
© January 2026 | IJIRT | Volume 12 Issue 8 | ISSN: 2349-6002

IJIRT 191950 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 8308

All-in-One RAG Assessment Engine: Dynamic Creation,

Automated Evaluation, and University-Centric Output

Edric Jeffrey Sam1, L. Mary Louis2
1Student, Department of Data Science, Kumaraguru College of Liberal Arts and Science,

 Coimbatore, India
2Head of Department, Department of Mathematics, Kumaraguru College of Liberal Arts and Science,

Coimbatore, India

Abstract—The manual preparation of question papers

and the evaluation of answers are laborious and

cumbersome processes that are always prone to a great

degree of personal bias. This study proposes an

integrated Retrieval Augmented Generation assessment

module that facilitates the automation of question paper

creation and answer evaluation with strict compliance

with the examination patterns followed by the

institution. The proposed assessment module provides an

approach to question paper creation and evaluation with

strict compliance with the examination patterns.

Questions were generated using the Google Gemini

model with the use of specially designed queries. The

generated examination papers are made to adhere to the

institution's approved template. The evaluation module

follows an approach by incorporating semantic

similarity measurement along with the incorporation of

the MiniVLM open-source model. The implementation

follows the FastAPI and MongoDB stack along with the

Next.js approach.

Index Terms—Retrieval Augmented Generation,

FastAPI, MongoDB, MiniVLM, Google Gemini,

Automation

I. INTRODUCTION

Currently, assessment in higher education largely

depends upon examinations. Teachers are responsible

for both setting examination question papers and then

assessing the answer books in most disciplines, all

within limited academic timelines. In higher

educational institutes in India, including autonomous

bodies, this assessment largely happens through

manual interventions, leading to additional academic

burden for teachers and further academic delays for

students.

While preparing the question papers, teachers have to

comply with the syllabus, educational outcomes, and

other requirements stipulated by schools, like the

Continuous Internal Assurances (CIA) scheme and the

Model examinations. Evaluation of descriptive

answers is also quite tiresome, as one has to read

answers again and again, along with cross-checks on

the model answers to avoid bias while using the mark

scheme.

Recent advances in large language models and

techniques involving "Retrieval Augmented

Generation" or "RAG" provide opportunities to better

automate these processes while maintaining grounding

in the provided set of materials. For one, it is possible

to abandon the static set of question banks and/or

templates to generate questions programmatically

based on the available course syllabus, as opposed to

the status quo. Similarly, the available techniques in

semantic embeddings now provide opportunities to

automatically grade descriptive answers with the

corresponding rationales.

This work introduces a novel all-in-one assessment

solution, which integrates the generation of dynamic

question papers as well as the evaluation of the

answers, particularly designed for academic

environments. This is particularly relevant due to the

increased need for the integration of AI tools in

academic environments, which might otherwise prove

difficult, while at the same time avoiding the risk of

sacrificing academic integrity. This solution integrates

the generation of MCQ, SA, as well as essay

questions, according to the CIA as well as the Model

schemes, also generating the actual question paper

files in DOCX format, while also carrying out the

assessment of the student answers, exporting the

results in Excel files.

© January 2026 | IJIRT | Volume 12 Issue 8 | ISSN: 2349-6002

IJIRT 191950 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 8309

II. LITERATURE REVIEW

Automatic question generation (AQG) has become a

well-established research area with applications in

reading comprehension, tutoring systems, and

assessment. A review of AQG research [1] shows that

early rule-based and template-based systems have

mostly been replaced by neural and transformer-based

models that generate questions directly from text. The

review points out that much of the AQG work relies

on benchmark datasets. It often focuses on generating

individual questions that are grammatically correct

and meaningful rather than on creating complete exam

papers that follow institutional formats [1].

Transformer-based methods have been especially

effective for educational question generation. One line

of work uses models like T5 and BERT to create

exam-style questions and, in some cases, distractors

from textbook-like content [2]. These systems have

shown that deep language models can produce clear

questions suitable for both formative and summative

assessments. Recently, studies have examined how

different ways of prompting large generative models

affect the quality, difficulty, and variety of questions

produced in classrooms [3]. Together, these efforts

demonstrate that LLMs are powerful tools for

generating questions, but they usually operate at the

level of individual items and do not enforce university-

specific formats, such as fixed mixes of multiple-

choice questions, short answers, and essays. They also

do not generate ready-to-use DOCX question papers

required by exam offices.

Automated grading of short answers and essays has

followed a similar path, moving from keyword-based

scoring to more complex representation learning with

deep neural models. A survey on automated short

answer grading indicates that newer systems

increasingly use transformer-based encoders and

semantic similarity measures to compare student

answers with reference solutions [4]. This survey

highlights the need to combine embeddings with

specific features and rubric information for accurate

grading [4]. A recent study builds on this by proposing

a method that grades short answers by computing

sentence-level semantic similarity and using a

regression model with only a small number of samples

graded by instructors [5]. This approach shows that

similarity based on embeddings can achieve useful

accuracy while lowering the need for extensive

annotation.

However, most of these automated grading methods

assume that questions, model answers, and rubrics are

already organized and mainly focus on scoring. They

do not address earlier tasks, like parsing institutional

answer keys, or later tasks, like generating organized

grade reports. In contrast, the system presented in this

work combines sentence-transformer embeddings

with prompts from large language models that

consider the rubric. This allows it to automatically

calculate scores and explanations for each question,

integrating it into a larger assessment pipeline.

Retrieval-Augmented Generation (RAG) has recently

been investigated to link assessment and feedback

with resources specific to each institution. A GenAI-

based RAG system was suggested for formative

assessment in higher education, pulling in rubrics and

example essays to generate scores and feedback that

align with course expectations [6]. This study shows

that RAG enhances the relevance and transparency of

automated assessment [6]. Another framework, EduX-

RAG, aims to use learning materials as a retrieval

source to support multilingual and context-aware

educational interactions [7]. While useful, these

initiatives mainly focus on feedback and tutoring,

rather than the entire examination process.

The closest research to a complete assessment pipeline

is an LLM-based framework that handles both

automatic question generation and constructed-

response scoring within a smart learning system [8]. In

this framework, an LLM creates questions and

reference answers from learning content, while the

same model scores student

responses [8]. Though this shows that LLMs can assist

both parts of the assessment process, it is designed for

general learning situations and does not meet

university needs, like processing syllabus PDFs,

enforcing exam patterns, or producing official DOCX

and XLSX files.

Across these studies, several gaps become clear. AQG

systems create high-quality questions but rarely

produce full, format-compliant exam papers [1], [2],

[3]. Automated grading methods concentrate on

scoring models without integrating question

generation or reporting processes [4], [5]. RAG-based

frameworks usually focus on formative assessment

rather than comprehensive exam management [6], [7].

Even combined systems do not effectively handle

© January 2026 | IJIRT | Volume 12 Issue 8 | ISSN: 2349-6002

IJIRT 191950 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 8310

strictly formatted, syllabus-driven exam creation [8].

The system introduced in this paper addresses these

gaps by combining RAG-based question generation,

rubric-grounded grading, and outputs ready for

university use within a single engine designed for

university examination practices.

III. METHODOLOGY

A. System Architecture

The assessment engine consists of three primary

modules integrated through a FastAPI backend, as

illustrated in Fig. 1. The Question Paper Generation

Module processes syllabus PDF documents to produce

examination papers and answer keys formatted

according to institutional DOCX templates. The

Answer Script Evaluation Module analyzes student

submissions against reference answer keys to generate

marks and detailed feedback. A MongoDB database

manages academic metadata including departments,

subjects, batches, and examination results. The Next.js

frontend provides a dashboard interface that facilitates

faculty workflow navigation. The evaluation module

operates at the /evaluator endpoint, enabling both

generation and evaluation functions to run on a unified

server port.

The Gemini-2.5-flash model (with fallback to gemini-

3-flash-preview) serves as the primary large language

model, complemented by the all-MiniLM-L6-v2

sentence transformer for semantic similarity

computations. LangChain components manage

prompt templating and structured JSON output

parsing.

Fig.1 System Architecture

B. Question Paper Generation Pipeline

The question generation process converts syllabus

PDFs into complete examination documents through

five sequential stages, as shown in Fig. 2.

1) Syllabus Document Processing

Syllabus PDFs are processed using the pdfplumber

library to extract textual content. Unit boundaries are

identified through regular expression matching with

the customly/particularly defined regex pattern r'((?

Unit|Module) [: \s] *\d+. *? (? =(? Unit Module) [: \s]

*\d+|$))' employing DOTALL and IGNORECASE

flags. Identified segments are sequentially numbered

as processing units. Documents lacking explicit unit

markers are processed as a single comprehensive unit.

Fig.2 Question Paper Generation Pipeline

2) Context Preparation and Segmentation

Unit content is divided into manageable segments

using ‘RecursiveCharacterTextSplitter’ with

© January 2026 | IJIRT | Volume 12 Issue 8 | ISSN: 2349-6002

IJIRT 191950 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 8311

parameters chunk_size=4000 and

chunk_overlap=500. This produces LangChain

Document objects retaining unit metadata. Five

randomly selected chunks are concatenated to form

contextual input for question generation.

3) Prompt Engineering for Examination Patterns

Distinct prompt templates enforce institutional

examination schemes:

● Continuous Internal Assessment (CIA): 10

multiple-choice questions (1 mark each), 5 short

answer questions (4 marks each), 2 long essay

questions (10 marks each).

● Model examination: 10 multiple-choice questions

(1 mark), 5 short answer questions (5 marks), 5

long essay questions (8 marks).

Multiple-choice prompts specify JSON output

containing question text, options A-D, and correct

answer identifier. Short and long answer prompts

require rubric-formatted responses with criterion-

specific mark allocations (e.g., "- Definition and

characteristics (2 marks) \n- Practical applications (3

marks)") concluding with keyword identification.

4) Language Model Invocation and Output Processing

Prompts are executed through LangChain chains.

Model responses undergo JSON extraction

prioritizing code block content (r'``` (? json)?

\s*(\{[\s\S] *? \}) \s*```') with fallback brace matching.

Generated questions are validated for required

structural elements, normalized (mapping "question"

to "text" fields), and filtered to exclude malformed

entries.

5) Document Template Population

Institutional DOCX templates containing placeholder

markers (e.g., {{Q1}}, {{Q1_A}}) are loaded using

python-docx. Context dictionaries are populated with

metadata (department, batch, semester, subject,

examination type, duration, examiners) and generated

question content. Short and long answer questions are

organized into (a)/(b) pairings commencing at

question numbers 11 and 16 respectively. The

template replacement function systematically

processes all document paragraphs, tables, headers,

and footers to substitute placeholder content while

preserving original formatting. Both question paper

and answer key documents are generated

independently.

C. Answer Script Evaluation Pipeline

The evaluation pipeline processes institutional answer

keys and student submissions to produce quantitative

marks and qualitative feedback, as depicted in Fig. 3.

Fig.3 Answer Script Evaluation Pipeline

1) Document Parsing and Student Identification

Answer key documents and student submissions

(DOCX or PDF format) undergo parsing. Student roll

numbers are extracted using the pattern r"(? i)

Roll\s*(? No|Number|\.)? \s*[: \-\.]? \s*([A-Z0-9] +)".

Answer content segmentation employs r'(? :^|\n) \s*(?

Q\.? |Ans\.? |Answer)? \s*(\d+) (? \s*[a-zA-Z])? \s*[.)

\-\:|]' to delineate responses between identified

question markers. Documents lacking consistent

formatting trigger fallback processing assigning

substantial paragraphs to sequential question numbers.

2) Rubric Extraction from Reference Documents

Answer key DOCX tables are processed row-wise.

Question identifiers in the first column trigger rubric

extraction from adjacent cells. When answer and

marking paragraph counts align, intelligent line-by-

line mapping produces annotated rubric entries in

"criterion text [Value: marks]" format. Structural

mismatches result in comprehensive rubric

consolidation preserving all marking information.

3) Semantic Similarity Computation

The sentence-transformers/all-MiniLM-L6-v2 model

generates 384-dimensional embeddings for both

student responses and reference answers. Cosine

similarity is calculated as:

cos_sim(u, v) =∥ u ∥∥ v ∥ / u ⋅ v

The resulting similarity score is scaled to the

question's maximum mark value (e.g., multiplied by 5

for a 5-mark question).

4) Rubric-Guided Language Model Assessment

The language model receives the complete context

comprising question statement, extracted rubric,

© January 2026 | IJIRT | Volume 12 Issue 8 | ISSN: 2349-6002

IJIRT 191950 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 8312

reference answer, and student response. The API

interface implements rate limiting with a 10-second

base delay and exponential backoff:

delayn = 10 × 2n (n = 0,1,2)

with maximum three retry attempts to manage free-tier

quota constraints and 429 rate limit responses. Model

output provides criterion-specific mark allocations and

explanatory feedback.

5) Results Storage and Structured Export

Evaluation outcomes are persisted in MongoDB

results collection (exam_id, roll_no,

per_question_marks dictionary, feedback dictionary,

total_score). Excel workbooks are generated using

openpyxl featuring metadata headers, per-question

mark columns, expandable feedback columns

(wrap_text=True), and color-coded performance

indicators. Column dimensions are automatically

adjusted (mark columns: 12 characters, feedback: 35

characters).

D. System Optimizations and Extended Capabilities

Batch Processing Efficiency MongoDB aggregation

pipelines facilitate efficient cohort-level queries and

result grouping by examination identifier and

academic batch. Result caching reduces reprocessing

requirements by 85% for repeated access patterns

characteristic of departmental result verification

workflows.

Quantitative Scoring Mechanisms

Final question scores combine semantic and rubric

components:

score = 0.4 × (cos_sim × max_marks) + 0.6 ×

 LLMrubric

Model validation employs Absolute Error:

MAE = 1/N ∑| manuali − automatedi |

N

i=1

API rate management utilizes exponential backoff

scheduling to maintain service availability under quota

constraints.

Robustness and Production Features

Document parsing accommodates irregular table

structures through comprehensive cell-level paragraph

extraction. Unstructured answer sheets trigger

sequential paragraph assignment as fallback

methodology. Excel outputs implement conditional

formatting (green ≥80%, yellow 60-79%, red <60%)

with automated column dimensioning. Asynchronous

MongoDB motor drivers ensure non-blocking

database operations during evaluation workloads.

These engineering optimizations enable departmental-

scale deployment, processing complete 50-student

examinations in under 45 minutes using free-tier API

allocations while maintaining institutional document

formatting standards and workflow compatibility.

IV. RESULTS AND DISCUSSION

A. Experimental Setup

To test the system's versatility, we used course

materials from three distinct subjects: Deep Learning

(a mix of theory and math), Data Security (purely

theoretical), and Descriptive Statistics (calculation-

heavy). Our dataset included 15 generated question

papers 5 for each subject, split between CIA and

Model patterns across easy, medium, and hard

difficulty levels. We then evaluated the grading engine

using 45 student scripts (3 per paper).

All experiments ran on a standard mid-range laptop

(Ryzen 5 5500U, 16GB RAM) using the free tier of

the Google Gemini API and a local MongoDB

instance. To create a reliable baseline, a faculty

member independently prepared papers and graded the

same scripts. Their inter-rater agreement was high

(Cohen's κ = 0.88), giving us a solid "ground truth"

to measure the AI against.

B. Question Generation Performance

As shown in Table I, the time savings were substantial.

Manually creating a detailed CIA paper (with rubrics)

typically took our faculty about 2.5 hours and about 3

hours for Models. The system completed the same task

in just 40 and 50 seconds on average—a 99.5%

reduction in workload.

Crucially, this speed did not come at the cost of

structure. Every generated paper followed the strict

unit distribution and blueprint patterns (e.g., the 10-5-

2 split for CIA exams) without needing manual

corrections.

Exam

Pattern

Quest

ions

Manual

Time

(Avg)

AI Time

(Avg)

Effeciency

Gain

CIA 17 150 mins 40 secs 99.5%

Models 20 180 mins 50 secs 99.5%

Table 1. Generation Time Comparison

© January 2026 | IJIRT | Volume 12 Issue 8 | ISSN: 2349-6002

IJIRT 191950 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 8313

C. Answer Evaluation Performance

The evaluation pipeline showed similar efficiency.

While faculty members needed 10–15 minutes to

grade a single CIA script and 15-20 minutes to grade

a model’s script, the system processed it in about 55

and 65 seconds. This represents a time saving of

roughly 90%.

More importantly, the grading was accurate. Instead of

looking at per-question errors, we measured how close

the AI's total score was to the human average.

● For CIA Papers (50 marks): The AI's total score

was usually within ±2.4 marks of the professors.

● For Model Papers (75 marks): The deviation was

about ±2.8 marks.

This means the system achieved a grading accuracy of

over 95%. The small variance observed was mostly in

the short and long answer sections, where subjective

interpretation plays a role even among human graders.

Exam

Patter

n

Max

Mar

ks

Manu

al

Time

(Avg)

AI

Time

(Avg)

Avg Score

Deviation

Accur

acy

CIA 50 12.5

mins

55 secs ± 2.4 95.2%

Mode

ls

75 17.5

mins

65 secs ± 2.8 96.3%

Table 2. Evaluation Comparison

D. Scalability and Reliability

We also ran a stress test with a batch of 50 students.

The system handled the data retrieval effortlessly, with

the database fetching cohort results in under 150ms.

The full evaluation for the batch took about 43

minutes, though this was largely due to the rate limits

on the free API rather than processing power. Our

backoff strategy (automatically pausing and retrying)

was effective, with over 99% of API calls succeeding

on the first attempt.

E. Discussion

These results highlight a clear trade-off. We gained

massive speed without sacrificing significant

accuracy.

1. Workflow Impact: Cutting paper generation time

from hours to seconds frees up significant faculty

time for teaching. Unlike standard question banks,

our system generated fresh questions grounded in

the specific syllabus provided.

2. Reliability of Hybrid Scoring: The low error rate

(less than 5% on total scores) validates our

decision to combine Semantic Embeddings with

an LLM. Pure LLMs can sometimes "hallucinate"

grades, but anchoring them with embedding

similarity kept the scoring consistent.

3. Limitations: The main bottleneck is currently the

API rate limit, which slows down large batches.

That can be solved with paid APIs. Also, the

system currently requires typed or digital inputs;

handling handwritten scripts would require an

additional OCR step, which we plan to address in

future work.

Overall, the system proves that RAG-based

assessment is not just a theoretical concept but a

practical tool that can handle the complex, pattern-

heavy requirements of university examinations.

V. CONCLUSION

This work presented an integrated assessment engine

designed to automate the two most labor-intensive

aspects of university examinations: question paper

generation and answer script evaluation. By

synthesizing Retrieval-Augmented Generation (RAG)

with institutional workflows, the system successfully

bridges the gap between theoretical AI capabilities and

practical administrative needs.

Our results demonstrate significant efficiency gains.

The system generates pattern-compliant exam papers

(CIA and Model formats) directly from syllabus PDFs

in just 40–50 seconds, a drastic improvement over the

2.5–3 hours typically required for manual preparation.

Similarly, the evaluation module reduces the grading

time for a script from 15 minutes to under one minute.

Crucially, this speed does not compromise reliability;

the system achieved a total score accuracy of over

95%, with deviations consistently staying within a

narrow margin of 2–3 marks compared to human

evaluators.

Key contributions of this study include:

1. A Syllabus-Grounded Pipeline: Unlike generic

question generators, our system enforces strict

adherence to specific exam blueprints and unit

distributions.

2. Hybrid Evaluation Logic: By combining semantic

embeddings with rubric-guided LLM scoring, we

© January 2026 | IJIRT | Volume 12 Issue 8 | ISSN: 2349-6002

IJIRT 191950 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 8314

achieved consistent grading that mirrors human

judgment.

3. Production-Readiness: The ability to output

finalized artifacts formatted DOCX papers and

detailed Excel feedback sheets makes the tool

immediately usable in a real-world departmental

setting.

While currently limited by API rate constraints and the

need for digital inputs, the system offers a viable,

scalable solution for higher education institutions.

Future iterations will focus on integrating OCR for

handwritten scripts and expanding support for

multilingual assessments, further streamlining the

academic assessment lifecycle.

VI. ACKNOWLEDGMENT

The first author would like to express sincere gratitude

to L. Mary Louis, Head of the Department of

Mathematics, for her invaluable mentorship and

guidance throughout this project. Her insights into

traditional assessment workflows and her thorough

review of the manuscript were pivotal to the

completion of this research. The authors also extend

they’re thanks to the Department of Data Science at

Kumaraguru College of Liberal Arts and Science

(KCLAS) for providing institutional support and

access to the examination datasets required for system

validation.

REFERENCES

[1] N. Mulla, “Automatic question generation: A

review of methodologies, datasets, evaluation

metrics, and challenges,” Applied Computing

and Informatics, 2023. [Online]. Available:

https://pmc.ncbi.nlm.nih.gov/articles/PMC9886

210/

[2] A. Malhar and V. Chavan, “Deep learning-based

answering questions using T5 and BERT for

automatic question generation,” in Proc. 3rd Int.

Conf. Emerging Technology Trends in

Electronics, Communication and Networking

(ET2ECN), 2022. [Online]. Available:

https://ieeexplore.ieee.org/document/9788264/

[3] L. Wang, “Exploring prompt pattern for

generative artificial intelligence in automatic

question generation,” Interactive Learning

Environments, 2024. [Online]. Available:

https://www.tandfonline.com/doi/full/10.1080/1

0494820.2024.2412082

[4] S. Haller, M. Bothe, and J. Köhler, “Survey on

automated short answer grading with deep

learning: From word embeddings to

transformers,” arXiv preprint arXiv:2204.03503,

2022. [Online]. Available:

https://arxiv.org/abs/2204.03503

[5] M. C. Desmarais and A. Boily, “Short answer

grading with sentence similarity and a few given

grades,” in Proc. 18th Int. Conf. Educational

Data Mining (EDM), 2025. [Online]. Available:

https://educationaldatamining.org/EDM2025/pr

oceedings/2025.EDM.short-

papers.124/index.html

[6] J. L. Cook, A. J. M. Smith, and C. S. North, “A

GenAI-powered, retrieval-augmented generation

(RAG) system for formative assessment in

higher education,” arXiv preprint

arXiv:2601.06141, 2026. [Online]. Available:

https://arxiv.org/pdf/2601.06141.pdf

[7] B. J. Jansen and E. Fuadillah, “EduX-RAG:

Retrieval-augmented generation framework for

educational environments,” 2024. [Online].

Available:

https://www.bernardjjansen.com/uploads/2/4/1/

8/24188166/2025334459.pdf

[8] W. Morris, P. Deriu, T. Riesen, and M.

Cieliebak, “Automatic question generation and

constructed response scoring using large

language models,” in L3MNGET 2024: Large

Multilingual Models for Education Workshop,

CEUR-WS, vol. 3840, 2024. [Online].

Available: https://ceur-ws.org/Vol-

3840/L3MNGET24_paper2.pdf

https://pmc.ncbi.nlm.nih.gov/articles/PMC9886210/
https://pmc.ncbi.nlm.nih.gov/articles/PMC9886210/
https://ieeexplore.ieee.org/document/9788264/
https://ieeexplore.ieee.org/document/9788264/
https://www.tandfonline.com/doi/full/10.1080/10494820.2024.2412082
https://www.tandfonline.com/doi/full/10.1080/10494820.2024.2412082
https://arxiv.org/abs/2204.03503
https://arxiv.org/abs/2204.03503
https://educationaldatamining.org/EDM2025/proceedings/2025.EDM.short-papers.124/index.html
https://educationaldatamining.org/EDM2025/proceedings/2025.EDM.short-papers.124/index.html
https://arxiv.org/pdf/2601.06141.pdf
https://arxiv.org/pdf/2601.06141.pdf
https://www.bernardjjansen.com/uploads/2/4/1/8/24188166/2025334459.pdf
https://www.bernardjjansen.com/uploads/2/4/1/8/24188166/2025334459.pdf
https://ceur-ws.org/Vol-3840/L3MNGET24_paper2.pdf

