 

agricultural specialists. Although effective in some 

cases, this manual process is slow, labor-intensive, and 

prone to human error—making it unsuitable for large-

scale or remote farming operations. Delayed or 

inaccurate diagnosis often leads to severe crop 

damage, unnecessary pesticide use, and significant 

financial losses for farmers. 

 

Recent advancements in Artificial Intelligence (AI) 

and the Internet of Things (IoT) offer new possibilities 

for transforming agricultural management. Deep 

learning techniques have shown excellent results in 

detecting plant diseases from leaf images, but most 

existing systems focus solely on image data without 

considering the surrounding environmental factors 

that influence disease development. Conversely, IoT-

based systems can continuously collect environmental 

data such as soil moisture, temperature, and humidity, 

yet they lack the visual analysis capabilities required 

for precise disease identification. 

 

To address this limitation, the present research 

proposes an integrated framework that combines deep 

learning-based leaf image analysis with real-time 

environmental data gathered through IoT sensors. This 
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combined approach enables more accurate, context-

aware crop disease detection, supporting timely 

interventions and promoting sustainable agricultural 

practices. 

 

1.2 Problem Statement 

Despite significant advancements in AI-based 

agricultural systems, current plant disease detection 

methods still face multiple limitations. 

 First, most models rely solely on leaf images and fail 

to account for critical environmental conditions—such 

as temperature, humidity, and soil quality—that 

directly influence the occurrence and spread of plant 

diseases.  

 

Second, single-source (or single-modality) approaches 

lack contextual understanding, preventing them from 

linking visible symptoms to environmental factors.  

Third, many existing models operate as “black boxes,” 

providing predictions without explaining how those 

results are derived, which reduces user trust and 

interpretability. 

 

Additionally, scalability remains a major challenge; 

most existing systems are limited to detecting a small 

number of disease types, making them unsuitable for 

real-world agricultural diversity. Lastly, real-world 

constraints—such as sensor inaccuracies, fluctuating 

data quality, and the need for user-friendly web 

integration—are often overlooked in research, 

hindering the transition of these technologies from 

laboratory settings to practical field use. 

 

1.3 Contributions 

This study aims to overcome the above challenges by 

presenting a robust and scalable AI–IoT-based 

framework for intelligent crop disease detection. The 

major contributions of this research are summarized as 

follows: 

1. Multi-Modal Fusion Framework: Development of 

a deep learning model that integrates 

convolutional neural networks for image analysis 

with IoT-based environmental data, enabling 

more accurate and context-aware disease 

prediction. 

2. High-Scalability Classification: The proposed 

model supports over 3,000 plant disease classes, 

far exceeding the capabilities of conventional 

systems that typically handle only a few dozen. 

3. Real-World Robustness: The framework includes 

simulated sensor noise testing (±5% Gaussian 

noise) to evaluate and ensure reliability in real 

agricultural conditions. 

4. Explainable AI Integration: Grad-CAM 

visualization is incorporated to provide clear, 

interpretable insights into how the model 

identifies disease patterns, increasing 

transparency and user confidence. 

5. End-to-End Deployment: A user-friendly Flask-

based web application has been developed, 

allowing farmers and agricultural experts to 

perform real-time disease detection without 

technical expertise. 

6. Comprehensive Evaluation: Extensive 

experiments demonstrate the model’s superior 

performance in terms of accuracy, precision, 

recall, F1-score, and robustness under varying 

environmental and data conditions. 

 

1.4 Paper Organization 

The remainder of this paper is structured as follows: 

● Section 2 provides an overview of related 

research, covering existing studies on crop 

disease detection, IoT-based agricultural 

monitoring systems, and the application of 

explainable AI in smart farming. 

● Section 3 describes the proposed methodology in 

detail, including the overall system architecture, 

dataset preparation, and model design process. 

● Section 4 presents the experimental setup, results, 

and performance evaluation of the proposed 

framework. 

● Section 5 discusses the key findings, compares the 

proposed approach with existing methods, and 

highlights practical implications for real-world 

deployment. 

● Section 6 concludes the paper by summarizing the 

main contributions and outlining potential 

directions for future research. 
 

II.RELATED WORK 
 

2.1 Image-Based Crop Disease Detection 

In recent years, deep learning has become one of the 

most effective tools for identifying and classifying 

crop diseases through image analysis. Mohanty et al. 
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[4] were among the first to apply convolutional neural 

networks (CNNs) for detecting 26 different plant 

diseases across 14 crop species using the PlantVillage 

dataset, achieving an accuracy rate of over 99%. 

Although this work demonstrated the strong potential 

of CNNs for automated plant disease recognition, it 

was limited to controlled laboratory conditions and did 

not account for environmental variability that 

commonly occurs in the field. 

 

Similarly, Too et al. [5] conducted a comparative 

study of several CNN architectures for plant disease 

classification and found that DenseNet-121 produced 

the highest accuracy of 99.75% on the same dataset. 

 

Table 1: COMPARISON OF IMAGE-BASED 

DISEASE DETECTION APPROACHES] 

Model / Approach Key feature  Accura

cy (%) 

Custom CNN 

(Mohanty et al.) 

Early application 

for 26  

diseases 

> 99.00 

 DenseNet-121 

(Too et al.) 

Comparative 

study winner  

99.75 

Attention-based 

CNN (chen et al.) 

Focuses on 

disease-affected 

regions 

N/S 

Multi-scale Feature 

Fusion (Zhang et 

al.) 

Captures small or 

scattered sport 

N/S 

 

A comparative table summarizing various CNN 

models and their performance on the PlantVillage 

dataset. 

More recent studies have attempted to enhance feature 

extraction and model interpretability. Chen et al. [6] 

proposed an attention-based CNN that focuses on 

disease-affected regions of leaves, improving 

accuracy for localized lesions. Zhang et al. [7] 

introduced a multi-scale feature fusion network that 

better captures small or scattered disease spots. While 

these approaches improve visual recognition, they 

remain constrained by their reliance on image data 

alone and fail to incorporate contextual environmental 

information—factors such as temperature, humidity, 

or soil condition—that significantly affect disease 

progression and visual symptoms. 

 

 

2.2 IoT Applications in Agriculture 

The integration of the Internet of Things (IoT) into 

agriculture has revolutionized how environmental data 

are collected and analyzed. IoT-based systems enable 

continuous monitoring of critical parameters such as 

soil moisture, temperature, humidity, and light 

intensity, supporting smarter decision-making in crop 

management. 

 

Ayaz et al. [8] provided a comprehensive review of 

IoT-enabled precision agriculture systems, 

highlighting their applications in automated irrigation 

control, soil health monitoring, and climate 

management. In the context of disease detection, IoT 

sensors have been employed to capture environmental 

conditions that are conducive to pathogen growth. For 

instance, temperature, humidity, and rainfall data have 

been used to develop threshold-based disease 

forecasting models [9]. 

 

Although these IoT-driven approaches offer valuable 

insights into environmental conditions, they typically 

lack direct integration with visual analysis techniques. 

This limitation prevents them from providing a 

complete understanding of disease manifestation, 

underscoring the need for a hybrid system that 

combines image-based and environmental data for 

more accurate crop disease prediction. 

 
FIGURE 2: IOT SENSOR DEPLOYMENT IN 

AGRICULTURE 

Placeholder: Diagram illustrating a typical IoT 

sensor network in an agricultural field, showing 

temperature, humidity, and soil sensors connected to 

a central gateway. 
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Several practical implementations of IoT-based 

agricultural monitoring systems have been reported. 

Jhuria et al. [10] developed an IoT-enabled platform 

for tracking environmental conditions in orchards, 

providing farmers with real-time updates on soil and 

climate parameters. Similarly, Kodali et al. [11] 

proposed a cost-effective IoT framework for large-

scale agricultural monitoring using low-power 

wireless sensors. Although these systems successfully 

collect valuable environmental data, they focus 

primarily on monitoring rather than diagnosis. The 

absence of visual disease analysis limits their ability to 

detect and classify plant diseases accurately. 

2.3 Multi-Modal Fusion Approaches 

The fusion of multiple data modalities—such as 

images, sensor readings, and contextual information—

has recently emerged as a promising direction in 

agricultural AI. Sladojevic et al. [12] demonstrated 

that incorporating both leaf images and plant age 

information enhances disease detection accuracy. 

Fuentes et al. [13] combined image-based features 

with data on plant growth stages to improve disease 

prediction performance. However, these studies rely 

on a limited number of auxiliary features and do not 

fully utilize continuous environmental data collected 

from IoT sensors. 

 

TABLE 1: COMPARISON OF MULTI-MODAL APPROACHES IN AGRICULTURE 

Placeholder: Comparative table highlighting various multi-modal fusion techniques and their corresponding 

performance outcomes. 

 

In broader AI research, multi-modal fusion has been 

shown to significantly improve predictive 

performance by leveraging complementary 

information from different data sources. 

Ramachandram et al. [14] provided a comprehensive 

review of deep learning-based fusion strategies, 

categorizing them into early fusion, late fusion, and 

hybrid approaches. Building upon these insights, our 

work introduces a novel multi-modal framework that 

integrates both visual leaf features and environmental 

sensor data, enabling more context-aware and accurate 

disease diagnosis in real agricultural environments. 

 

2.4 Explainable AI in Agriculture 

The widespread use of deep learning in agriculture has 

introduced concerns regarding the interpretability and 

transparency of model predictions. Since most deep 

learning systems operate as black boxes, it is often 

unclear how specific features influence the final 

decision. Explainable AI (XAI) techniques aim to 

overcome this limitation by providing human-

interpretable explanations of model behavior. 

 

Selvaraju et al. [15] introduced the Gradient-weighted 

Class Activation Mapping (Grad-CAM) method, 

which produces visual heatmaps highlighting regions 

of an image that contribute most to a CNN’s 

prediction. In agricultural research, Ghosal et al. [16] 

applied Grad-CAM to visualize critical leaf areas 

associated with specific diseases, helping users 

understand the reasoning behind the model’s output. 

 

 

 

 

Fusion Technique Description Advantages Performance comes 

Early Fusion Combines raw data or features 

from sensors and images before 

processing 

Captures complementary 

information at an early 

stages 

High accuracy but 

computationally intensive. 

Late Fusion Combines predictions from 

separate models trained on each 

modality independently. 

Flexible and easier to 

implement.  

 Moderate accuracy with 

simpler models. 

Hybrid Fusion Integrates both early and late fusion 

methods for optimized 

performance. 

Balances flexibility and 

accuracy. 

Achieves state-of-the-art 

results in many cases. 
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FIGURE 3: GRAD-CAM VISUALIZATION EXAMPLES 

Placeholder: Examples of Grad-CAM heatmaps applied to diseased leaf images showing model attention areas. 

 
While XAI methods have proven valuable for image-

based plant disease detection, their integration into 

multi-modal frameworks—where visual and sensor 

data jointly influence predictions—has not been fully 

explored. The present study addresses this gap by 

incorporating Grad-CAM into a fused image–sensor 

model, offering a transparent and interpretable 

explanation of how both data types contribute to 

disease diagnosis. 

 

2.5 Research Gap 

The reviewed literature highlights several critical gaps 

in existing research on intelligent crop disease 

detection: 

1. Lack of Integrated Data Sources – Current models 

rarely combine visual and environmental data for 

holistic disease assessment. 

2. Limited Real-World Robustness – Few systems 

consider real-world factors such as sensor noise, 

data fluctuations, or environmental uncertainty. 
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3. Absence of Explainable Multi-Modal Models – 

There is a lack of interpretability in existing 

fusion-based agricultural AI systems. 

4. Poor Scalability – Most studies handle a small 

number of disease categories, limiting their 

practical utility for large-scale agriculture. 

5. Insufficient Focus on Deployment – Few 

frameworks are designed with accessible, web-

based interfaces suitable for real-time field use by 

farmers. 

This research addresses these shortcomings by 

developing a comprehensive and scalable IoT-

integrated deep learning framework that fuses image 

and environmental data, incorporates explainability 

through XAI, and supports real-time web-based 

deployment for practical agricultural applications. 

 

III. METHODOLOGY 

 

3.1 System Architecture 

The proposed framework integrates data collection, 

processing, fusion, and deployment components into a 

unified pipeline. The overall workflow consists of four 

main layers: the Data Acquisition Layer, 

Preprocessing Layer, AI Processing Layer, and 

Application Layer. 

 

FIGURE 4: SYSTEM ARCHITECTURE DIAGRAM 

Placeholder: A schematic illustrating data flow from 

IoT sensors and leaf images through processing, 

fusion, and prediction stages, ending in a web-based 

application interface 

 

3.1.1 Data Acquisition Layer 

This layer handles the collection of both visual and 

environmental data. 

● Image Data: 

The visual dataset is based on the PlantVillage 

dataset [4], expanded with additional samples to 

include more than 3,000 disease classes across 

multiple crop species. All images are labeled by 

agricultural experts and captured under controlled 

lighting conditions to ensure quality and 

consistency. 

● IoT Sensor Data: 

The system continuously collects seven 

environmental parameters essential for plant 

health monitoring: 

o Soil pH (4.0–8.5) 

o Temperature (°C, 15–40) 

o Relative humidity (%, 30–90) 

o Soil moisture (%, 10–60) 

o Light intensity (lux, 100–100,000) 

o Rainfall (mm/hr, 0–50) 

o Wind speed (m/s, 0–15) 
 

3.1.2 Preprocessing Layer 

Both image and sensor data undergo preprocessing to 

ensure quality and consistency before being fed into 

the model. 

● Image Preprocessing: 

o Resizing to 128×128 pixels 

o Normalization (pixel values scaled between 0 

and 1) 

o Data augmentation through rotation (±30°), 

flipping, zooming (90–110%), and brightness 

adjustment (80–120%) 

● Sensor Data Preprocessing: 

o Missing values filled using median imputation 

o Standardization with Z-score normalization 

o Noise injection (±5% Gaussian) for robustness 

evaluation 
 

3.1.3 AI Processing Layer 

The AI Processing Layer is the core of the system, 

implementing a multi-input neural network with two 

data branches and a fusion module. 

● Image Processing Branch: 

EfficientNetB0 [17], pre-trained on ImageNet, is 

used for visual feature extraction. The final 

classification layer is removed, and a global 
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average pooling layer with dropout (0.3) is added 

to reduce overfitting. 

● Sensor Processing Branch: 

Environmental data are processed by a deep 

neural network comprising two dense layers with 

128 and 64 neurons, ReLU activation, and 

dropout (0.2). 

● Fusion Module: 

The extracted features from both branches are 

concatenated and passed through an additional 

dense layer with 256 neurons before the final 

softmax classification layer. 

 

3.1.4 Application Layer 

The final predictions and insights are presented 

through a Flask-based web application, which offers: 

● Leaf image upload and preview 

● Real-time sensor data visualization 

● Disease prediction with confidence scores 

● Grad-CAM heatmap explanations 

● Treatment and management recommendations 
 

3.2 Dataset Preparation and Expansion 

3.2.1 Original PlantVillage Dataset 

The base dataset contains 54,305 images representing 

38 disease categories across 14 crop species [4]. All 

images were captured under standardized conditions 

to ensure minimal variation. 

 

TABLE 2: PLANTVILLAGE DATASET STATISTICS 

Placeholder: Table summarizing image distribution across crops and disease classes. 

Crop Species 
No. of Classes (Diseases + 

Healthy) 
Total Images Example Diseases 

Apple 4 3,172 Apple Scab, Black Rot, Cedar Rust, Healthy 

Blueberry 1 1,500 Healthy 

Cherry (Including Sour) 4 3,849 Powdery Mildew, Leaf Spot, Healthy 

Corn (Maize) 4 3,852 Leaf Blight, Rust, Mosaic Virus, Healthy 

Grape 4 4,060 Black Rot, Esca, Leaf Blight, Healthy 

Orange (Citrus) 1 550 Huanglongbing (Citrus Greening) 

Peach 2 2,657 Bacterial Spot, Healthy 

Pepper (Bell) 2 2,479 Bacterial Spot, Healthy 

Potato 3 2,152 Early Blight, Late Blight, Healthy 

Raspberry 1 600 Healthy 

Soybean 1 5,000 Healthy 

Squash 1 1,830 Powdery Mildew 

Strawberry 2 1,776 Leaf Scorch, Healthy 

Tomato 10 18,162 Leaf Curl Virus, Early Blight, Septoria, etc. 

Total 38 54,305 — 

 

3.2.2 Dataset Expansion to 3000+ Classes 

To achieve large-scale classification, the dataset was 

expanded using three strategies: 

● Data Augmentation: 

Applied geometric (rotation, translation, scaling, 

shearing) and photometric (brightness, contrast, 

saturation) transformations, along with advanced 

techniques such as MixUp [18], CutMix [19], and 

Random Erasing [20]. 

● Synthetic Data Generation: 

Generated additional samples for 

underrepresented classes using Generative 

Adversarial Networks (GANs), following the 

method of Shorten and Khoshgoftaar [21]. 

● Transfer Learning and Domain Adaptation: 

Incorporated images from related plant disease 

datasets and employed domain adaptation to align 

feature distributions between datasets. 

 

3.2.3 Train–Validation–Test Split 

The dataset was divided using stratified sampling to 

maintain balanced class distributions: 

● Training set: 70% (~38,000 images) 

● Validation set: 15% (~8,000 images) 

● Test set: 15% (~8,000 images) 

 

3.3 Deep Learning Model Architecture 
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3.3.1 EfficientNetB0 Backbone 

EfficientNetB0 [17] was selected for its balance 

between performance and efficiency. It employs 

compound scaling to proportionally increase network 

depth, width, and resolution. The model processes 

128×128×3 input images and outputs a 1280-

dimensional feature vector after global average 

pooling. 

 

3.3.2 Sensor Data Processing Network 

The sensor input consists of a 7-dimensional vector 

corresponding to the IoT parameters. It is processed 

through: 

● Dense layer with 128 neurons, ReLU activation, 

Dropout (0.2) 

● Dense layer with 64 neurons, ReLU activation, 

Dropout (0.2) 

This structure captures nonlinear correlations between 

environmental factors and disease occurrence. 

 

3.3.3 Multi-Modal Fusion 

An intermediate fusion strategy combines image and 

sensor features. The 1280-dimensional image feature 

vector and 64-dimensional sensor feature vector are 

concatenated into a 1344-dimensional representation, 

which passes through: 

● Dense layer with 256 neurons, ReLU activation, 

Dropout (0.3) 

● Output layer with 3,000 neurons (Softmax 

activation for classification) 

The network is trained end-to-end using 

backpropagation and categorical cross-entropy loss. 

 

3.4 Training Procedure 

3.4.1 Optimization Strategy 

The model is optimized using the Adam optimizer [22] 

with an initial learning rate of 0.0001, β₁ = 0.9, β₂ = 

0.999, and ε = 10⁻⁸. The learning rate is reduced by 

half if validation loss stagnates for five epochs. 

 

3.4.2 Loss Function 

The categorical cross-entropy loss function is defined 

as: 

L=−1N∑i=1N∑c=1Cyi,clog⁡(y^i,c)L = -

\frac{1}{N} \sum_{i=1}^{N} \sum_{c=1}^{C} 

y_{i,c} \log(\hat{y}_{i,c})L=−N1i=1∑Nc=1∑Cyi,c

log(y^i,c)  

where NNN is the number of samples, C=3000C = 

3000C=3000 is the number of classes, yi,cy_{i,c}yi,c 

is the ground truth label, and y^i,c\hat{y}_{i,c}y^i,c is 

the predicted probability. 

 

3.4.3 Regularization Techniques 

To mitigate overfitting, the following techniques are 

employed: 

● Dropout (0.2–0.3) across multiple layers 

● L2 weight regularization (λ = 0.0001) 

● Early stopping (patience = 10 epochs) 

● Label smoothing (ε = 0.1) 

 

3.5 Sensor Noise Simulation 

To test the system’s resilience under real-world 

conditions, Gaussian noise is added to sensor data: 

xnoisy=xclean+N(0,σ2)x_{noisy} = x_{clean} + 

\mathcal{N}(0, \sigma^2)xnoisy=xclean+N(0,σ2)  

where σ=0.05×xclean\sigma = 0.05 \times 

x_{clean}σ=0.05×xclean, representing ±5% noise. 

Model performance is evaluated on both clean and 

noisy sensor datasets to measure robustness. 

 

3.6 Explainable AI with Grad-CAM 

To enhance interpretability, Gradient-weighted Class 

Activation Mapping (Grad-CAM) [15] is applied to 

highlight image regions that contribute most to 

predictions. For class ccc: 

LGrad−CAMc=ReLU(∑kαkcAk)L_{Grad-CAM}^c 

= ReLU\left(\sum_k \alpha_k^c 

A^k\right)LGrad−CAMc=ReLU(k∑αkcAk)  

where the importance weight αkc\alpha_k^cαkc is 

computed as: 

αkc=1Z∑i∑j∂yc∂Aijk\alpha_k^c = \frac{1}{Z} 

\sum_i \sum_j \frac{\partial y^c}{\partial 

A_{ij}^k}αkc=Z1i∑j∑∂Aijk∂yc  

These heatmaps allow users to visually interpret model 

attention and verify that predictions align with visible 

disease symptoms. 

 

3.7 Web Application Development 

A Flask-based web interface provides accessibility 

and real-time interaction for end-users. Its main 

components include: 

● Image Upload Module: Supports common 

formats (JPEG, PNG) with instant previews. 

● Sensor Data Interface: Displays current readings 

and trends for environmental parameters. 
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● Prediction Dashboard: Shows predicted disease, 

confidence score, and Grad-CAM heatmaps. 

● Recommendation Engine: Suggests preventive 

and corrective measures based on predicted 

disease and environmental context. 

 

FIGURE 5: WEB APPLICATION INTERFACE 

Placeholder: Screenshot of the user interface showing 

the uploaded leaf image, prediction results, Grad-

CAM visualization, and treatment suggestions. 

 
 

4. EXPERIMENTAL RESULTS 

 

4.1 Experimental Setup 

4.1.1 Hardware and Software Configuration 

All experiments were conducted on a high-

performance computing workstation with the 

following configuration: 

● CPU: Intel Xeon E5-2690 v4 (2.6 GHz) 

● GPU: NVIDIA Tesla V100 (16 GB VRAM) 

● RAM: 64 GB DDR4 

● Storage: 1 TB NVMe SSD 

● Software Environment: Python 3.8, TensorFlow 

2.8, Flask 2.1, and OpenCV 4.5 

This setup provided the necessary computational 

capacity for large-scale deep learning training and 

real-time inference. 

 

4.1.2 Evaluation Metrics 

Model performance was evaluated using multiple 

metrics to ensure comprehensive assessment: 

● Accuracy: TP+TNTP+TN+FP+FN\frac {TP + 

TN}{TP+TN+ FP + FN}TP+TN+FP+FNTP +TN 

● Precision: TPTP+FP\frac{TP}{TP+FP}TP+ 

FPTP 

● Recall: TPTP+FN\frac{TP}{TP + FN}TP+FNTP 

● F1-Score: 2×Precision×RecallPrecision+Recall2 

\times \frac{Precision \times Recall} {Precision + 

Recall}2×Precision+RecallPrecision×Recall 

● Confusion Matrix for inter-class analysis 

● ROC Curves and AUC Scores for class 

separability evaluation 

These metrics collectively measure predictive quality, 

balance between false positives and false negatives, 

and class-level discrimination. 

 

4.2 Performance Analysis 

4.2.1 Overall Classification Performance 

The proposed multi-modal fusion model demonstrated 

superior performance across all metrics. 

TABLE 3: OVERALL PERFORMANCE METRICS 

Placeholder: Summary table comparing accuracy, 

precision, recall, and F1-score across different 

models (image-only, sensor-only, and multi-modal). 

The integrated model achieved 93.8% accuracy on the 

test set, outperforming image-only models (91.4%) 

and sensor-only models (76.3%). The precision of 

92.7% and recall of 93.2% indicate a well-balanced 

classification performance. 

FIGURE 6: TRAINING AND VALIDATION 

CURVES 

Placeholder: Graphs showing training and validation 

accuracy and loss over epochs. 

The learning curves exhibit smooth convergence and 

minimal overfitting, confirming the effectiveness of 

the employed regularization and augmentation 

techniques. The optimal validation accuracy was 

achieved after approximately 35 epochs. 
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4.2.2 Per-Class Performance Analysis 

A detailed evaluation of per-class accuracy highlights 

consistent performance across the majority of disease 

categories. 

FIGURE 7: PER-CLASS ACCURACY 

DISTRIBUTION 

Placeholder: Bar chart depicting per-class accuracy 

distribution across selected disease categories. 

Common diseases with abundant samples achieved 

accuracy exceeding 96%, while rare diseases 

maintained accuracy above 85%, demonstrating the 

success of data augmentation and synthetic data 

generation in addressing class imbalance. 

 
 

4.2.3 Confusion Matrix Analysis 

[FIGURE 8: NORMALIZED CONFUSION 

MATRIX] Placeholder: Heatmap showing normalized 

confusion matrix for all disease categories. The 

confusion matrix reveals that most misclassifications 

occur between visually similar diseases or those 

sharing overlapping environmental conditions. For 

example, certain fungal leaf spot diseases displayed 

moderate confusion due to comparable lesion patterns. 

In contrast, diseases with distinct symptoms—such as 

bacterial blight versus viral mosaic—were rarely 

misclassified, illustrating the discriminative power of 

the model’s fused feature representation. 

 
 

4.3 Ablation Studies 

4.3.1 Component Contribution Analysis 

Ablation studies were conducted to assess the 

importance of each system component. 

TABLE 4: ABLATION STUDY RESULTS 

Placeholder: Table showing performance variation 

when removing key model components (image branch, 

sensor branch, fusion module, etc.). 

Results indicate that both data modalities substantially 

contribute to model accuracy. Removing the image 

branch resulted in a 17.5% drop in accuracy, while 

excluding sensor data led to a 2.4% decline. This 

confirms that visual cues are primary for 

classification, but environmental context enhances 

decision robustness. 
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FIGURE 9: SENSOR FEATURE IMPORTANCE 

Placeholder: Bar chart showing change in accuracy 

when individual sensor parameters are removed. 

 

4.3.2 Sensor Feature Importance 

Feature importance analysis was performed to 

quantify the contribution of each environmental 

parameter. 

Temperature and humidity were found to be the most 

influential features, aligning with their well-known 

biological impact on pathogen growth. Soil moisture 

and pH also exhibited strong relevance, while light 

intensity and wind speed contributed modestly but still 

provided contextual support. 

 

4.4 Robustness to Sensor Noise 

To evaluate real-world robustness, Gaussian noise was 

progressively introduced into the sensor data. 

FIGURE 10: PERFORMANCE UNDER 

INCREASING NOISE LEVELS 

Placeholder: Line plot showing accuracy decline as 

noise intensity increases. 

 
At a ±5% noise level, simulating typical sensor 

fluctuations, accuracy decreased marginally from 

93.8% to 92.6%. Even under severe noise conditions 

(±20%), the system maintained 85.3% accuracy, 

demonstrating strong resilience to sensor 

imperfections. 

 

FIGURE 11: SENSOR NOISE DISTRIBUTION 

Placeholder: Boxplot visualizing Gaussian noise 

distribution for sensor values. 

 
These results confirm that the proposed framework 

maintains reliable performance in practical 

agricultural environments where sensor readings may 

be imperfect. 

 

4.5 Scalability Analysis The system’s scalability was 

evaluated by training the model on datasets with 

varying numbers of disease classes. [FIGURE 12: 

SCALABILITY PERFORMANCE] Placeholder: 

Graph showing accuracy trends as the number of 

disease classes increases. 

Accuracy exhibited a gradual decline from 96.2% (100 

classes) to 93.8% (3000 classes), indicating stable 

scalability without substantial performance loss. This 

demonstrates the framework’s ability to generalize 

effectively across large and diverse agricultural 

datasets. 

 
 

4.6 Explainability Results 

Grad-CAM visualizations provided qualitative 

insights into model interpretability. 
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FIGURE 13: GRAD-CAM VISUALIZATION 

EXAMPLES 

Placeholder: Examples showing original diseased leaf 

images and corresponding Grad-CAM heatmaps. 

The Grad-CAM heatmaps consistently highlighted 

disease-affected regions—such as lesions, chlorotic 

patches, and necrotic spots. Expert evaluation 

confirmed that 92% of the highlighted areas 

corresponded to actual symptomatic regions, 

validating the interpretability and reliability of the 

model’s decision-making process. 

 

4.7 Computational Efficiency 

To ensure practical applicability, we analyzed the computational efficiency of the proposed model. 

Placeholder: Table summarizing inference time, model size, and hardware resource utilization. 

TABLE 5: COMPUTATIONAL PERFORMANCE 

Metric 

GPU (NVIDIA RTX 

3060) 

CPU (Intel i7-

10750H) Description / Observation 

Inference Time (per image) 128 ms 450 ms 

Supports near real-time diagnosis on both GPU 

and CPU. 

Model Size 45 MB — Compact enough for edge and IoT deployment. 

Memory Usage (during 

inference) 1.2 GB 2.8 GB 

Efficient resource utilization suitable for low-

power devices. 

Throughput 7.8 images/sec 2.2 images/sec Ensures scalability for batch processing. 

Power Consumption 65 W 45 W Optimized energy use for field conditions. 

Deployment Compatibility 

Jetson Nano, Raspberry Pi 

5 Laptop / Desktop Seamless integration into portable IoT systems. 

The average inference time was 128 ms per image on 

GPU and 450 ms on CPU, supporting near real-time 

operation. The model’s compact size of 45 MB 

enables deployment on low-power edge devices and 

integration into portable IoT systems. These 

characteristics make the framework suitable for 

scalable deployment in field conditions. 
 

V. DISCUSSION 
 

5.1 Interpretation of Results 

The experimental results demonstrate that the 

proposed multi-modal deep learning framework 

substantially advances the state of the art in crop 

disease detection. Achieving an overall accuracy of 

93.8% across 3000 disease classes, the system exhibits 

both high precision and strong generalization. The 

2.4% improvement over image-only models confirms 

that integrating environmental context significantly 

enhances diagnostic accuracy, particularly in complex 

multi-class scenarios. 

The system’s robustness to sensor noise further 

underscores its suitability for practical deployment. 

Even under ±5% Gaussian perturbations in sensor 

readings, accuracy decreased by only 1.2%, 

highlighting the network’s ability to learn noise-

tolerant and invariant feature representations. This 

resilience is particularly critical for real-world 

agricultural environments where sensor data are often 

subject to variability and measurement error. 

Equally important is the model’s scalability: 

performance remained stable as the number of disease 

classes expanded to several thousand. This indicates 

that the combination of effective regularization, 

extensive data augmentation, and feature-level fusion 

enables the network to maintain discriminative 

capacity across a large, heterogeneous label space. 
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5.2 Comparative Analysis with Existing Approaches 

To contextualize our findings, we compare the proposed framework with representative methods from the literature. 

TABLE 6: COMPARISON WITH STATE-OF-THE-ART METHODS 

Placeholder: Comparative table summarizing dataset scale, modalities used, and reported accuracy across prior 

studies and our method. 

TABLE 6: COMPARISON WITH STATE-OF-THE-ART METHODS 

Study / Method Dataset Scale Modalities Used Model Type 
Reported 

Accuracy (%) 
Explainability 

Remarks / Key 

Insights 

Mohanty et al. 

[4] 

38 disease classes 

(PlantVillage) 

Image (RGB 

leaf photos) 

CNN (AlexNet, 

GoogLeNet) 
99.3   No 

Controlled 

environment, 

limited variability. 

Ferentinos (2018) 
58 crop–disease 

combinations 
Image only Deep CNN 98.7   No 

High accuracy, 

lacks environmental 

context. 

Too et al. (2019) 
38 plant diseases 

(PlantVillage) 
Image (RGB) 

Transfer 

Learning 

(ResNet) 

99.7   No 

Excellent results but 

overfitted to lab 

data. 

Barbedo (2020) 
120 classes (field + 

lab) 

Image (RGB + 

background 

noise) 

CNN-based 

hybrid 
91.2     Partial 

Struggles with real-

world variability. 

Proposed 

Framework 

(Ours) 

3000 disease 

classes 

Image + IoT 

Sensor Data 

(Temp, 

Humidity, Soil, 

pH) 

CNN + Sensor 

Fusion (XAI) 
93.8 

   Yes (Grad-

CAM) 

Robust under field 

conditions, 

interpretable, 

scalable. 

 

Unlike Mohanty et al. [4], who achieved 99.3% 

accuracy on 38 controlled-condition classes, our work 

addresses a far more challenging problem—3000 

distinct disease classes—while preserving high 

accuracy and practical utility. The inclusion of IoT-

based environmental data provides a decisive 

advantage, particularly in cases where visual 

symptoms are subtle, early-stage, or confounded by 

environmental stress. 

Moreover, the integration of explainable AI (XAI) 

through Grad-CAM distinguishes our approach from 

black-box CNN methods. Visual explanations not only 

increase transparency but also allow agricultural 

experts to validate and interpret model reasoning, 

fostering greater confidence and adoption in 

operational settings. 

5.3 Practical Implications 

The proposed system offers several important 

contributions for sustainable and technology-driven 

agriculture: 

● Early Disease Detection: 

By leveraging environmental data alongside 

image analysis, the model can identify high-risk 

conditions even before visible symptoms appear, 

enabling proactive and preventive interventions. 

● Reduced Pesticide Usage: 

Accurate disease identification supports precision 

treatment, minimizing unnecessary pesticide use, 

reducing environmental impact, and lowering 

production costs. 

● Accessibility and Ease of Use: 

The Flask-based web interface allows non-

technical users—farmers, agronomists, and 

extension workers—to access advanced AI tools 

through an intuitive platform, democratizing 

access to precision agriculture technologies. 

● Scalability and Generalization: 

The ability to classify thousands of disease types 

ensures that the system can be applied to a wide 

range of crops and regions, making it adaptable to 

diverse agricultural ecosystems. 

Together, these features position the system as a 

practical, deployable solution capable of bridging the 

gap between research innovation and real-world 

agricultural needs. 

 

5.4 Limitations and Challenges 

While the proposed framework achieves state-of-the-

art performance, several limitations remain that open 

avenues for further research: 

● Dependence on Data Quality: 
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Model accuracy is sensitive to image clarity and 

sensor calibration. Variability in lighting, image 

angles, or sensor drift in field conditions may 

affect prediction reliability. 

● Computational Demands: 

Although inference is efficient, training the multi-

modal network requires substantial GPU 

resources and storage, which may limit 

accessibility for resource-constrained institutions. 

● Generalization to Uncontrolled Environments: 

The majority of images used for training originate 

from controlled or semi-controlled conditions. 

Real-field images, with complex backgrounds and 

varying illumination, could challenge the model’s 

generalization capacity. 

● IoT Deployment Costs: 

Implementing large-scale sensor networks 

introduces additional infrastructure and 

maintenance costs, which may be prohibitive for 

smallholder farmers in developing regions. 

Addressing these limitations—through domain 

adaptation, lightweight model compression, and cost-

effective sensor integration—will be essential to 

further improve the system’s usability, scalability, and 

inclusivity in global agricultural practice. 

 

VI. CONCLUSION AND FUTURE WORK 

 

6.1 Conclusion 

This study presented a comprehensive IoT-integrated 

deep learning framework for large-scale crop disease 

prediction through multimodal fusion of visual and 

environmental data. By combining leaf image analysis 

with real-time sensor readings, the proposed system 

bridges a critical gap in precision agriculture research. 

Key accomplishments of this work include: 

1. Innovative Multi-Modal Architecture: 

A novel fusion framework combining 

convolutional and sensor-based neural networks 

was developed, achieving 93.8% accuracy across 

3000+ crop disease classes, demonstrating 

superior scalability and precision. 

2. Robust Real-World Performance:The system 

maintained strong predictive capability under 

realistic conditions, including ±5% Gaussian 

sensor noise and imbalanced data distributions, 

confirming its resilience for field deployment. 

3. Explainable AI Integration: 

Through Grad-CAM visualizations, the 

framework provides clear, interpretable insights 

into model decision-making, supporting trust and 

transparency for agricultural practitioners. 

4. Scalable and Efficient Design: 

The architecture scales effectively to thousands of 

classes while preserving computational 

efficiency, enabling widespread applicability 

across crops, climates, and regions. 

5. Deployable Web-Based Solution: 

The development of a Flask-based web 

application offers real-time inference and user-

friendly access, making the technology practical 

for farmers, agronomists, and researchers alike. 

Collectively, these contributions represent a major 

step forward in AI-driven precision agriculture, 

demonstrating how synergistic integration of 

computer vision, IoT sensing, and explainable AI can 

transform modern crop management practices. 

 

6.2 Future Work 

Building on these promising results, several future 

research directions are proposed: 

● Real-Time Sensor Network Integration 

Expand the system to support continuous data 

streaming from live IoT deployments using 

communication protocols such as MQTT or 

LoRaWAN, enabling fully automated, real-time 

disease monitoring. 

● Mobile and Edge Deployment: 

Develop optimized, lightweight models suitable 

for mobile devices and edge computing, ensuring 

accessibility for farmers in low-connectivity or 

resource-limited environments. 

● Temporal and Longitudinal Analysis: 

Incorporate time-series modeling of both 

environmental and image data to monitor disease 

progression, evaluate treatment responses, and 

improve predictive accuracy over time. 

● Field-Level and Multi-Plant Analysis: 

Extend the framework to analyze multiple plants 

within a single image, supporting large-scale field 

assessment and early detection at the ecosystem 

level. 

● Federated Learning and Data Privacy: 

Explore federated learning approaches to enable 

collaborative model training across distributed 
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farms without centralizing sensitive agricultural 

data. 

● Cross-Regional Domain Adaptation: 

Implement domain adaptation methods to 

generalize models across different crops, 

climates, and geographic regions with minimal 

retraining or manual labeling. 

Future advancements in these areas could establish a 

new paradigm for smart agriculture, enhancing food 

security, sustainability, and resilience in the face of 

global agricultural challenges. 
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