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Abstract—Unmanned Aerial Vehicles (UAVs) require 

reliable, adaptive, and computationally efficient flight 

path planning to ensure safe navigation in both static and 

dynamic environments. This study introduces a unified 

framework that integrates Guided RRT* and Enhanced 

Guided RRT* algorithms with a Machine Learning-

based reliability estimation layer. The framework is 

designed to generate smoother and collision-free 

trajectories while dynamically responding to 

environmental changes. A predictive reliability model 

using supervised learning adjusts the path expansion 

process based on safety confidence, enabling the UAV to 

maintain behavioural stability under uncertainty. This 

hybridization of geometric and learning-driven planning 

strategies bridges deterministic motion planning with 

adaptive decision intelligence, providing a scalable 

foundation for trustworthy UAV autonomy. The paper 

proceeds through theoretical formulation, experimental 

validation, and a comprehensive discussion on system 

performance and reliability across diverse flight 

conditions. 

 

Index Terms—UAV Path Planning, Guided RRT*, 

Enhanced RRT*, Machine Learning, Reliability 

Estimation, Dynamic Obstacles, Autonomous 

Navigation, Behavioural Stability 

 

I. INTRODUCTION 
 

Unmanned Aerial Vehicles (UAVs) have emerged as 

a cornerstone of modern autonomous systems, 

supporting diverse applications such as 

reconnaissance, logistics, environmental monitoring, 

and defense surveillance. As UAVs evolve toward 

greater autonomy, the need for dependable, 

interpretable, and computationally efficient trajectory 

planning has become increasingly urgent. Beyond path 

generation, current UAV frameworks are expected to 

exhibit real-time responsiveness, risk awareness in 

uncertain environments, and transparent decision 

reasoning suitable for certification and validation on 

hardware platforms. 
This paper extends our previous research on geometry-

guided path planning for UAVs. In [1], we introduced 

the Guided RRT* algorithm, which enhanced the 

traditional RRT* by incorporating directional biasing, 

perpendicular distance thresholds, and turning-angle 

constraints. These geometric constraints improved 

curvature uniformity, reduced redundant sampling, 

and led to faster convergence in static scenarios. 

Subsequently, in [2], we developed the Enhanced 

Guided RRT*, designed for environments containing 

dynamic obstacles. That version integrated relative-

kinematics prediction through the computation of 

time-to-collision (Tc) and distance-to-collision 

(Dcoll), enabling proactive avoidance by generating 

perpendicular redirection maneuvers. Together, these 

studies established a geometry-focused foundation 

that improved trajectory smoothness, convergence 

rate, and environmental adaptability. 
The present work expands upon these foundations by 

embedding an interpretable machine learning (ML) 

component into the Guided RRT* architecture, 

resulting in the proposed Machine Learning-Guided 

RRT* (ML-Guided RRT*). The new layer introduces 

a predictive reliability coefficient Rt, which estimates 

node-level safety in real time and dynamically adjusts 

the sampling probability during exploration. Through 

this integration, the path planner evolves from a purely 

geometric search method into a decision-aware system 

retaining deterministic guarantees while learning to 

regulate its expansion according to estimated 

environmental risk. This combination of geometric 

precision and adaptive reasoning enhances efficiency, 

consistency, and behavioural stability. 
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This unified formulation addresses three open 

challenges identified in our previous studies [1], [2]: 

(i) the absence of a measurable reliability indicator 

during node expansion; (ii) the lack of traceable 

decision logging required for explainable validation 

and hardware testing; and (iii) limited exploration of 

computational scalability when handling dense, 

dynamic obstacles. The ML module resolves these 

issues by providing a supervised reliability signal that 

informs path expansion, maintaining an interpretable 

log of exploration decisions, and preserving the 

asymptotic O(N log N) complexity of kd-tree RRT* 

implementations while reducing redundant sampling 

through probabilistic filtering of unsafe nodes. 

 

Contributions. Building upon our prior work, the main 

contributions of this research are as follows: 
• Integration of a machine learning reliability 

estimator within the Guided RRT* framework to 

dynamically control node expansion via a real-time 

reliability coefficient Rt. 
• Development of a traceable decision-logging 

mechanism linking geometric path generation with 

reliability assessment, establishing accountability 

for future UAV certification. 
• Analytical formulation and experimental validation 

demonstrating the balance between geometric 

optimality, reliability-driven pruning, and 

computational scalability. 
• Extension of the Guided RRT* methodology into a 

unified, explainable framework suitable for future 

real-world and hardware-in-the-loop testing. 
Motivation and Significance. Classical algorithms 

such as RRT and RRT* [3], [4] have long served as 

the backbone of motion planning, but their reliance on 

random sampling often produces inconsistent 

curvature, redundant node generation, and 

unpredictable convergence. Several enhancements 

such as potential-field guidance, bidirectional growth, 

and PRM-RRT* hybrids [5]-[7] have improved path 

quality and convergence rates, though they remain 

fundamentally heuristic. Meanwhile, learning-driven 

frameworks [8]-[11] show promise for adaptive 

decision-making but frequently compromise 

interpretability and traceability, both essential for 

safety validation. The ML-Guided RRT* proposed in 

this study bridges these paradigms by combining 

deterministic geometry-based optimization with 

lightweight, explainable learning to achieve adaptive 

and certifiable path generation. 
Context in the Literature. Traditional RRT* variants 

primarily emphasize geometric optimality, while our 

Guided RRT* series [1], [2] and the current ML-

augmented model shift focus toward behavioural 

reliability and algorithmic accountability. This 

orientation aligns with the emerging principles of 

verifiable autonomy, where transparency and 

interpretability are prioritized over opaque 

optimization. By fusing deterministic trajectory 

generation with predictive reliability assessment, the 

proposed ML-Guided RRT* framework establishes a 

pathway toward auditable, safety-compliant UAV 

autonomy facilitating continuous reliability scoring, 

transparent reasoning for each path decision, and 

seamless transition to hardware-in-the-loop validation 

environments. 

 

II. METHODOLOGY 
 

The proposed Machine Learning-Guided RRT* (ML-

Guided RRT*) framework integrates deterministic 

motion planning with predictive reliability modeling 

to achieve adaptive and certifiable UAV navigation. It 

consists of three major components: (i) geometric 

optimization through Guided RRT*, (ii) dynamic 

obstacle prediction using Enhanced RRT*, and (iii) a 

machine learning-based reliability evaluation module. 

Together, these components form a hybrid system that 

enhances path smoothness, ensures robust adaptation 

to environmental changes, and provides explainable, 

measurable decision-making for real-world validation. 

 

A. Guided RRT* Algorithm (Static Environment) 
The Guided RRT* algorithm extends classical RRT* 

by introducing geometric and directional constraints to 

limit unnecessary node expansion and produce 

smoother trajectories. Each node is adjusted according 

to perpendicular distance and turning angle, computed 

as: 

 
where AB and AC denote consecutive trajectory 

vectors. A forward bias factor bg encourages 
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exploration toward the goal, minimizing random 

divergence and improving convergence efficiency. 
B. Enhanced Guided RRT* Algorithm (Dynamic 

Environment) 
To handle dynamic obstacles, the Enhanced RRT* 

algorithm incorporates relative kinematic modeling to 

anticipate collisions and guide adaptive rerouting. The 

time-to-collision (Tc) and distance-to-collision 

(Dcoll) are estimated using: 

 
When Tc > 0 and Dcoll < Dsafe, an avoidance 

maneuver vector is applied: 

 
This process allows proactive flight path adjustments 

before collisions occur. Figure 4 visualizes predicted 

collision zones and rerouting paths in a dynamic 

scenario. 

 

C. Machine Learning-Based Reliability Layer 
A supervised learning reliability module enhances 

behavioural stability and accountability. Using logistic 

regression, the classifier estimates node safety from 

geometric and kinematic features. The model is 

expressed as: 

 
where y is the predicted reliability score (1 = safe, 0 = 

unsafe). This score adjusts node acceptance 

probability, balancing exploration and exploitation 

dynamically. The simplicity and interpretability of 

logistic regression ensure transparent reasoning 

suitable for certification level testing. Figure 2 later 

shows classification results. 

 

D. Mathematical Integration of Planning and 

Learning 
The ML-Guided RRT* integrates reliability feedback 

into the classical RRT* node expansion equation: 

 

where Rt represents the reliability coefficient 

estimated by the ML model. This term scales 

exploration intensity based on confidence in node 

safety. When reliability decreases, Rt temporarily 

reduces, restricting exploration to stable zones 

mimicking human-like adaptive learning for 

resilience. 

 

E. Simulation Environment and Dataset 
Experiments were conducted in a Python-based 3D 

simulator (10x10x10 units). Random obstacle 

configurations represented both static and dynamic 

cases. Key parameters time-to-collision (Tc), relative 

velocity (Vrel), and distance (Dcoll) formed the ML 

training dataset. Multiple start-goal scenarios 

validated repeatability. Figure 1 shows the 3D 

distribution of collision and safe states. 
This integrated methodology blends the precision of 

classical RRT* algorithms with the adaptability of 

machine learning. By embedding explainable 

reliability analysis into motion planning, it establishes 

a foundation for accountable UAV autonomy where 

each decision is measurable, verifiable, and certifiable 

for real-world deployment. 

 
Fig. 1. 3D distribution of synthetic collision data 

illustrating Time-to-Collision (Tc) and Dcoll metrics used 

for ML reliability training. 

 

III. RESULTS AND DISCUSSION 
 

This section presents the experimental results and 

detailed analysis of the Machine Learning-Guided 

RRT* (ML-Guided RRT*) framework. The goal is to 
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demonstrate how the integration of machine learning 

enhances traditional motion planning by improving 

trajectory efficiency, computational performance, and 

reliability in both static and dynamic UAV 

environments. 
A. Experimental Setup 
All simulations were conducted in a Python-based 3D 

environment (10x10x10 units) with dynamic obstacle 

motion generated through random velocity 

perturbations. Each experimental run involved 100 

trajectory trials with varying obstacle densities. The 

algorithm was executed on a system equipped with an 

Intel i7 processor, 16 GB RAM, and Python 3.10. 

Metrics were averaged over ten independent runs to 

minimize statistical bias. The evaluation considered 

runtime, accuracy, path length, and classification 

reliability, providing a balanced view of 

computational and behavioural performance. 

 

B. Model Evaluation 
The logistic regression based reliability layer was 

trained on synthetic flight data and validated using k-

fold cross-validation to ensure model generalization. 

Input parameters included time-to-collision (Tc), 

relative velocity (Vrel), and distance-to-collision 

(Dcoll). Figure 2 illustrates the confusion matrix 

showing the classifier's ability to differentiate between 

safe and unsafe states. 

 
Fig. 2. Confusion matrix illustrating safe versus collision-

prone classification outcomes. 

 

The ML model achieved an accuracy of 88%, 

precision of 83%, recall of 38%, and F1-score of 52%, 

with an ROC-AUC value of 0.88. These results 

indicate that the reliability layer successfully identifies 

high-risk node expansions and improves decision 

confidence during trajectory generation. 

 

C. Quantitative Performance Comparison 
A comparison between Guided RRT*, Enhanced 

RRT*, and ML-Guided RRT* highlights the 

computational and behavioural improvements 

achieved by the proposed method. Table I summarizes 

the performance metrics averaged across all test 

scenarios, while Figure 3 visualizes the comparative 

gains 
TABLE I PERFORMANCE METRICS COMPARISON 

OF RRT VARIANTS 

Metric 
Guided 

RRT* 
ML-Guided 

RRT* 
Accuracy 85% 88% 
Precision 80% 83% 
Recall 35% 38% 
F1-Score 50% 52% 
ROC-AUC 0.86 0.88 
Runtime (s) 0.81 0.75 
Node Count 20 18 

 

 
Fig. 3. Comparative performance metrics between Guided 

RRT* and ML-Guided RRT*. 
The ML-Guided RRT* achieves approximately 7% 

faster runtime and generates 10% fewer nodes than 

Guided RRT*, demonstrating superior computational 

efficiency. Moreover, variance across trials remained 

under 3%, indicating stable performance even with 

randomized obstacle motion. 

 

D. Trajectory Analysis and Visualization 
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Figures 4 and 5 show the trajectory profiles for 2D and 

3D cases, respectively. The ML-Guided RRT* 

demonstrates smoother curvature and fewer abrupt 

direction changes, reducing unnecessary energy 

expenditure and improving UAV control stability. 

 
Fig. 4. 2D trajectory results comparing baseline and ML-

Guided RRT* performance under static obstacle fields. 
The framework's learning component allows 

predictive rerouting before collision thresholds are 

reached, producing trajectories that remain efficient 

under uncertainty. On average, path smoothness 

improved by 12% and path deviation was reduced by 

9% compared to Enhanced RRT*. 

 
Fig. 5. 3D trajectory visualization demonstrating dynamic 

obstacle avoidance and stable path continuity. 

 

E. Robustness and Reliability Evaluation 

Robustness was tested under varying obstacle speeds 

(0.5-2.5 units/s) and random noise levels introduced 

into sensor data. Figure 6 presents the ROC curve, 

with the ML-Guided RRT* maintaining an AUC of 

0.88 across test conditions. 

 
Fig. 6. ROC curve evaluating model reliability under 

varying noise levels and obstacle dynamics. 
The model's performance remained within a 2% 

deviation margin, validating its generalization 

capability. This confirms that the reliability-based 

modulation of node expansion enhances both safety 

and planning consistency. 

 

F. Model Selection Rationale 
A lightweight logistic regression model was adopted 

as the reliability estimator to ensure accountability and 

interpretability during both simulation and hardware-

in-the-loop evaluation. Complex deep learning models 

were intentionally deferred at this stage to preserve 

analytical traceability of reliability matrices and 

maintain computational efficiency for real-time 

onboard execution. This design enables explicit 

inspection of learned weight coefficients and 

transparent verification of decision boundaries on 

embedded UAV processors, establishing a practical 

baseline for future integration of higher-capacity 

predictors once hardware validation is complete. 

 

G. Discussion and Limitations 
The proposed ML-Guided RRT* framework 

effectively combines deterministic planning and 

predictive learning, achieving notable improvements 

in both runtime and trajectory quality. The reliability 

estimator facilitates risk-aware exploration, enabling 
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consistent and accountable decisions suitable for UAV 

certification testing. Furthermore, the integration of 

interpretable ML mechanisms strengthens traceability 

during hardware-level validation. 
A comparative analysis with other classical 

algorithms, such as A* and PRM, highlights key trade-

offs. While A* guarantees optimality in discrete grid 

environments, its scalability to higher dimensions is 

limited. PRM performs well for global exploration but 

lacks responsiveness to dynamic changes. In contrast, 

the ML-Guided RRT* maintains near-optimal path 

quality with improved adaptability, achieving a 7% 

reduction in runtime and 10% fewer nodes than 

Guided RRT*. However, this approach introduces 

additional training overhead due to the ML layer. 
Despite its advantages, the current model relies on a 

binary classifier, which can oversimplify complex 

environmental conditions. Future versions should 

explore multi-class or probabilistic reliability 

estimators using reinforcement or deep learning to 

better capture nuanced flight risks. Real-world UAV 

tests and swarm coordination trials are also planned to 

assess scalability and field robustness. 
Overall, this analysis confirms that ML-Guided RRT* 

successfully bridges computational efficiency and 

behavioural accountability an essential step toward 

reliable and certifiable UAV autonomy. 

 

IV. CONCLUSION 
 

This paper introduced a unified Machine Learning-

Guided RRT* (ML-Guided RRT*) framework that 

merges deterministic motion planning with a 

lightweight, interpretable reliability module. Through 

extensive simulation studies, the proposed system 

achieved measurable gains in path smoothness, 

computational efficiency, and safety reliability. 

Quantitatively, the approach achieved 7% faster 

runtime, 10% fewer nodes, and an ROC-AUC of 0.88 

in reliability prediction. 

 

Key Contributions: 
• Development of a hybrid path planning framework 

integrating geometric constraints with ML-based 

reliability estimation. 
• Introduction of a reliability feedback mechanism that 

dynamically regulates exploration based on safety 

confidence. 

• Demonstration of performance consistency under 

static and dynamic conditions through extensive 

experimental validation. 
V. FUTURE WORK AND IMPLEMENTATION 

OUTLOOK 
 

While simulation results validate the proposed 

architecture, real-world deployment remains a critical 

next step. Future work will focus on hardware-in-the-

loop testing using both quadrotor and fixed-wing 

UAVs. The latter will allow for validating planner 

behaviour in high-speed aerodynamic regimes using a 

physics engine for data collection and model 

calibration. These experiments will assess control 

stability, energy efficiency, and trajectory adherence 

under realistic aerodynamic loads. 
In parallel, adaptive learning extensions such as 

Bayesian and reinforcement learning-based reliability 

estimators will be explored to enhance decision 

robustness. Physics-engine-based simulations will 

also be employed to collect detailed flight dynamics 

data, enabling fine-tuned model generalization across 

different UAV configurations. 
To support certification readiness, implementation 

efforts will include real-time telemetry logging for 

traceable decision-making, development of safety 

envelopes for operation in dense airspace, and 

coordinated swarm path planning. These steps will 

bridge the gap between simulation performance and 

accountable field implementation, aligning with 

emerging standards in certifiable autonomous aerial 

systems. 
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