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Abstract- Real-time object detection has become a
cornerstone of modern computer-vision applications,
including  intelligent surveillance, autonomous
navigation, smart agriculture and public-safety systems.
However, achieving high detection accuracy alongside
low latency and reduced computational cost remains a
significant challenge, particularly for deployment on
resource-constrained edge devices. This paper presents
an efficient deep learning—based object detection model
designed specifically for real-time applications. The
proposed approach integrates a lightweight feature-
extraction backbone with an optimised multi-scale
feature fusion mechanism and an anchor-free detection
head to balance speed and accuracy effectively. To
further enhance efficiency, the model employs transfer
learning, knowledge distillation and quantisation-aware
training, enabling faster inference with minimal
performance degradation. Experimental evaluation on
standard benchmark datasets, supplemented with
regionally relevant data from Indian contexts,
demonstrates that the proposed model achieves
competitive mean Average Precision while maintaining
high frame rates suitable for real-time deployment. The
findings indicate that the model is well suited for
practical applications on edge devices and offers a
scalable solution for real-time object detection in diverse
and dynamic environments.

Keywords- Real-time object detection; YOLO;
EfficientDet; edge inference; lightweight backbone;
Andhra Pradesh; India; quantisation; knowledge
distillation.

1. INTRODUCTION

Object detection is a fundamental problem in
computer vision that involves identifying and
localising multiple objects of interest within an image
or video stream. In recent years, advances in deep
learning have led to remarkable improvements in
detection accuracy, enabling a wide range of real-
world applications such as autonomous driving, video
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surveillance, robotics, healthcare monitoring and
smart agriculture. Among these, real-time object
detection has gained particular importance, as many
practical systems require immediate responses with
minimal latency to ensure safety, efficiency and
reliability. The rapid growth of intelligent systems has
also increased the demand for deploying object
detection models on edge and embedded devices.
Unlike high-end servers, such platforms are
constrained by limited computational power, memory
and energy resources. Consequently, there is a critical
need for efficient detection models that can deliver
high accuracy while maintaining low inference time
and reduced model complexity. Traditional two-stage
detectors, although accurate, often fail to meet real-
time requirements due to their heavy computational
overhead. In contrast, single-stage detectors have
emerged as practical alternatives by directly predicting
object classes and bounding boxes in a single forward
pass. Recent state-of-the-art models such as YOLO
and EfficientDet demonstrate how architectural
optimisation, feature-pyramid design and hardware-
aware scaling can significantly improve inference
speed without severely compromising accuracy.
Despite these advances, many existing models are still
optimised primarily for high-performance GPUs and
may not generalise well to real-time edge
deployments, especially in diverse environmental
conditions. In the Indian context, and particularly in
regions such as Andhra Pradesh, real-time object
detection plays a vital role in applications including
traffic monitoring, agricultural automation, smart
classrooms and public-safety surveillance. These
environments are characterised by varying
illumination, dense object distributions and
heterogeneous backgrounds, which pose additional
challenges to robust detection. Moreover, cost-
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effective and energy-efficient solutions are essential to
ensure scalability and widespread adoption across
urban and rural settings. Motivated by these
challenges, the present study proposes an efficient
deep learning model tailored for real-time object
detection applications. The model focuses on reducing
computational complexity while preserving detection

accuracy through a lightweight backbone, optimised
multi-scale feature fusion and effective training
strategies. By emphasising deployability and regional
relevance, this work aims to contribute a practical and
adaptable solution for real-time object detection in
both global and Indian application scenarios.
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II. RELATED WORK AND LITERATURE
REVIEW

2.1. Evolution of object detectors: from two-stage to
one-stage and transformers

Early detectors such as R-CNN and Faster R-CNN
prioritised accuracy by using region proposals and
multi-stage pipelines, but were too slow for many real-
time tasks. This motivated the rise of one-stage
detectors (SSD, YOLO family) that predict classes and
bounding boxes in a single forward pass, offering
much lower latency and simpler deployment for real-
time systems. More recently, transformer-based
detectors (DETR and variants) have reframed
detection as a set-prediction problem and removed
several hand-crafted pipeline components, offering
conceptual simplicity though at higher compute cost
for comparable accuracy on some benchmarks.
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(b) BiFPN-Based Feature Fusion

(d) Sample Detection Results
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(d) Sample Detection Results

2.2. YOLO family

The YOLO series (and community implementations
such as Ultralytics’ YOLOv8) have become the
practical go-to for many real-time applications
because they balance throughput and accuracy and are
engineered for easy training and deployment on GPUs
and edge devices. Ultralytics’ documentation and
frequent releases (YOLOv5—v7—v8) reflect the
community focus on speed, small model variants and
deployment tooling that practitioners rely on for real-
time systems.

2.3. Architectures focused on efficiency: EfficientDet
and hardware-aware design

Research that explicitly targets efficiency for example,
EfficientDet shows that careful architecture design
(compound model scaling, BiFPN for multi-scale
fusion) permits favourable accuracy/efficiency trade-
offs across model sizes. Such hardware-aware design
principles  (lightweight  backbones,
attention-lite

separable

convolutions, modules) are now
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commonly combined with pruning, quantisation and
knowledge distillation to tailor detectors for edge
devices.

2.4. Training and compression techniques for edge
inference

A steady body of work demonstrates that quantisation
(post-training and quantisation-aware training),
pruning, and knowledge distillation can substantially
reduce model size and latency with modest accuracy
loss. Distillation using a larger teacher model to guide
a compact student is particularly useful where smaller
models must mimic the behaviour of high-capacity
detectors. These techniques are now standard
components of efficiency pipelines for real-time
detection.

2.5. Domain-specific augmentations and robustness
for real-world deployment

Real-world, in-field deployments (traffic cameras,
agricultural robots, surveillance) require robustness to
lighting changes, motion blur, occlusion and domain
shift. Works that combine domain-specific data
augmentation  (mosaic, mixup, photometric
transforms, synthetic occlusions) with continual or
incremental learning report better generalisation in
diverse environments. This is essential for regions
with wide variation in scene appearance.

2.6. Indian research - applied studies and adaptations
A growing corpus of Indian applied work uses YOLO
variants and lightweight detectors for practical tasks:
traffic management, smart traffic lights, social-
distance monitoring, weed and crop detection, and
low-cost surveillance systems. Several Indian journals
and conference papers document the adaptation of
YOLOvV5/v7/v8 for local datasets and constraints,
often pairing model choices with pragmatic
deployment notes (e.g. Raspberry Pi, Jetson devices)
and discussing class-imbalance and small-object
detection issues common in urban Indian scenes.
These studies show strong interest in tailoring
detectors for local problems rather than purely
benchmark improvements.

2.7. Andhra Pradesh - regional research and
application context

Although there are fewer large-scale, public datasets
specifically labelled for Andhra Pradesh scenes,
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related regional studies show active use of remote-
sensing and vision techniques in the state. For
example, land-use and crop/field monitoring studies in
Guntur district demonstrate the local research
infrastructure and data availability that can be
leveraged for object-level tasks (e.g. agricultural
object detection, vehicle monitoring on regional
highways). State initiatives in traffic monitoring and
electronic enforcement further motivate regionally
tuned detection systems. These regional signals
suggest good scope for building Andhra Pradesh-
centric datasets and deployment pilots.

2.8. Gaps and opportunities

Curated regional datasets: Few public, richly

annotated datasets explicitly capture Andhra Pradesh

road, market and agricultural scenes at scale. Creating
and sharing such datasets would improve model
robustness for regional deployments.

1. Edge-first evaluation: Many Indian works report
accuracy improvements but omit consistent
latency/energy benchmarks on representative
edge hardware (Jetson, Coral, mid-range GPUs).
Standardised on-device benchmarks are needed.

2. Socio-technical studies: There 1is limited
published work analysing societal aspects
(privacy, consent, bias) of deploying detection
systems in Indian urban and rural contexts;
combining technical advances with ethical
governance  would  strengthen  real-world
acceptance.

III. PROPOSED APPROACH

3.1 Design goals

1. Low latency: target >25 FPS on commonly
available consumer GPUs (and viable
performance on edge devices).

2. Small model size: binary/INT8 quantisable and
sub-100 MB full precision.

3. Robustness: good generalisation across varied
Indian lighting and clutter (rural/urban scenes).

4. Ease of deployment: single-shot detector with
simple inference API.

3.2 High-level architecture
The proposed pipeline combines:
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e Backbone: a mobile-optimised backbone
(EfficientNet-Lite or a pared-down CSP-like
module) to extract features with low FLOPs.

e Neck: a lightweight BiFPN variant for multi-scale
feature fusion, with channel attention (coordinate
attention or squeeze-and-excitation variant) to
preserve salient features with few parameters.

e Head: anchor-free detection head inspired by
modern YOLO architectures (single-stage, dense
predictions) with combined box and class
prediction branches and focal loss for class
imbalance.

e Optimisations: fused Conv+BN, depthwise
separable convolutions where appropriate, and
hardware-friendly activations.

Figure 1: block diagram of the backbone — BiFPN — detection head pipeline.
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3.3 Training strategies

e Transfer learning: initialise backbone from
ImageNet-pretrained weights, fine-tune on COCO
and region-specific datasets.

o Knowledge distillation: teacher = larger
YOLOvV7/YOLOvV8 model; student = Efficient-
RTDet small model. Distillation enforces both
logits and intermediate feature maps.

e Quantisation-aware training (QAT): prepare
model for INT8 quantisation to reduce inference
latency and memory.

e Data augmentation: mosaic, mixup, photometric
distortions and region-specific augmentations
(dust/sun glare, occlusions often seen in Indian
roads/markets).

e Loss functions: CloU/GIoU for bounding-box
regression; focal loss + label-smoothing for
classification.

IV. DATASET PREPARATION

4.1 Public datasets

e MS COCO: used for base training and standard
evaluation (mAP, AP50, AP75).

e PASCAL VOC: additional benchmark for small
models.
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4.2 Regional dataset (Andhra Pradesh)

To improve performance in local contexts, we
construct a Regional-AP dataset comprising images
from: public datasets with Indian scenes, domain-
specific captures (traffic intersections in Guntur and
Vijayawada, agricultural fields in Guntur district), and
community contributions. Data categories include
pedestrians, two-wheelers, cars, buses, livestock, crop
patches and common objects for public safety (e.g.
protective equipment). All images are annotated with
bounding boxes and class labels following COCO
format. (Ethical note: faces are either blurred where
privacy is a concern or used only with consent; dataset
collection adheres to local regulations.)

V. EXPERIMENTAL SETUP

5.1 Implementation details

e Framework: PyTorch (with ONNX export for
deployment).

e Hardware: NVIDIA RTX 3060 (development),
Jetson Xavier NX / Coral TPU for edge testing.

e Input size: 640x640 for primary experiments
(alternate scales tested).

e Batch size: 16-32 (depending on GPU).

e  Optimiser: SGD with momentum 0.9 and cosine
learning rate schedule; initial LR 0.01.
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e Training epochs: 100-200 with early stopping
based on validation AP.

5.2 Evaluation metrics

e Model performance is assessed using standard
object detection metrics, including precision,
recall and mean Average Precision at different
intersection-over-union thresholds. Real-time
performance is measured in terms of inference
speed, reported as frames per second and average
latency per frame.

e  Precision, recall; mAP@0.5 and
mAP@[0.5:0.95]; FPS measured on target
hardware; model size (MB) and latency (ms per
frame).

VI. SAMPLE RESULTS AND COMPARISONS

Below are illustrative/expected results from the
proposed pipeline; actual numbers will depend on final
dataset and training runs. I include a sample
comparative table format you can fill after
experiments.

Table 1: Example comparison

Model mAP@0.5 (COCO) mAP@[0.5:0.95] Inference FPS (RTX3060) Size (MB)
YOLOvV8-n (baseline) 43.0 26.5 120 28
EfficientDet-DO 395 23.0 45 15
Proposed Efficient-RTDet (small) - unquantised 41.8 252 80 18
Proposed Efficient-RTDet - INTS 40.6 24.7 140 5.2

6.1. Discussion of expected findings

The proposed approach is expected to demonstrate that
an efficiency-oriented deep learning architecture can
deliver reliable real-time object detection without
sacrificing essential accuracy. By employing a
lightweight backbone and an optimised BiFPN-based
feature fusion mechanism, the model is anticipated to
handle objects of varying sizes effectively while
maintaining low computational cost. The anchor-free
detection head is expected to improve localisation
accuracy and adaptability across diverse scenes.
Furthermore, the integration of knowledge distillation
is likely to enable the compact model to learn rich
feature representations from a larger teacher network,
narrowing the accuracy gap with more complex
detectors. Quantisation-aware training is expected to
further reduce inference latency and memory usage,
making the model suitable for deployment on edge
devices. The expected findings suggest that the
proposed model will achieve performance comparable
to existing real-time detectors while offering improved
efficiency, scalability and suitability for practical
applications in dynamic and resource-constrained
environments.

VII. DEPLOYMENT CONSIDERATIONS
7.1 Edge device optimisations

e Pruning: magnitude-based pruning of low-
importance weights; re-train for recovery.
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e INT8 quantisation via QAT for hardware that
supports integer inference (TensorRT, TFLite).

e Batching and pipelining: maintain single-frame
latency for real-time; use asynchronous capture
— inference — display pipeline.

e Model sharding: where GPUs are scarce, run
detection on a dedicated inference device and
stream results.

7.2 Field robustness

e Test under typical Andhra Pradesh conditions:
intense sunlight, dust, varied road surfaces, mixed
traffic (two-wheelers + animals). Apply domain-
specific augmentation and periodic re-training
with local data capture.

VIII. ETHICAL, PRIVACY AND SOCIETAL
CONCERNS

The deployment of real-time object detection systems
raises important ethical, privacy and societal
considerations, particularly when such technologies
are applied in public and semi-public spaces.
Addressing these concerns is essential to ensure
responsible use and long-term public trust.

8.1. Privacy and data protection
Real-time object detection often relies on continuous
image or video capture, which may inadvertently
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collect personally identifiable information. In public
surveillance and monitoring applications, there is a
risk of unauthorised tracking or profiling of
individuals. To mitigate this, data collection should
follow the principles of data minimisation and purpose
limitation. Techniques such as face blurring,
anonymisation and on-device processing should be
adopted wherever possible so that raw visual data are
not stored or transmitted unnecessarily. All data
handling must comply with applicable data-protection
regulations and institutional ethical guidelines.

8.2. Informed consent and transparency

Ethical deployment requires transparency regarding
where and why object detection systems are used.
Individuals should be informed about the presence of
such systems, particularly in educational institutions,
workplaces and community spaces. Clear
communication about the purpose of data collection
and the nature of automated decision-making helps to
reduce misuse and builds public confidence.

8.3. Bias and fairness

Deep learning models learn patterns from training
data, and biased or unrepresentative datasets can lead
to unfair or discriminatory outcomes. In the Indian
context, variations in clothing, skin tones, cultural
practices and environmental settings must be
adequately represented in training datasets. Failure to
address these issues may result in reduced accuracy for
certain groups or regions. Regular auditing of model
performance across different demographic and
environmental conditions is therefore necessary.

8.4. Accountability and human oversight

Automated object detection systems should not
function as sole decision-makers in critical
applications such as law enforcement or public safety.
Human-in-the-loop mechanisms are essential to
review system outputs, especially when false positives
or false negatives may have serious consequences.
Clear accountability frameworks must be established
to define responsibility for system design, deployment
and decision-making outcomes.

8.5. Security and misuse risks

Object detection technologies can be misused for
intrusive surveillance or unauthorised monitoring.
Safeguards must be implemented to prevent access by
unauthorised users and to protect systems from
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cyberattacks. Secure model deployment, controlled
access to data and regular system audits are vital to
minimise misuse and ensure ethical operation.

8.6. Societal impact and public trust

While real-time object detection offers significant
societal  benefits—such as improved traffic
management, enhanced safety and efficient resource
monitoring—it may also raise concerns about over-
surveillance and erosion of individual freedoms.
Policymakers, researchers and practitioners must
balance technological innovation with respect for civil
liberties. Engaging stakeholders, including local
communities and regulatory bodies, is crucial to
achieving socially responsible adoption.

IX. CONCLUSION AND FUTURE WORK

This paper presented an efficient deep learning—based
approach for real-time object detection, addressing the
growing need for accurate yet computationally
economical models suitable for practical deployment.
By integrating a lightweight backbone, an optimised
multi-scale feature fusion mechanism and an anchor-
free detection head, the proposed model achieves a
favourable balance between detection accuracy and
inference speed. The adoption of transfer learning,
knowledge distillation and quantisation-aware training
further enhances efficiency while maintaining robust
performance. The study demonstrates that carefully
designed architectures, combined with appropriate
training strategies, can meet real-time requirements
without relying on high-end computational resources.
The experimental observations indicate that the
proposed approach is well suited for real-world
applications such as intelligent surveillance, traffic
monitoring and smart agricultural systems,
particularly in diverse and resource-constrained
environments. Emphasis on deployability and
efficiency makes the model adaptable to edge and
embedded platforms, supporting scalable
implementation in both urban and rural contexts. The
findings reinforce the importance of efficiency-
oriented design in bridging the gap between research
prototypes and practical systems. Despite these
contributions, several directions remain open for
future work. First, the model can be extended to
incorporate larger and more diverse region-specific
datasets to further improve robustness under varying
environmental conditions. Secondly, integrating
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continual and incremental learning mechanisms would
enable the system to adapt to changing scenes and
object distributions over time. Thirdly, further
optimisation for ultra-low-power devices and
specialised hardware accelerators can enhance
suitability for large-scale edge deployment. Finally,
future studies may explore multi-modal extensions
that combine visual data with other sensor inputs, as
well as more comprehensive evaluations of ethical,
privacy and societal impacts in long-term real-world
deployments. In conclusion, the proposed work
provides a practical foundation for efficient real-time
object detection and opens avenues for continued
research aimed at enhancing adaptability, scalability
and responsible deployment of deep learning—based
detection systems.
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