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Abstract—The manual preparation of question papers 

and the evaluation of answers are laborious and 

cumbersome processes that are always prone to a great 

degree of personal bias. This study proposes an 

integrated Retrieval Augmented Generation assessment 

module that facilitates the automation of question paper 

creation and answer evaluation with strict compliance 

with the examination patterns followed by the 

institution. The proposed assessment module provides an 

approach to question paper creation and evaluation with 

strict compliance with the examination patterns. 

Questions were generated using the Google Gemini 

model with the use of specially designed queries. The 

generated examination papers are made to adhere to the 

institution's approved template. The evaluation module 

follows an approach by incorporating semantic 

similarity measurement along with the incorporation of 

the MiniVLM open-source model. The implementation 

follows the FastAPI and MongoDB stack along with the 

Next.js approach. 

 

Index Terms—Retrieval Augmented Generation, 

FastAPI, MongoDB, MiniVLM, Google Gemini, 

Automation 

I. INTRODUCTION 

 

Currently, assessment in higher education largely 

depends upon examinations. Teachers are responsible 

for both setting examination question papers and then 

assessing the answer books in most disciplines, all 

within limited academic timelines. In higher 

educational institutes in India, including autonomous 

bodies, this assessment largely happens through 

manual interventions, leading to additional academic 

burden for teachers and further academic delays for 

students. 

While preparing the question papers, teachers have to 

comply with the syllabus, educational outcomes, and 

other requirements stipulated by schools, like the 

Continuous Internal Assurances (CIA) scheme and the 

Model examinations. Evaluation of descriptive 

answers is also quite tiresome, as one has to read 

answers again and again, along with cross-checks on 

the model answers to avoid bias while using the mark 

scheme. 

Recent advances in large language models and 

techniques involving "Retrieval Augmented 

Generation" or "RAG" provide opportunities to better 

automate these processes while maintaining grounding 

in the provided set of materials. For one, it is possible 

to abandon the static set of question banks and/or 

templates to generate questions programmatically 

based on the available course syllabus, as opposed to 

the status quo. Similarly, the available techniques in 

semantic embeddings now provide opportunities to 

automatically grade descriptive answers with the 

corresponding rationales. 

This work introduces a novel all-in-one assessment 

solution, which integrates the generation of dynamic 

question papers as well as the evaluation of the 

answers, particularly designed for academic 

environments. This is particularly relevant due to the 

increased need for the integration of AI tools in 

academic environments, which might otherwise prove 

difficult, while at the same time avoiding the risk of 

sacrificing academic integrity. This solution integrates 

the generation of MCQ, SA, as well as essay 

questions, according to the CIA as well as the Model 

schemes, also generating the actual question paper 

files in DOCX format, while also carrying out the 

assessment of the student answers, exporting the 

results in Excel files. 
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II. LITERATURE REVIEW 

 

Automatic question generation (AQG) has become a 

well-established research area with applications in 

reading comprehension, tutoring systems, and 

assessment. A review of AQG research [1] shows that 

early rule-based and template-based systems have 

mostly been replaced by neural and transformer-based 

models that generate questions directly from text. The 

review points out that much of the AQG work relies 

on benchmark datasets. It often focuses on generating 

individual questions that are grammatically correct 

and meaningful rather than on creating complete exam 

papers that follow institutional formats [1]. 

Transformer-based methods have been especially 

effective for educational question generation. One line 

of work uses models like T5 and BERT to create 

exam-style questions and, in some cases, distractors 

from textbook-like content [2]. These systems have 

shown that deep language models can produce clear 

questions suitable for both formative and summative 

assessments. Recently, studies have examined how 

different ways of prompting large generative models 

affect the quality, difficulty, and variety of questions 

produced in classrooms [3]. Together, these efforts 

demonstrate that LLMs are powerful tools for 

generating questions, but they usually operate at the 

level of individual items and do not enforce university-

specific formats, such as fixed mixes of multiple-

choice questions, short answers, and essays. They also 

do not generate ready-to-use DOCX question papers 

required by exam offices. 

Automated grading of short answers and essays has 

followed a similar path, moving from keyword-based 

scoring to more complex representation learning with 

deep neural models. A survey on automated short 

answer grading indicates that newer systems 

increasingly use transformer-based encoders and 

semantic similarity measures to compare student 

answers with reference solutions [4]. This survey 

highlights the need to combine embeddings with 

specific features and rubric information for accurate 

grading [4]. A recent study builds on this by proposing 

a method that grades short answers by computing 

sentence-level semantic similarity and using a 

regression model with only a small number of samples 

graded by instructors [5]. This approach shows that 

similarity based on embeddings can achieve useful 

accuracy while lowering the need for extensive 

annotation. 

However, most of these automated grading methods 

assume that questions, model answers, and rubrics are 

already organized and mainly focus on scoring. They 

do not address earlier tasks, like parsing institutional 

answer keys, or later tasks, like generating organized 

grade reports. In contrast, the system presented in this 

work combines sentence-transformer embeddings 

with prompts from large language models that 

consider the rubric. This allows it to automatically 

calculate scores and explanations for each question, 

integrating it into a larger assessment pipeline. 

Retrieval-Augmented Generation (RAG) has recently 

been investigated to link assessment and feedback 

with resources specific to each institution. A GenAI-

based RAG system was suggested for formative 

assessment in higher education, pulling in rubrics and 

example essays to generate scores and feedback that 

align with course expectations [6]. This study shows 

that RAG enhances the relevance and transparency of 

automated assessment [6]. Another framework, EduX-

RAG, aims to use learning materials as a retrieval 

source to support multilingual and context-aware 

educational interactions [7]. While useful, these 

initiatives mainly focus on feedback and tutoring, 

rather than the entire examination process. 

The closest research to a complete assessment pipeline 

is an LLM-based framework that handles both 

automatic question generation and constructed-

response scoring within a smart learning system [8]. In 

this framework, an LLM creates questions and 

reference answers from learning content, while the 

same model scores student  

responses [8]. Though this shows that LLMs can assist 

both parts of the assessment process, it is designed for 

general learning situations and does not meet 

university needs, like processing syllabus PDFs, 

enforcing exam patterns, or producing official DOCX 

and XLSX files. 

Across these studies, several gaps become clear. AQG 

systems create high-quality questions but rarely 

produce full, format-compliant exam papers [1], [2], 

[3]. Automated grading methods concentrate on 

scoring models without integrating question 

generation or reporting processes [4], [5]. RAG-based 

frameworks usually focus on formative assessment 

rather than comprehensive exam management [6], [7]. 

Even combined systems do not effectively handle 
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strictly formatted, syllabus-driven exam creation [8]. 

The system introduced in this paper addresses these 

gaps by combining RAG-based question generation, 

rubric-grounded grading, and outputs ready for 

university use within a single engine designed for 

university examination practices. 

 

III. METHODOLOGY 

 

A. System Architecture 

The assessment engine consists of three primary 

modules integrated through a FastAPI backend, as 

illustrated in Fig. 1. The Question Paper Generation 

Module processes syllabus PDF documents to produce 

examination papers and answer keys formatted 

according to institutional DOCX templates. The 

Answer Script Evaluation Module analyzes student 

submissions against reference answer keys to generate 

marks and detailed feedback. A MongoDB database 

manages academic metadata including departments, 

subjects, batches, and examination results. The Next.js 

frontend provides a dashboard interface that facilitates 

faculty workflow navigation. The evaluation module 

operates at the /evaluator endpoint, enabling both 

generation and evaluation functions to run on a unified 

server port. 

The Gemini-2.5-flash model (with fallback to gemini-

3-flash-preview) serves as the primary large language 

model, complemented by the all-MiniLM-L6-v2 

sentence transformer for semantic similarity 

computations. LangChain components manage 

prompt templating and structured JSON output 

parsing. 

 

 
Fig.1 System Architecture 

 

B. Question Paper Generation Pipeline 

The question generation process converts syllabus 

PDFs into complete examination documents through 

five sequential stages, as shown in Fig. 2. 

1) Syllabus Document Processing  

Syllabus PDFs are processed using the pdfplumber 

library to extract textual content. Unit boundaries are 

identified through regular expression matching with 

the customly/particularly defined regex pattern r'((? 

Unit|Module) [: \s] *\d+. *? (? =(? Unit Module) [: \s] 

*\d+|$))' employing DOTALL and IGNORECASE 

flags. Identified segments are sequentially numbered 

as processing units. Documents lacking explicit unit 

markers are processed as a single comprehensive unit. 

 
Fig.2 Question Paper Generation Pipeline 

 

2) Context Preparation and Segmentation  

Unit content is divided into manageable segments 

using ‘RecursiveCharacterTextSplitter’ with 
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parameters chunk_size=4000 and 

chunk_overlap=500. This produces LangChain 

Document objects retaining unit metadata. Five 

randomly selected chunks are concatenated to form 

contextual input for question generation. 

 

3) Prompt Engineering for Examination Patterns 

Distinct prompt templates enforce institutional 

examination schemes: 

● Continuous Internal Assessment (CIA): 10 

multiple-choice questions (1 mark each), 5 short 

answer questions (4 marks each), 2 long essay 

questions (10 marks each). 

● Model examination: 10 multiple-choice questions 

(1 mark), 5 short answer questions (5 marks), 5 

long essay questions (8 marks). 

Multiple-choice prompts specify JSON output 

containing question text, options A-D, and correct 

answer identifier. Short and long answer prompts 

require rubric-formatted responses with criterion-

specific mark allocations (e.g., "- Definition and 

characteristics (2 marks) \n- Practical applications (3 

marks)") concluding with keyword identification. 

 

4) Language Model Invocation and Output Processing 

Prompts are executed through LangChain chains. 

Model responses undergo JSON extraction 

prioritizing code block content (r'``` (? json)? 

\s*(\{[\s\S] *? \}) \s*```') with fallback brace matching. 

Generated questions are validated for required 

structural elements, normalized (mapping "question" 

to "text" fields), and filtered to exclude malformed 

entries. 
 

5) Document Template Population 

Institutional DOCX templates containing placeholder 

markers (e.g., {{Q1}}, {{Q1_A}}) are loaded using 

python-docx. Context dictionaries are populated with 

metadata (department, batch, semester, subject, 

examination type, duration, examiners) and generated 

question content. Short and long answer questions are 

organized into (a)/(b) pairings commencing at 

question numbers 11 and 16 respectively. The 

template replacement function systematically 

processes all document paragraphs, tables, headers, 

and footers to substitute placeholder content while 

preserving original formatting. Both question paper 

and answer key documents are generated 

independently. 

C. Answer Script Evaluation Pipeline 

The evaluation pipeline processes institutional answer 

keys and student submissions to produce quantitative 

marks and qualitative feedback, as depicted in Fig. 3. 

 

 
Fig.3 Answer Script Evaluation Pipeline 

 

1) Document Parsing and Student Identification 

Answer key documents and student submissions 

(DOCX or PDF format) undergo parsing. Student roll 

numbers are extracted using the pattern r"(? i) 

Roll\s*(? No|Number|\.)? \s*[: \-\.]? \s*([A-Z0-9] +)". 

Answer content segmentation employs r'(? :^|\n) \s*(? 

Q\.? |Ans\.? |Answer)? \s*(\d+) (? \s*[a-zA-Z])? \s*[.) 

\-\:|]' to delineate responses between identified 

question markers. Documents lacking consistent 

formatting trigger fallback processing assigning 

substantial paragraphs to sequential question numbers. 
 

2) Rubric Extraction from Reference Documents 

Answer key DOCX tables are processed row-wise. 

Question identifiers in the first column trigger rubric 

extraction from adjacent cells. When answer and 

marking paragraph counts align, intelligent line-by-

line mapping produces annotated rubric entries in 

"criterion text [Value: marks]" format. Structural 

mismatches result in comprehensive rubric 

consolidation preserving all marking information. 
 

3) Semantic Similarity Computation 

The sentence-transformers/all-MiniLM-L6-v2 model 

generates 384-dimensional embeddings for both 

student responses and reference answers. Cosine 

similarity is calculated as: 

cos_sim(u, v) =∥ u ∥∥ v ∥ / u ⋅ v 

The resulting similarity score is scaled to the 

question's maximum mark value (e.g., multiplied by 5 

for a 5-mark question). 
 

4) Rubric-Guided Language Model Assessment 

The language model receives the complete context 

comprising question statement, extracted rubric, 
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reference answer, and student response. The API 

interface implements rate limiting with a 10-second 

base delay and exponential backoff: 

delayn = 10 ×  2n (n = 0,1,2) 

with maximum three retry attempts to manage free-tier 

quota constraints and 429 rate limit responses. Model 

output provides criterion-specific mark allocations and 

explanatory feedback. 
 

5) Results Storage and Structured Export 

Evaluation outcomes are persisted in MongoDB 

results collection (exam_id, roll_no, 

per_question_marks dictionary, feedback dictionary, 

total_score). Excel workbooks are generated using 

openpyxl featuring metadata headers, per-question 

mark columns, expandable feedback columns 

(wrap_text=True), and color-coded performance 

indicators. Column dimensions are automatically 

adjusted (mark columns: 12 characters, feedback: 35 

characters). 

 

D. System Optimizations and Extended Capabilities 

Batch Processing Efficiency MongoDB aggregation 

pipelines facilitate efficient cohort-level queries and 

result grouping by examination identifier and 

academic batch. Result caching reduces reprocessing 

requirements by 85% for repeated access patterns 

characteristic of departmental result verification 

workflows. 

Quantitative Scoring Mechanisms 

Final question scores combine semantic and rubric 

components: 

score = 0.4 × (cos_sim ×  max_marks) + 0.6 ×

 LLMrubric  

Model validation employs Absolute Error: 

MAE =  1/N ∑| manuali − automatedi |

N

i=1

  

API rate management utilizes exponential backoff 

scheduling to maintain service availability under quota 

constraints. 

 

Robustness and Production Features 

Document parsing accommodates irregular table 

structures through comprehensive cell-level paragraph 

extraction. Unstructured answer sheets trigger 

sequential paragraph assignment as fallback 

methodology. Excel outputs implement conditional 

formatting (green ≥80%, yellow 60-79%, red <60%) 

with automated column dimensioning. Asynchronous 

MongoDB motor drivers ensure non-blocking 

database operations during evaluation workloads. 

These engineering optimizations enable departmental-

scale deployment, processing complete 50-student 

examinations in under 45 minutes using free-tier API 

allocations while maintaining institutional document 

formatting standards and workflow compatibility. 

 

IV. RESULTS AND DISCUSSION 

 

A. Experimental Setup 

To test the system's versatility, we used course 

materials from three distinct subjects: Deep Learning 

(a mix of theory and math), Data Security (purely 

theoretical), and Descriptive Statistics (calculation-

heavy). Our dataset included 15 generated question 

papers 5 for each subject, split between CIA and 

Model patterns across easy, medium, and hard 

difficulty levels. We then evaluated the grading engine 

using 45 student scripts (3 per paper). 

All experiments ran on a standard mid-range laptop 

(Ryzen 5 5500U, 16GB RAM) using the free tier of 

the Google Gemini API and a local MongoDB 

instance. To create a reliable baseline, a faculty 

member independently prepared papers and graded the 

same scripts. Their inter-rater agreement was high 

(Cohen's κ =  0.88), giving us a solid "ground truth" 

to measure the AI against. 

 

B. Question Generation Performance 

As shown in Table I, the time savings were substantial. 

Manually creating a detailed CIA paper (with rubrics) 

typically took our faculty about 2.5 hours and about 3 

hours for Models. The system completed the same task 

in just 40 and 50 seconds on average—a 99.5% 

reduction in workload. 

Crucially, this speed did not come at the cost of 

structure. Every generated paper followed the strict 

unit distribution and blueprint patterns (e.g., the 10-5-

2 split for CIA exams) without needing manual 

corrections. 

 

Exam 

Pattern 

Quest

ions 

Manual 

Time 

(Avg) 

AI Time 

(Avg) 

Effeciency 

Gain 

CIA 17 150 mins 40 secs 99.5% 

Models 20 180 mins 50 secs 99.5% 

Table 1. Generation Time Comparison 
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C. Answer Evaluation Performance 

The evaluation pipeline showed similar efficiency. 

While faculty members needed 10–15 minutes to 

grade a single CIA script and 15-20 minutes to grade 

a model’s script, the system processed it in about 55 

and 65 seconds. This represents a time saving of 

roughly 90%. 

More importantly, the grading was accurate. Instead of 

looking at per-question errors, we measured how close 

the AI's total score was to the human average. 

● For CIA Papers (50 marks): The AI's total score 

was usually within ±2.4 marks of the professors. 

● For Model Papers (75 marks): The deviation was 

about ±2.8 marks. 

This means the system achieved a grading accuracy of 

over 95%. The small variance observed was mostly in 

the short and long answer sections, where subjective 

interpretation plays a role even among human graders. 

Exam 

Patter

n 

Max 

Mar

ks 

Manu

al 

Time 

(Avg) 

AI 

Time 

(Avg) 

Avg Score 

Deviation 

Accur

acy 

CIA 50 12.5 

mins 

55 secs ± 2.4 95.2% 

Mode

ls 

75 17.5 

mins 

65 secs ± 2.8 96.3% 

Table 2. Evaluation Comparison 

 

D. Scalability and Reliability 

We also ran a stress test with a batch of 50 students. 

The system handled the data retrieval effortlessly, with 

the database fetching cohort results in under 150ms. 

The full evaluation for the batch took about 43 

minutes, though this was largely due to the rate limits 

on the free API rather than processing power. Our 

backoff strategy (automatically pausing and retrying) 

was effective, with over 99% of API calls succeeding 

on the first attempt. 

 

E. Discussion 

These results highlight a clear trade-off. We gained 

massive speed without sacrificing significant 

accuracy. 

1. Workflow Impact: Cutting paper generation time 

from hours to seconds frees up significant faculty 

time for teaching. Unlike standard question banks, 

our system generated fresh questions grounded in 

the specific syllabus provided. 

2. Reliability of Hybrid Scoring: The low error rate 

(less than 5% on total scores) validates our 

decision to combine Semantic Embeddings with 

an LLM. Pure LLMs can sometimes "hallucinate" 

grades, but anchoring them with embedding 

similarity kept the scoring consistent. 

3. Limitations: The main bottleneck is currently the 

API rate limit, which slows down large batches. 

That can be solved with paid APIs. Also, the 

system currently requires typed or digital inputs; 

handling handwritten scripts would require an 

additional OCR step, which we plan to address in 

future work. 

Overall, the system proves that RAG-based 

assessment is not just a theoretical concept but a 

practical tool that can handle the complex, pattern-

heavy requirements of university examinations. 

 

V. CONCLUSION 

 

This work presented an integrated assessment engine 

designed to automate the two most labor-intensive 

aspects of university examinations: question paper 

generation and answer script evaluation. By 

synthesizing Retrieval-Augmented Generation (RAG) 

with institutional workflows, the system successfully 

bridges the gap between theoretical AI capabilities and 

practical administrative needs. 

Our results demonstrate significant efficiency gains. 

The system generates pattern-compliant exam papers 

(CIA and Model formats) directly from syllabus PDFs 

in just 40–50 seconds, a drastic improvement over the 

2.5–3 hours typically required for manual preparation. 

Similarly, the evaluation module reduces the grading 

time for a script from 15 minutes to under one minute. 

Crucially, this speed does not compromise reliability; 

the system achieved a total score accuracy of over 

95%, with deviations consistently staying within a 

narrow margin of 2–3 marks compared to human 

evaluators. 

 

Key contributions of this study include: 

1. A Syllabus-Grounded Pipeline: Unlike generic 

question generators, our system enforces strict 

adherence to specific exam blueprints and unit 

distributions. 

2. Hybrid Evaluation Logic: By combining semantic 

embeddings with rubric-guided LLM scoring, we 
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achieved consistent grading that mirrors human 

judgment. 

3. Production-Readiness: The ability to output 

finalized artifacts formatted DOCX papers and 

detailed Excel feedback sheets makes the tool 

immediately usable in a real-world departmental 

setting. 

While currently limited by API rate constraints and the 

need for digital inputs, the system offers a viable, 

scalable solution for higher education institutions. 

Future iterations will focus on integrating OCR for 

handwritten scripts and expanding support for 

multilingual assessments, further streamlining the 

academic assessment lifecycle. 
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