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Abstract—Unmanned Aerial Vehicles (UAVs) require
reliable, adaptive, and computationally efficient flight
path planning to ensure safe navigation in both static and
dynamic environments. This study introduces a unified
framework that integrates Guided RRT* and Enhanced
Guided RRT* algorithms with a Machine Learning-
based reliability estimation layer. The framework is
designed to generate smoother and collision-free
trajectories while dynamically responding to
environmental changes. A predictive reliability model
using supervised learning adjusts the path expansion
process based on safety confidence, enabling the UAYV to
maintain behavioural stability under uncertainty. This
hybridization of geometric and learning-driven planning
strategies bridges deterministic motion planning with
adaptive decision intelligence, providing a scalable
foundation for trustworthy UAV autonomy. The paper
proceeds through theoretical formulation, experimental
validation, and a comprehensive discussion on system
performance and reliability across diverse flight
conditions.

Index Terms—UAV Path Planning, Guided RRT%*,
Enhanced RRT?*, Machine Learning, Reliability
Estimation, Dynamic Obstacles, Autonomous
Navigation, Behavioural Stability

[. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have emerged as
a cornerstone of modern autonomous systems,
supporting  diverse applications such as
reconnaissance, logistics, environmental monitoring,
and defense surveillance. As UAVs evolve toward
greater autonomy, the need for dependable,
interpretable, and computationally efficient trajectory
planning has become increasingly urgent. Beyond path
generation, current UAV frameworks are expected to
exhibit real-time responsiveness, risk awareness in

uncertain environments, and transparent decision
reasoning suitable for certification and validation on
hardware platforms.

This paper extends our previous research on geometry-
guided path planning for UAVs. In [1], we introduced
the Guided RRT* algorithm, which enhanced the
traditional RRT* by incorporating directional biasing,
perpendicular distance thresholds, and turning-angle
constraints. These geometric constraints improved
curvature uniformity, reduced redundant sampling,
and led to faster convergence in static scenarios.
Subsequently, in [2], we developed the Enhanced
Guided RRT*, designed for environments containing
dynamic obstacles. That version integrated relative-
kinematics prediction through the computation of
time-to-collision (Tc) and distance-to-collision
(Dcoll), enabling proactive avoidance by generating
perpendicular redirection maneuvers. Together, these
studies established a geometry-focused foundation
that improved trajectory smoothness, convergence
rate, and environmental adaptability.

The present work expands upon these foundations by
embedding an interpretable machine learning (ML)
component into the Guided RRT* architecture,
resulting in the proposed Machine Learning-Guided
RRT* (ML-Guided RRT*). The new layer introduces
a predictive reliability coefficient Rt, which estimates
node-level safety in real time and dynamically adjusts
the sampling probability during exploration. Through
this integration, the path planner evolves from a purely
geometric search method into a decision-aware system
retaining deterministic guarantees while learning to
regulate its expansion according to estimated
environmental risk. This combination of geometric
precision and adaptive reasoning enhances efficiency,
consistency, and behavioural stability.
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This unified formulation addresses three open
challenges identified in our previous studies [1], [2]:
(i) the absence of a measurable reliability indicator
during node expansion; (ii) the lack of traceable
decision logging required for explainable validation
and hardware testing; and (iii) limited exploration of
computational scalability when handling dense,
dynamic obstacles. The ML module resolves these
issues by providing a supervised reliability signal that
informs path expansion, maintaining an interpretable
log of exploration decisions, and preserving the
asymptotic O(N log N) complexity of kd-tree RRT*
implementations while reducing redundant sampling
through probabilistic filtering of unsafe nodes.

Contributions. Building upon our prior work, the main
contributions of this research are as follows:

» Integration of a machine learning reliability
estimator within the Guided RRT* framework to
dynamically control node expansion via a real-time
reliability coefficient Rt.

* Development of a traceable decision-logging
mechanism linking geometric path generation with
reliability assessment, establishing accountability
for future UAV certification.

* Analytical formulation and experimental validation
demonstrating the balance between geometric
optimality, reliability-driven  pruning, and
computational scalability.

* Extension of the Guided RRT* methodology into a
unified, explainable framework suitable for future
real-world and hardware-in-the-loop testing.

Motivation and Significance. Classical algorithms
such as RRT and RRT* [3], [4] have long served as
the backbone of motion planning, but their reliance on
random sampling often produces inconsistent
curvature, redundant node generation, and
unpredictable convergence. Several enhancements
such as potential-field guidance, bidirectional growth,
and PRM-RRT* hybrids [5]-[7] have improved path
quality and convergence rates, though they remain
fundamentally heuristic. Meanwhile, learning-driven
frameworks [8]-[11] show promise for adaptive
decision-making  but  frequently = compromise
interpretability and traceability, both essential for
safety validation. The ML-Guided RRT* proposed in
this study bridges these paradigms by combining
deterministic geometry-based optimization with
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lightweight, explainable learning to achieve adaptive
and certifiable path generation.

Context in the Literature. Traditional RRT* variants
primarily emphasize geometric optimality, while our
Guided RRT* series [1], [2] and the current ML-
augmented model shift focus toward behavioural
reliability and algorithmic accountability. This
orientation aligns with the emerging principles of
verifiable autonomy, where transparency and
interpretability —are prioritized over opaque
optimization. By fusing deterministic trajectory
generation with predictive reliability assessment, the
proposed ML-Guided RRT* framework establishes a
pathway toward auditable, safety-compliant UAV
autonomy facilitating continuous reliability scoring,
transparent reasoning for each path decision, and
seamless transition to hardware-in-the-loop validation
environments.

II. METHODOLOGY

The proposed Machine Learning-Guided RRT* (ML-
Guided RRT¥*) framework integrates deterministic
motion planning with predictive reliability modeling
to achieve adaptive and certifiable UAV navigation. It
consists of three major components: (i) geometric
optimization through Guided RRT*, (ii) dynamic
obstacle prediction using Enhanced RRT#*, and (iii) a
machine learning-based reliability evaluation module.
Together, these components form a hybrid system that
enhances path smoothness, ensures robust adaptation
to environmental changes, and provides explainable,
measurable decision-making for real-world validation.

A. Guided RRT* Algorithm (Static Environment)
The Guided RRT* algorithm extends classical RRT*
by introducing geometric and directional constraints to
limit unnecessary node expansion and produce
smoother trajectories. Each node is adjusted according
to perpendicular distance and turning angle, computed
as:

d, = IAB x ACI
L IABI
Vi-V3

cos(0) = wirvar

where AB and AC denote consecutive trajectory
vectors. A forward bias factor bg encourages
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exploration toward the goal, minimizing random
divergence and improving convergence efficiency.

B. Enhanced Guided RRT* Algorithm (Dynamic
Environment)

To handle dynamic obstacles, the Enhanced RRT*
algorithm incorporates relative kinematic modeling to
anticipate collisions and guide adaptive rerouting. The
time-to-collision (Tc) and distance-to-collision
(Dcoll) are estimated using:

RV

T.=_ R Ve
C IViel? + 107’

Deon= IR+ TV el
When Tc > 0 and Dcoll < Dsafe, an avoidance
maneuver vector is applied:

v e vref X err
avoid [Vrer X Reelll

This process allows proactive flight path adjustments
before collisions occur. Figure 4 visualizes predicted
collision zones and rerouting paths in a dynamic
scenario.

C. Machine Learning-Based Reliability Layer

A supervised learning reliability module enhances
behavioural stability and accountability. Using logistic
regression, the classifier estimates node safety from
geometric and kinematic features. The model is
expressed as:

— T — 1
y=o(w'x+b), 0(2)=1"=
where y is the predicted reliability score (1 = safe, 0 =
unsafe). This score adjusts node acceptance
probability, balancing exploration and exploitation
dynamically. The simplicity and interpretability of
logistic regression ensure transparent reasoning
suitable for certification level testing. Figure 2 later

shows classification results.

D. Mathematical Integration of Planning and
Learning

The ML-Guided RRT* integrates reliability feedback
into the classical RRT* node expansion equation:

Qrand =~ YQnear

Qnew = YQnear + n 19rand — Anearl
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where Rt represents the reliability coefficient
estimated by the ML model. This term scales
exploration intensity based on confidence in node
safety. When reliability decreases, Rt temporarily
reduces, restricting exploration to stable zones
mimicking human-like adaptive learning for
resilience.

E. Simulation Environment and Dataset

Experiments were conducted in a Python-based 3D
simulator (10x10x10 units). Random obstacle
configurations represented both static and dynamic
cases. Key parameters time-to-collision (Tc), relative
velocity (Vrel), and distance (Dcoll) formed the ML
training dataset. Multiple start-goal scenarios
validated repeatability. Figure 1 shows the 3D
distribution of collision and safe states.

This integrated methodology blends the precision of
classical RRT* algorithms with the adaptability of
machine learning. By embedding explainable
reliability analysis into motion planning, it establishes
a foundation for accountable UAV autonomy where
each decision is measurable, verifiable, and certifiable
for real-world deployment.

3D Distribution of Synthetic Collision Data

Safe
Collision

Fig. 1. 3D distribution of synthetic collision data

illustrating Time-to-Collision (Tc) and Dcoll metrics used
for ML reliability training.

III. RESULTS AND DISCUSSION

This section presents the experimental results and
detailed analysis of the Machine Learning-Guided
RRT* (ML-Guided RRT*) framework. The goal is to
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demonstrate how the integration of machine learning
enhances traditional motion planning by improving
trajectory efficiency, computational performance, and
reliability in both static and dynamic UAV
environments.

A. Experimental Setup

All simulations were conducted in a Python-based 3D
environment (10x10x10 units) with dynamic obstacle
motion  generated through random velocity
perturbations. Each experimental run involved 100
trajectory trials with varying obstacle densities. The
algorithm was executed on a system equipped with an
Intel i7 processor, 16 GB RAM, and Python 3.10.
Metrics were averaged over ten independent runs to
minimize statistical bias. The evaluation considered
runtime, accuracy, path length, and classification
reliability, providing a balanced view of
computational and behavioural performance.

B. Model Evaluation

The logistic regression based reliability layer was
trained on synthetic flight data and validated using k-
fold cross-validation to ensure model generalization.
Input parameters included time-to-collision (Tc),
relative velocity (Vrel), and distance-to-collision
(Dcoll). Figure 2 illustrates the confusion matrix
showing the classifier's ability to differentiate between
safe and unsafe states.

Confusion Matrix
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Fig. 2. Confusion matrix illustrating safe versus collision-
prone classification outcomes.

The ML model achieved an accuracy of 88%,
precision of 83%, recall of 38%, and F1-score of 52%,
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with an ROC-AUC value of 0.88. These results
indicate that the reliability layer successfully identifies
high-risk node expansions and improves decision
confidence during trajectory generation.

C. Quantitative Performance Comparison

A comparison between Guided RRT*, Enhanced
RRT*, and ML-Guided RRT* highlights the
computational and behavioural improvements
achieved by the proposed method. Table I summarizes
the performance metrics averaged across all test
scenarios, while Figure 3 visualizes the comparative

gains
TABLE I PERFORMANCE METRICS COMPARISON
OF RRT VARIANTS
. Guided ML-Guided
Metric

RRT* RRT*
Accuracy 85% 88%
Precision 80% 83%
Recall 35% 38%
F1-Score 50% 52%
ROC-AUC 0.86 0.88
Runtime (s) 0.81 0.75
Node Count 20 18

Performance Comparison: Guided RRT* vs Learning-Guided RRT*
B Guided RRT* (Prev)
B Learning-Guided RRT* (This Work)
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Fig. 3. Comparative performance metrics between Guided
RRT* and ML-Guided RRT*.

The ML-Guided RRT* achieves approximately 7%
faster runtime and generates 10% fewer nodes than
Guided RRT*, demonstrating superior computational
efficiency. Moreover, variance across trials remained
under 3%, indicating stable performance even with
randomized obstacle motion.

D. Trajectory Analysis and Visualization
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Figures 4 and 5 show the trajectory profiles for 2D and
3D cases, respectively. The ML-Guided RRT*
demonstrates smoother curvature and fewer abrupt
direction changes, reducing unnecessary energy
expenditure and improving UAV control stability.

Sample Trajectory Comparison: Guided vs Learning-Guided RRT*
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Fig. 4. 2D trajectory results comparing baseline and ML-
Guided RRT* performance under static obstacle fields.
The framework's learning component allows
predictive rerouting before collision thresholds are
reached, producing trajectories that remain efficient
under uncertainty. On average, path smoothness
improved by 12% and path deviation was reduced by

9% compared to Enhanced RRT*.
3D Trajectory Simulation for Learning-Guided RRT*

—— Leamning-Guided Trajectory
@ Obstacles

6
X (m) 8

10
Fig. 5. 3D trajectory visualization demonstrating dynamic

obstacle avoidance and stable path continuity.

E. Robustness and Reliability Evaluation
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Robustness was tested under varying obstacle speeds
(0.5-2.5 units/s) and random noise levels introduced
into sensor data. Figure 6 presents the ROC curve,
with the ML-Guided RRT* maintaining an AUC of
0.88 across test conditions.

ROC Curve - Model Robustness with Noisy Data
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Fig. 6. ROC curve evaluating model reliability under
varying noise levels and obstacle dynamics.
The model's performance remained within a 2%
deviation margin, validating its generalization
capability. This confirms that the reliability-based
modulation of node expansion enhances both safety
and planning consistency.

F. Model Selection Rationale

A lightweight logistic regression model was adopted
as the reliability estimator to ensure accountability and
interpretability during both simulation and hardware-
in-the-loop evaluation. Complex deep learning models
were intentionally deferred at this stage to preserve
analytical traceability of reliability matrices and
maintain computational efficiency for real-time
onboard execution. This design enables explicit
inspection of learned weight coefficients and
transparent verification of decision boundaries on
embedded UAV processors, establishing a practical
baseline for future integration of higher-capacity
predictors once hardware validation is complete.

G. Discussion and Limitations

The proposed ML-Guided RRT* framework
effectively combines deterministic planning and
predictive learning, achieving notable improvements
in both runtime and trajectory quality. The reliability
estimator facilitates risk-aware exploration, enabling
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consistent and accountable decisions suitable for UAV
certification testing. Furthermore, the integration of
interpretable ML mechanisms strengthens traceability
during hardware-level validation.

A comparative analysis with other classical
algorithms, such as A* and PRM, highlights key trade-
offs. While A* guarantees optimality in discrete grid
environments, its scalability to higher dimensions is
limited. PRM performs well for global exploration but
lacks responsiveness to dynamic changes. In contrast,
the ML-Guided RRT* maintains near-optimal path
quality with improved adaptability, achieving a 7%
reduction in runtime and 10% fewer nodes than
Guided RRT*. However, this approach introduces
additional training overhead due to the ML layer.
Despite its advantages, the current model relies on a
binary classifier, which can oversimplify complex
environmental conditions. Future versions should
explore multi-class or probabilistic reliability
estimators using reinforcement or deep learning to
better capture nuanced flight risks. Real-world UAV
tests and swarm coordination trials are also planned to
assess scalability and field robustness.

Overall, this analysis confirms that ML-Guided RRT*
successfully bridges computational efficiency and
behavioural accountability an essential step toward
reliable and certifiable UAV autonomy.

IV. CONCLUSION

This paper introduced a unified Machine Learning-
Guided RRT* (ML-Guided RRT*) framework that
merges deterministic motion planning with a
lightweight, interpretable reliability module. Through
extensive simulation studies, the proposed system
achieved measurable gains in path smoothness,
computational efficiency, and safety reliability.
Quantitatively, the approach achieved 7% faster
runtime, 10% fewer nodes, and an ROC-AUC of 0.88
in reliability prediction.

Key Contributions:

* Development of a hybrid path planning framework
integrating geometric constraints with ML-based
reliability estimation.

* Introduction of a reliability feedback mechanism that
dynamically regulates exploration based on safety
confidence.
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* Demonstration of performance consistency under
static and dynamic conditions through extensive
experimental validation.

V. FUTURE WORK AND IMPLEMENTATION
OUTLOOK

While simulation results validate the proposed
architecture, real-world deployment remains a critical
next step. Future work will focus on hardware-in-the-
loop testing using both quadrotor and fixed-wing
UAVs. The latter will allow for validating planner
behaviour in high-speed aerodynamic regimes using a
physics engine for data collection and model
calibration. These experiments will assess control
stability, energy efficiency, and trajectory adherence
under realistic acrodynamic loads.
In parallel, adaptive learning extensions such as
Bayesian and reinforcement learning-based reliability
estimators will be explored to enhance decision
robustness. Physics-engine-based simulations will
also be employed to collect detailed flight dynamics
data, enabling fine-tuned model generalization across
different UAV configurations.
To support certification readiness, implementation
efforts will include real-time telemetry logging for
traceable decision-making, development of safety
envelopes for operation in dense airspace, and
coordinated swarm path planning. These steps will
bridge the gap between simulation performance and
accountable field implementation, aligning with
emerging standards in certifiable autonomous aerial
systems.

REFERENCES

[1] A. S. Shaikh, A. Rankawat, M. K. Pal, and R. K.
Das, "Flight path planning for UAVs using guided
RRT* algorithm," in IEEE International
Conference on Intelligent Systems, Smart and
Green Technologies (ICISSGT), 2024.

[2] A. S. Shaikh, A. Rankawat, M. K. Pal, and R. K.
Das, "Flight path planning for UAVs in
environment with moving obstacles," in IEEE
International Conference on Range Technology
(ICORT), 2025.

[3] S. M. LaValle, "Rapidly-exploring random trees:
A new tool for path planning," Technical Report,
Iowa State University, 1998.

191833 © IJIRT | www.ijirt.org DECEMBER 2025 181



National Conference on Evolving Paradigm for NCEPST-2025 ISSN: 2349-6002
Sustainable Technology

[4] S. Karaman and E. Frazzoli, "Sampling-based
algorithms for optimal motion planning,"
International Journal of Robotics Research, vol.
30, no. 7, pp. 846-894, 2011.

[51Y. Zhao, K. Liu, G. Lu, Y. Hu, and S. Yuan, "Path
planning of UAV delivery based on improved
APF-RRT algorithm," in Journal of Physics:
Conference Series, vol. 1624, no. 4, 2020, p.
042004.

[6] B. Huang, J. Yan, C. Chen, Q. He, and Y. Zhu, "An
improved bi-RRT trajectory planning algorithm
for UAVs," in IEEE International Conference on
Intelligent ~ Systems, Smart and  Green
Technologies (ICISSGT), 2023.

[7]J. Xu, Z. Tian, W. He, and Y. Huang, "A fast path
planning algorithm fusing PRM and P-Bi-RRT," in
Proceedings of the 11th International Conference
on Prognostics and System Health Management
(PHM-2020 Jinan), 2020.

[8] L. Zhu, Y. Xu, and C. Zhang, "Dynamic path
planning for unmanned aerial vehicles in complex
environments," Aecrospace Science and
Technology, vol. 47, pp. 269-279, 2016.

[9] S. Jeong, J. Shin, D. Kim, J. Song, and H. Myung,
"Real-time collision avoidance for UAVs using
deep reinforcement learning," Robotics and
Autonomous Systems, vol. 125, p. 103486, 2020.

[10] A. Hefny, C. Downey, and G. J. Gordon,
"Supervised learning for dynamical system
learning," 2015.

[11] N. Labhade-Kumar, L. Jangale, V. Sathe, A.
Shelke, and T. Redjij, "Study of supervised logistic
regression algorithm," Unpublished Review
(ResearchGate Preprint), 2024.

191833 © IJIRT | www.ijirt.org DECEMBER 2025 182



