

Predictive Analytics with AI: Real-Time Forecasting Using Big Data Streams

Abhilash S

Student, M.S(Datascience with AI), Cardiff University, Wales, UK

Abstract— The rapid growth of real-time data generated from sources such as IoT devices, social media platforms, financial transactions, and industrial systems has created a strong demand for intelligent predictive analytics capable of operating on continuous data streams. Traditional batch-oriented analytics methods are inadequate for handling the velocity, volume, and variability of big data streams. This paper presents an AI-driven framework for real-time forecasting using big data streams, integrating advanced machine learning and deep learning models with scalable stream-processing architectures.

The proposed approach employs online learning and incremental model updating techniques using algorithms such as Long Short-Term Memory (LSTM) networks, temporal convolutional networks, and reinforcement learning-based adaptive predictors. Stream-processing platforms including Apache Kafka and Apache Spark Streaming are utilized to enable low-latency data ingestion, real-time feature extraction, and continuous model inference. The framework addresses key challenges such as concept drift, data noise, and scalability through adaptive windowing, drift detection mechanisms, and automated model retraining.

Experimental evaluation on real-world streaming datasets demonstrates significant improvements in prediction accuracy, latency, and system throughput compared to traditional batch-based predictive models. The results highlight the effectiveness of AI-powered predictive analytics in enabling timely decision-making across applications such as smart cities, financial markets, healthcare monitoring, and industrial automation. This study emphasizes the role of real-time AI-driven forecasting as a critical enabler for next-generation data-driven systems

Index Terms— Big Data, artificial intelligence, ML and DL, AI-driven forecasting

I. INTRODUCTION

The basic meaning of AI data analysis is the practice of employing artificial intelligence to analyse and understand data in order to derive valuable insights from it. Using techniques such as machine learning algorithms, deep learning, natural language processing, and other methods, this technology makes the processes of cleaning, analysing, and modelling both structured and unstructured data more efficient.

Artificial intelligence in analytics goes beyond simply determining "what happened." The 'why' of the events is investigated in further depth [1]. Suppose a retail corporation has the goal of maximising its stock levels while simultaneously minimising waste. A real-time examination of historical sales data, client behaviour, and trends is now possible for the organisation thanks to the use of AI data analysis. With the help of this use of artificial intelligence, the company is able to make fantastic predictions about future sales, which enables them to alter their inventory in accordance with those predictions [2].

As a result of the fact that typical data-processing views are difficult to deal with, big data analytics refers to a variety of methods that may be utilised to analyse data, extract information, and get insights from large-scale datasets that contain complicated patterns. It is possible that overly intricate data with a large dimensional feature space could result in a higher rate of false discovery [3]. Therefore, data that has a large number of samples has a larger statistical power. Among the most significant issues that big data presents, the most important ones are data capture, data storage, search, visualisation, transfer, sharing, query, update, data analysis, information privacy, and data source [4]. In recent times, the term "big data" has been used to refer to the use of user behaviour analytics, predictive analytics, or various advanced

data analytic approaches that extract value from data. It is not commonly used to refer to a data set of a particularly large length. To put it simply, the quantities of data that are currently available are enormous; however, this is not the most consequential aspect of this data ecosystem [5]. By the same token, dealing with massive data sets in urban informatics, business informatics, fintech, and web surfing is typically a difficulty for professionals in the medical field, researchers, businesspeople, marketers, and government agencies. In e-science activities, such as meteorology, biology, genomics, complex physics simulations, and environmental studies, scientists are restricted in their ability to perform certain tasks. The elements of value, veracity, velocity, variety, and volume are the natural explanations for the ecosystem of big data [6].

Understanding AI, ML, and Data Analytics

Artificial Intelligence (AI): The term "artificial intelligence" (AI) describes computer systems that can mimic human intellect through training and education. It includes several other kinds of technology, such as robotics, computer vision, and natural language processing (NLP) [7].

Machine Learning (ML): Learning algorithms to learn and make judgements or predictions without being explicitly programmed is the goal of machine learning (ML), a branch of artificial intelligence. Methods like as reinforcement learning, supervised learning, and unsupervised learning are all part of it [8]. **Data Analytics:** The term "data analytics" refers to the practice of mining data sets for useful insights. Data mining, statistical analysis, and predictive modelling are all part of it.

Enhancing Data Analytics with AI and ML Improved Data Processing

Algorithms powered by AI and ML can process massive datasets far more quickly than manual processes. Their speed and accuracy make them ideal for processing and analysing massive datasets, where humans would struggle to find meaningful trends and patterns. The retail, healthcare, and financial sectors all of which deal with large amounts of data would benefit greatly from these capabilities.

Predictive Analytics

Predictive analytics the practice of making predictions

based on past data is an area where machine learning models really shine. A company can achieve very accurate trend, consumer behaviour, and market development forecasting by training models on historical data. With these predictive capabilities, organisations may optimise processes, reduce risks, and make proactive decisions.

Real-Time Analytics

Data processing and analysis in real-time is made possible by AI and ML. Batch processing, in which data is gathered and examined at regular intervals, is a common component of traditional data analytics methodologies. On the other hand, systems driven by AI can instantly analyse data as it is generated, offering valuable insights. Applications that rely on this real-time capacity are customer service, stock market trading, and fraud detection.

Automated Data Cleaning and Preparation

An important but time-consuming step in analytics is data preparation. Finding and fixing mistakes, filling in missing information, and converting data into a usable format are just a few of the data cleaning tasks that AI and ML may automate. The analytics workflow is accelerated and data quality is ensured by this automation [9].

II. LITERATURE REVIEW

The worth of the data that is being extracted is known as value. Information can only be derived from data, which lacks any inherent value or utility. Furthermore, credibility determines the worth and quality of data. The accuracy of the analysis and the quality of the data collected are both significantly impacted. To meet the demands and overcome the obstacles of the development and growth path, data must be generated and processed at a certain velocity. Data kind and nature can be better understood by looking at variety. It helps individuals analysing it to make a significant impact with the understanding they get. Finally, Volume details the total amount of data that has been generated and stored. The amount of data determines its potential worth and insight, as well as its classification as big data [10].

Predictive analytics has been more popular since big data platforms came out.

There are more potential for data mining to gain

predictive insights now that enterprises have access to larger and larger data pools via big data platforms [11]. Demand for predictive analytic services is on the rise, and this trend has been accelerated by the commercialisation of machine learning tools [12]. As the usage of big data analytics grows, predictive analytics will rely on an ever-expanding toolbox of methods to aid businesses in making informed predictions. In order to identify opportunities and threats, predict what will happen in the future, and guide decision making in application contexts, Big Data Predictive Analytics (BDPA) describes frameworks and systems that collect, analyse, and interpret data with high variety, velocity, veracity, and value.

In order to find out what's going to happen in the future, predictive analytics uses statistical approaches from data mining, machine learning, and forecasting models [13]. Predictive models in the business world use patterns in transactional and historical data to identify opportunities and threats. To aid in the decision-making process for future transactions, models establish relationships among numerous aspects, which allows for the evaluation of risks and opportunities associated with a certain set of circumstances [14].

Every individual a customer, an employee, a healthcare patient receives an estimated probability score from predictive analytics in this functional effect pertaining to technical methods. This score serves as a tool to inform, determine, or influence organisational processes involving various individuals in fields such as manufacturing, marketing, healthcare, fraud detection, and so on. Healthcare, smart cities, marketing, retail, actuarial science, social networking, financial services, insurance, communications, mobility, travel, child safety, medicines, capacity planning, and many more areas make use of predictive analytics [16,17].

The overarching goal of this SLR is to identify relevant literature on the topic of big data analytics, categorise it according to taxonomic criteria, compare different approaches to big data analytics, and compare and contrast recent publications that focus on big data analytics strategy, implementation, and validation [18]. Our resolute pursuit of answers to the following research topics is in keeping with the aforementioned goals: In big data, what domains

might prediction analysis be applied? How can we measure the efficacy of big data predictive analytics? How does BDPA determine performance? Can you tell me about the BDPA environments and tools? What are the difficulties and potential problems with BDPA in the future?

In [19], [20], we backed up the suggestions. Having a systematic way to identify and classify all of the present verified accomplishments on BDPA is our primary objective. Based on our research and inspections, only a small percentage of SLRs have conducted comprehensive BDPA analyses to yet [21-25]. The fact that they all failed to provide a comprehensive and accurate review article on the subject of BDPA is another important consideration. It is also important to offer a thorough analysis because BDPA is an extremely delicate and crucial area. As a result, we have compiled a comprehensive systematic assessment of predictive analytics strategies that leverage big data to improve performance based on our analysis of 109 papers. While some evaluations do touch on different big data methodologies, most miss the mark when it comes to discussing the difficulties, opportunities, and downsides of predictive analytics [26- 29].

III. AI DATA ANALYSIS TECHNIQUES

The AI Data Analysis Techniques are shown in figure 1. Artificial intelligence data analysis employs a variety of methods for deciphering massive datasets. Some examples are:

Machine learning: a branch of artificial intelligence that allows computers to gradually improve their performance by learning from data without further programming. Actually, streaming services' individualised recommendation engines run on machine learning.

Deep learning: a subfield of machine learning known as unsupervised learning, which entails teaching ANNs to learn from large datasets. In order to make technology more secure and personalised, facial recognition systems use deep learning.

Natural language processing (NLP): a subfield of artificial intelligence that enables machines to comprehend, imitate, and interpret spoken language. Using natural language processing (NLP), for example, virtual assistants can comprehend and carry out our spoken instructions.

Computer vision: the implementation of algorithms that grant computers the ability to detect and understand visual information.

Cognitive computing: an algorithm that, when applied to computer data, can mimic the way a human brain works.

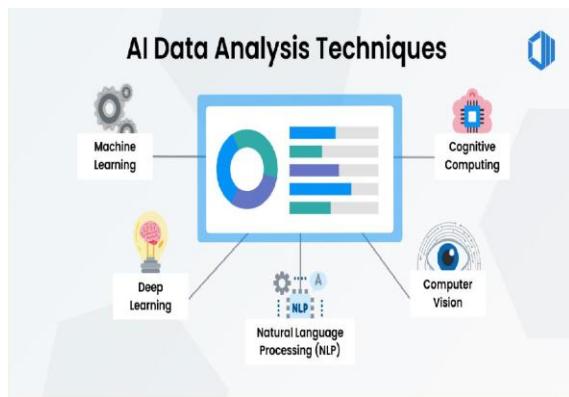


Fig 1: AI Data Analysis Techniques

Why is AI Crucial in Today's Data Analytics?

In data analytics, artificial intelligence is crucial for three reasons: speed, accuracy, and scalability. More and more data is being collected at an exponential rate, making old techniques of analysis inefficient, slow, and inaccurate. As an alternative, systems driven by AI can handle and analyse massive volumes of data far more quickly and accurately than human analysts. In addition, AI is incredibly scalable for expanding datasets since it can learn and enhance its capabilities continuously with little to no human interaction. This crucial function of AI highlights its significance and establishes it as an essential component of the contemporary data analytics toolbox. Indeed, according to Gartner's study, 61% of organisations are forced to change or reassess their data and analytics (D&A) operational models because of the impact of disruptive artificial intelligence (AI) technology.

Artificial intelligence data analysis is changing businesses and the future of many things, including healthcare diagnosis and marketing behaviour prediction. Operations at FedEx serve as a prominent example of this shift. A report from VentureBeat states that FedEx monitors data from its 18 million shipments every day in 220 countries. Several analytics, predictive modelling, and AI/ML-based projects rely on this massive data collection. In order to provide cutting-edge, customer-facing solutions that deliver immediate value, the company

painstakingly examines each step of a package's route, down to the weather and environmental factors.

6 Benefits of using AI for Data Analysis

Data analysis with artificial intelligence has many advantages. Some ways in which businesses might reap the rewards of AI-powered data analysis are as follows:

Faster insights and greater efficiency: Tools driven by AI can quickly analyse and understand massive amounts of data, giving organisations insights in real-time. Quickly retrieving commands and suggesting alternate ways for data processing are two further ways AI can improve productivity. When exploring various data analysis libraries, this becomes really useful.

Increased accuracy: More precise data analysis is possible with AI since it is immune to human bias and error. The use of AI allows for the investigation of potential causes when analytics outcomes differ from expectations. It is so good at finding connections, patterns, and trends that you might miss them without it.

Democratized Data: The use of chatbots powered by artificial intelligence (AI) and natural language processing (NLP) is democratising data access. Professionals without a background in data science may now analyse large datasets and draw meaningful conclusions thanks to this development.

Cost savings: By eliminating the need for human analysts, businesses can save time and money by automating data analysis. Artificial intelligence (AI) automates report generation, doing away with the need for human compilation after each analysis and so streamlining the process.

Enhanced scalability: Artificial intelligence (AI) is incredibly scalable for expanding datasets since it can learn and increase its skills indefinitely.

Better decision-making: Improved results can be achieved when organisations can confidently make data-driven decisions based on faster and more accurate insights.

The influence of AI on data analysis is only going to increase as the technology develops further. Artificial intelligence (AI) can revolutionise data analysis for businesses of all sizes, from fledgling startups to well-established corporations.

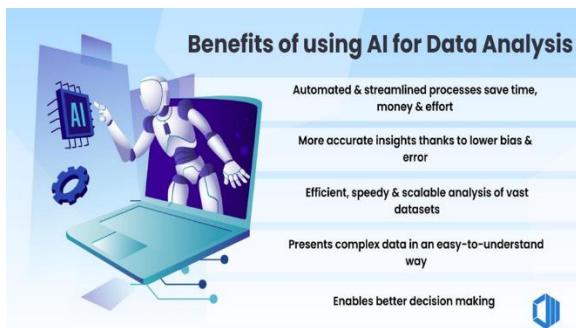


Fig 2: Benefits of using AI for Data Analysis

Integrating AI into Data Analytics Processes

By making possible previously unimaginable real-time predictive insights, AI has utterly transformed the data analytics scene, greatly improving decision-making. Data becomes more accessible and useful for organisations and enterprises as a result of its integration, which allows for a deeper understanding of complicated data patterns. We will examine its effects on processes and how it works in tandem with data analytics.

How AI Transforms Data Analysis

Especially in the areas of decision-making and business intelligence, the incorporation of AI into data analytics workflows is unparalleled. Proactively addressing these issues allows for better strategy planning, risk mitigation, and opportunity recognition. Through AI's capacity to simplify data insights, more stakeholders are able to participate in data analysis and make decisions based on facts. Some ways in which AI changes the data analytics process are as follows:

Automating Data Cleansing and Preparation: The automation of complex and regular activities has greatly improved data purification and preparation with AI-driven solutions. This has made it possible to process enormous datasets quickly with little human participation. When compared to the time and resources needed for traditional data analysis—which once required substantial human work to gather, clean, and prepare data before any analysis could begin—the time and resources saved by automation, particularly using Machine Learning (ML) algorithms, is substantial.

Predictive Modeling: In a fraction of the time it would take traditional approaches, algorithms powered by AI can analyse massive datasets, detect trends, and make accurate predictions. Artificial intelligence (AI) makes

use of past data to foretell how things will turn out. Organisations can optimise resource allocation or personalise product offerings with the help of predictive models.

Time Series Analysis: The process of time series analysis, which entails looking for trends and patterns in data collected over a period of time, is also within the capabilities of AI algorithms. When trying to predict future demand or find seasonality in sales data, this skill really shines.

Natural Language Processing (NLP): Artificial intelligence systems can process and derive useful insights from unstructured data sources like social media postings, consumer reviews, and news articles thanks to natural language processing (NLP). Since this functionality allows users to access data sources that were previously inaccessible, the scope of data analytics has been substantially enlarged, leading to the discovery of new business insights.

Real-Time Analysis: Artificial intelligence's speed in processing big data sets enables real-time analysis and decision-making, doing away with the need to wait for insights. In fields like banking, where choices can have far-reaching consequences if made late, this is invaluable.

IV. AI PREDICTIVE ANALYTICS USE CASES IN DIFFERENT INDUSTRIES

By utilising massive data sets to enhance productivity and decision-making, artificial intelligence predictive analytics has grown an indispensable tool in many different industries. A breakdown of AI analytics applications by sector is presented here:

Healthcare

Predictive analytics for disease detection: AI models are revolutionising the field of early disease detection in healthcare. Much earlier than conventional methods, computer algorithms can sift through mountains of patient data in search of anomalies and patterns that could signal the start of diseases like cancer or cardiac issues. Improving patient outcomes is possible as a result of early treatments.

Personalized treatment plans: Personalised medicine is another area where AI is playing a significant role. In order to personalise treatment regimens, it takes into account a myriad of elements, such as genetic

information, lifestyle choices, and individual health records. Better patient compliance and health outcomes are the results of this strategy's dual goals of increasing treatment efficacy while decreasing side effect risk.

Epidemic outbreak prediction: Artificial intelligence systems can scour worldwide health records for signs of impending epidemics, allowing for preventative actions.

Diagnostic imaging: With the use of AI, diagnostic imaging has been greatly improved, allowing for more precise diagnosis and treatment planning through the use of X-rays, CT scans, and magnetic resonance imaging (MRI).

Retail

Artificial intelligence (AI) in retail helps companies better manage their inventory. By analysing past data, seasonality, and present market trends, AI in predictive analytics may estimate future sales trends and recommend ideal stock levels. This reduces the likelihood of stockouts or surpluses, which in turn saves money and keeps customers happy. Retailers are embracing AI to enhance the consumer experience and optimise customer service. Data such as purchase history and customer feedback can be analysed by AI to reveal consumer preferences and behaviours. With this capability, companies may enhance consumer engagement, provide tailored recommendations and targeted incentives, and ultimately increase sales and customer loyalty. AI can foresee potential interruptions in the supply chain, which allows merchants to better manage their logistics and inventories via predictive supply chain management. AI models maximise profitability and market competitiveness through dynamic pricing, which involves real-time adjustments to prices based on demand, competition, and inventory levels.

Finance and banking

- **Detecting fraud:** Artificial intelligence has revolutionised the fight against financial fraud. To detect irregularities that may point to fraud, it examines transaction patterns in real-time. This is extremely important in this age of mostly digital transactions because it aids in the rapid detection and prevention of fraudulent acts, protecting the bank and its clients.
- **Credit scoring:** By analysing both traditional and

non-traditional data, AI enhances credit scoring models, allowing for more accurate risk evaluations. Developing investing strategy is made easier with the help of AI, which can forecast market trends and spot investment opportunities.

Manufacturing

One application of artificial intelligence in manufacturing is predictive maintenance. Artificial intelligence (AI) can anticipate equipment breakdowns by constantly monitoring data such as temperature, vibration, and operational metrics. Timely maintenance is made possible by this kind of planning, which cuts down on expensive downtime and increases the life of machines. AI predictive models identify possible quality concerns in production processes, which helps with quality control, waste reduction, and overall product improvement.

- **Resource optimisation:** Artificial intelligence helps manufacturers make the most efficient and cost-effective use of their resources.

Marketing

- **Customer behaviour prediction:** with the use of historical data such as purchases and browsing patterns, AI systems can forecast how customers will behave when it comes time to make a purchase. In turn, this boosts engagement and conversion rates by letting companies provide customers with tailored promos and suggestions.
- **Personalised marketing campaigns:** By analysing customer browsing history and past purchases, AI enables highly targeted marketing campaigns. Marketing campaigns are more effective when they include personalised emails and messages since engagement and click rates are much increased.
- **Artificial intelligence (AI) enhances demand forecasting** by analysing large data sets and finding trends. Due to AI's superior ability to forecast demand changes compared to more conventional approaches, this results in enhanced financial planning, more efficient supply chain management, and less waste. Businesses in the hotel and tourist industries, for example, can benefit from AI's real-time dynamic pricing models, which help them set competitive and

profitable prices by taking into account variables like market data and patterns in client behaviour. Businesses can better manage resources and provide high-value consumers with personalised experiences when they use AI to anticipate their customer lifetime value. For services that require a subscription, this method works well. Businesses may proactively retain at-risk consumers through targeted ads and improved experiences thanks to AI models that forecast customer attrition. The process of obtaining new clients becomes less expensive as a result.

- Sentiment analysis and management of brand reputation: Artificial intelligence systems that track internet discourse and reviews can tell you how people feel about your brand. This helps with handling client complaints quickly and managing the reputation of the company.
- Creating and optimising content: AI helps with content marketing by spotting popular subjects, improving search engine optimisation, and forecasting how well material will go. Content creation can be made more efficient and productive with the use of AI- driven solutions that can develop content outlines and suggest distribution strategies.
- AI improves upselling and cross-selling by evaluating real-time consumer data to propose pertinent complimentary items, which increases the average purchase value and improves the shopping experience for customers.
- Predicting how well ads will do: With the use of AI, marketers can gauge how well their ads will do and adjust their budgets and targeting accordingly.
- Trend analysis on social media: AI-powered systems sift through social media data in search of new patterns, giving firms a leg up when it comes to marketing.

Environment and sustainability

- Analysis of climate change: AI models can foretell the effects of climate change, which aids in preparation for and response to this threat. Optimal use of natural resources is one area where AI has the potential to make a positive impact on sustainability initiatives.

Transportation and logistics

- Transportation fleet management: AI can foresee when vehicles would need repairs and can help plan the most efficient routes. AI studies traffic data to optimise municipal traffic flow and decrease congestion.

Public sector

- Public safety and crime prediction: Artificial intelligence enables law enforcement to identify criminal hotspots, which helps them take preventative steps.
- Policy impact analysis: Artificial intelligence models make predictions about the effects of proposed policies, which helps with making educated decisions.

Education

- Predicting learning outcomes: Artificial intelligence can make predictions about the learning results of students, which enables personalised learning experiences. AI is able to identify pupils who are at risk of dropping out of school, which enables educational institutions to provide timely support to these children.

It is a tool and a revolutionary force across industries, enabling innovation, efficiency, and personalised experiences. Artificial intelligence predictive analytics belongs in this category. Artificial intelligence has the potential to further revolutionise various industries, and this potential is always evolving.

V. CONCLUSION

This study presented an AI-driven predictive analytics framework designed for real-time forecasting using big data streams. By integrating advanced machine learning and deep learning models with scalable stream-processing platforms, the proposed approach effectively addresses the challenges of high-velocity, high-volume, and continuously evolving data. The adoption of online learning mechanisms and adaptive model updating enables accurate and low-latency predictions while handling concept drift and data variability in dynamic environments.

Experimental results demonstrate that the proposed system outperforms traditional batch-based predictive models in terms of forecasting accuracy, response time, and scalability. The framework proves to be

robust and flexible across multiple application domains, including smart city infrastructure, financial market analysis, healthcare monitoring, and industrial automation. Overall, the research highlights the significance of AI-enabled real-time predictive analytics as a critical tool for proactive decision-making in data-intensive systems.

VI. FUTURE SCOPE

The future scope of this research can be extended in several promising directions. First, the integration of federated learning and privacy-preserving techniques can enable secure real-time analytics across distributed data sources without centralized data sharing. Second, incorporating explainable AI (XAI) methods will improve transparency and trust in real-time predictions, particularly in critical domains such as healthcare and finance.

Further research may explore hybrid AI models combining deep learning with statistical and rule-based approaches to enhance interpretability and robustness. The use of edge and fog computing can also be investigated to reduce latency and bandwidth usage by performing predictive analytics closer to data sources. Additionally, leveraging AutoML techniques for dynamic model selection and hyperparameter optimization in streaming environments can further enhance system adaptability.

Finally, future work can focus on large-scale real-world deployments and benchmarking across diverse streaming datasets to validate the framework's generalizability and performance under varying operational conditions. These extensions will strengthen the role of AI-driven predictive analytics in enabling intelligent, real-time, and sustainable data-centric applications.

About Author

Cardiff University, Wales, UK
Student Exchange and Study Abroad Programmes

Abhilash S
Data Science with AI

www.cardiff.ac.uk/study/international/study-abroad-in-india

REFERENCES

- [1] Aljawarneh S, Lara JA, Yassein MB (2020) A visual big data system for the prediction of weather-related variables: Jordan-Spain case study. *Multimed Tools Appl*. <https://doi.org/10.1007/s11042-020-09848-9>
- [2] Al-Qirim N, Tarhini A, Rouibah K (2017) Determinants of big data adoption and success. In *Proceedings of the 1st International Conference on Algorithms, Computing and Systems*, pp. 88-92.
- [3] Alrumiah SS, Hadwan M (2021) Implementing Big Data Analytics in E-Commerce: Vendor and Customer View. *IEEE Access* 9:37281–37286. <https://doi.org/10.1109/ACCESS.2021.3063615>
- [4] Al-Sai ZA, Abdullah R, Husin MH (2020) Critical Success Factors for Big Data: A Systematic Literature Review. *IEEE Access* 8:118940–118956. <https://doi.org/10.1109/ACCESS.2020.3005461>
- [5] Amirian P, Basiri A, Morley J (2016) Predictive analytics for enhancing travel time estimation in navigation apps of Apple, Google, and Microsoft. In *Proceedings of the 9th ACM SIGSPATIAL International Workshop on Computational Transportation Science*, pp. 31–36.
- [6] Anagnostopoulos I, Zeadally S, Exposito E (2016) Handling big data: research challenges and future directions. *The J Supercomputing* 72(4):1494–1516. <https://doi.org/10.1007/s11227-016-1677-z>
- [7] Arun Kumar S, Venkatesulu M (2019) Gramian matrix data collection-based random forest classification for predictive analytics with big data. *Soft Comput* 23(18):8621–8631. <https://doi.org/10.1007/s00500-019-04014-2>
- [8] Balbin PPF, Barker JCR, Leung CK, Tran M, Wall RP, Cuzzocrea A (2020) Predictive analytics on open big data for supporting smart transportation services. *Procedia Computer Science* 176:3009–3018. <https://doi.org/10.1016/j.procs.2020.09.202>
- [9] Balduini M, Bozzon A, Valle ED, Huang Y, Houben G (2014) Recommending Venues Using Continuous Predictive Social Media Analytics. *IEEE Internet Comput* 18(5):28–35. <https://doi.org/10.1109/MIC.2014.84>
- [10] Banumathi S, Aloysius A (2017) Predictive analytics concepts in big data: A survey. *Int J Adv Res Computer Sci* 8(8):4. <https://doi.org/10.26483/ijarcse.v8i8.4628>
- [11] Bazzaz Abkenar S, Hagh Kashani M, Mahdipour

E, Jameii SM (2021) Big data analytics meets social media: A systematic review of techniques, open issues, and future directions. *Telematics Informatics* 57:101517. <https://doi.org/10.1016/j.tele.2020.101517>

[12] Belle A, Thiagarajan R, Soroushmehr SMR, Navidi F, Beard DA, Najarian K (2015) Big Data Analytics in Healthcare. *Biomed Res Int* 2015:16. <https://doi.org/10.1155/2015/370194>

[13] Bendre MR, Thool RC, Thool VR (2015) Big data in precision agriculture: Weather forecasting for future farming. In 2015 1st International Conference on Next Generation Computing Technologies (NGCT), 4–5 Sept. 2015, pp. 744–750. <https://doi.org/10.1109/NGCT.2015.7375220>

[14] Bendre MR, Thool RC, Thool VR (2016) Big Data in Precision Agriculture Through ICT: Rainfall Prediction Using Neural Network Approach. In Satapathy S, Bhatt Y, Joshi A, Mishra D (eds) Proceedings of the International Congress on Information and Communication Technology. Advances in Intelligent Systems and Computing, vol 438. Springer, Singapore. https://doi.org/10.1007/978-981-10-0767-5_19

[15] Bhuimali A, Aithal S, Paul PK (2018) Business Informatics: With Special Reference To Big Data as an Emerging Area: A Basic Review. *Int J Recent Researches in Science, Eng Technol* 6. <https://doi.org/10.5281/zenodo.1249786>

[16] Bianchi DG (2019) Politics and big data: Nowcasting and forecasting elections with social media. *Contemporary Italian Politics*, pp. 1–2. <https://doi.org/10.1080/23248823.2019.1619298>

[17] Biesialska K, Franch X, Muntés-Mulero V (2021) Big Data analytics in Agile software development: A systematic mapping study. *Inf Software Technol* 132:106448. <https://doi.org/10.1016/j.infsof.2020.106448>

[18] Bradlow ET, Gangwar M, Kopalle P, Voleti S (2017) The Role of Big Data and Predictive Analytics in Retailing. *J Retail* 93(1):79–95. <https://doi.org/10.1016/j.jretai.2016.12.004>

[19] Brereton P, Kitchenham BA, Budgen D, Turner M, Khalil M (2007) Lessons from applying the systematic literature review process within the software engineering domain. *J Syst Software* 80(4):571–583. <https://doi.org/10.1016/j.jss.2006.07.009>

[20] Breur T (2016) Statistical Power Analysis and the contemporary “crisis” in social sciences. *J Marketing Analytics* 4(2):61–65. <https://doi.org/10.1057/s41270-016-0001-3>

[21] Casado R, Younas M (2015) Emerging trends and technologies in big data processing. *Concurrency and Computation: Practice and Experience* 27(8):2078–2091. <https://doi.org/10.1002/cpe.3398>

[22] Chang V (2021) An ethical framework for big data and smart cities. *Technol Forecast Soc Chang* 165:120559. <https://doi.org/10.1016/j.techfore.2020.120559>

[23] Chen P-T (2018) Medical big data applications: Intertwined effects and effective resource allocation strategies identified through IRA-NRM analysis. *Technol Forecasting Social Change* 130:150–164. <https://doi.org/10.1016/j.techfore.2018.01.033>

[24] Chen H (2018a) Personalized recommendation system of e-commerce based on big data analysis. *J Interdisciplinary Mathematics* 21(5):1243–1247.

[25] Chen S (2021) Analysis of Customization Strategy for E-Commerce Operation Based on Big Data. *Wireless Commun Mobile Computing* 2021: 6626480. <https://doi.org/10.1155/2021/6626480>

[26] Cheung M, She J, Wang N (2018) Characterizing User Connections in Social Media through User-Shared Images. *IEEE Transactions on Big Data* 4(4):447–458. <https://doi.org/10.1109/TBDA.2017.2762719>

[27] Chin J, Callaghan V, Lam I (2017) Understanding and personalising smart city services using machine learning, The Internet-of-Things and Big Data. In 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), 19–21 June 2017, pp. 2050–2055. <https://doi.org/10.1109/ISIE.2017.8001570>

[28] Christobel TP, Kamalakannan T (2020) Predictive analysis in Gestational Diabetic Mellitus (GDM) using HCNN-LSTM/DPNN (Big Data). In 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), 3–5 Dec. 2020, pp. 407–413.