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Abstract—The manual preparation of question papers
and the evaluation of answers are laborious and
cumbersome processes that are always prone to a great
degree of personal bias. This study proposes an
integrated Retrieval Augmented Generation assessment
module that facilitates the automation of question paper
creation and answer evaluation with strict compliance
with the examination patterns followed by the
institution. The proposed assessment module provides an
approach to question paper creation and evaluation with
strict compliance with the examination patterns.
Questions were generated using the Google Gemini
model with the use of specially designed queries. The
generated examination papers are made to adhere to the
institution's approved template. The evaluation module
follows an approach by incorporating semantic
similarity measurement along with the incorporation of
the MiniVLM open-source model. The implementation
follows the FastAPI and MongoDB stack along with the
Next.js approach.
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[. INTRODUCTION

Currently, assessment in higher education largely
depends upon examinations. Teachers are responsible
for both setting examination question papers and then
assessing the answer books in most disciplines, all
within limited academic timelines. In higher
educational institutes in India, including autonomous
bodies, this assessment largely happens through
manual interventions, leading to additional academic
burden for teachers and further academic delays for
students.

While preparing the question papers, teachers have to
comply with the syllabus, educational outcomes, and
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other requirements stipulated by schools, like the
Continuous Internal Assurances (CIA) scheme and the
Model examinations. Evaluation of descriptive
answers is also quite tiresome, as one has to read
answers again and again, along with cross-checks on
the model answers to avoid bias while using the mark
scheme.

Recent advances in large language models and
techniques  involving  "Retrieval =~ Augmented
Generation" or "RAG" provide opportunities to better
automate these processes while maintaining grounding
in the provided set of materials. For one, it is possible
to abandon the static set of question banks and/or
templates to generate questions programmatically
based on the available course syllabus, as opposed to
the status quo. Similarly, the available techniques in
semantic embeddings now provide opportunities to
automatically grade descriptive answers with the
corresponding rationales.

This work introduces a novel all-in-one assessment
solution, which integrates the generation of dynamic
question papers as well as the evaluation of the
answers, particularly designed for academic
environments. This is particularly relevant due to the
increased need for the integration of Al tools in
academic environments, which might otherwise prove
difficult, while at the same time avoiding the risk of
sacrificing academic integrity. This solution integrates
the generation of MCQ, SA, as well as essay
questions, according to the CIA as well as the Model
schemes, also generating the actual question paper
files in DOCX format, while also carrying out the
assessment of the student answers, exporting the
results in Excel files.
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II. LITERATURE REVIEW

Automatic question generation (AQG) has become a
well-established research area with applications in
reading comprehension, tutoring systems, and
assessment. A review of AQG research [1] shows that
early rule-based and template-based systems have
mostly been replaced by neural and transformer-based
models that generate questions directly from text. The
review points out that much of the AQG work relies
on benchmark datasets. It often focuses on generating
individual questions that are grammatically correct
and meaningful rather than on creating complete exam
papers that follow institutional formats [1].
Transformer-based methods have been especially
effective for educational question generation. One line
of work uses models like T5 and BERT to create
exam-style questions and, in some cases, distractors
from textbook-like content [2]. These systems have
shown that deep language models can produce clear
questions suitable for both formative and summative
assessments. Recently, studies have examined how
different ways of prompting large generative models
affect the quality, difficulty, and variety of questions
produced in classrooms [3]. Together, these efforts
demonstrate that LLMs are powerful tools for
generating questions, but they usually operate at the
level of individual items and do not enforce university-
specific formats, such as fixed mixes of multiple-
choice questions, short answers, and essays. They also
do not generate ready-to-use DOCX question papers
required by exam offices.

Automated grading of short answers and essays has
followed a similar path, moving from keyword-based
scoring to more complex representation learning with
deep neural models. A survey on automated short
answer grading indicates that newer systems
increasingly use transformer-based encoders and
semantic similarity measures to compare student
answers with reference solutions [4]. This survey
highlights the need to combine embeddings with
specific features and rubric information for accurate
grading [4]. A recent study builds on this by proposing
a method that grades short answers by computing
sentence-level semantic similarity and using a
regression model with only a small number of samples
graded by instructors [5]. This approach shows that
similarity based on embeddings can achieve useful
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accuracy while lowering the need for extensive
annotation.

However, most of these automated grading methods
assume that questions, model answers, and rubrics are
already organized and mainly focus on scoring. They
do not address earlier tasks, like parsing institutional
answer keys, or later tasks, like generating organized
grade reports. In contrast, the system presented in this
work combines sentence-transformer embeddings
with prompts from large language models that
consider the rubric. This allows it to automatically
calculate scores and explanations for each question,
integrating it into a larger assessment pipeline.
Retrieval-Augmented Generation (RAG) has recently
been investigated to link assessment and feedback
with resources specific to each institution. A GenAl-
based RAG system was suggested for formative
assessment in higher education, pulling in rubrics and
example essays to generate scores and feedback that
align with course expectations [6]. This study shows
that RAG enhances the relevance and transparency of
automated assessment [6]. Another framework, EduX-
RAG, aims to use learning materials as a retrieval
source to support multilingual and context-aware
educational interactions [7]. While useful, these
initiatives mainly focus on feedback and tutoring,
rather than the entire examination process.

The closest research to a complete assessment pipeline
is an LLM-based framework that handles both
automatic question generation and constructed-
response scoring within a smart learning system [8]. In
this framework, an LLM creates questions and
reference answers from learning content, while the
same model scores student

responses [8]. Though this shows that LLMs can assist
both parts of the assessment process, it is designed for
general learning situations and does not meet
university needs, like processing syllabus PDFs,
enforcing exam patterns, or producing official DOCX
and XLSX files.

Across these studies, several gaps become clear. AQG
systems create high-quality questions but rarely
produce full, format-compliant exam papers [1], [2],
[3]. Automated grading methods concentrate on
scoring models without integrating question
generation or reporting processes [4], [5S]. RAG-based
frameworks usually focus on formative assessment
rather than comprehensive exam management [6], [7].
Even combined systems do not effectively handle
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strictly formatted, syllabus-driven exam creation [8].
The system introduced in this paper addresses these
gaps by combining RAG-based question generation,
rubric-grounded grading, and outputs ready for
university use within a single engine designed for
university examination practices.

III. METHODOLOGY

A. System Architecture

The assessment engine consists of three primary
modules integrated through a FastAPI backend, as
illustrated in Fig. 1. The Question Paper Generation

Module processes syllabus PDF documents to produce
examination papers and answer keys formatted
according to institutional DOCX templates. The
Answer Script Evaluation Module analyzes student

submissions against reference answer keys to generate
marks and detailed feedback. A MongoDB database
manages academic metadata including departments,
subjects, batches, and examination results. The Next.js
frontend provides a dashboard interface that facilitates
faculty workflow navigation. The evaluation module
operates at the /evaluator endpoint, enabling both
generation and evaluation functions to run on a unified
server port.

The Gemini-2.5-flash model (with fallback to gemini-
3-flash-preview) serves as the primary large language
model, complemented by the all-MiniLM-L6-v2
sentence  transformer for semantic similarity
computations. LangChain components manage
prompt templating and structured JSON output
parsing.

Fig.1 System Architecture

B. Question Paper Generation Pipeline

The question generation process converts syllabus
PDFs into complete examination documents through
five sequential stages, as shown in Fig. 2.

1) Syllabus Document Processing

Syllabus PDFs are processed using the pdfplumber
library to extract textual content. Unit boundaries are
identified through regular expression matching with
the customly/particularly defined regex pattern r'((?
Unit|Module) [: \s] ¥\d+. *? (? =(? Unit Module) [: \s]
*\d+$))' employing DOTALL and IGNORECASE
flags. Identified segments are sequentially numbered
as processing units. Documents lacking explicit unit
markers are processed as a single comprehensive unit.
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Fig.2 Question Paper Generation Pipeline

2) Context Preparation and Segmentation
Unit content is divided into manageable segments
using ‘RecursiveCharacterTextSplitter’ with
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parameters chunk size=4000 and
chunk overlap=500. This produces LangChain
Document objects retaining unit metadata. Five
randomly selected chunks are concatenated to form
contextual input for question generation.

3) Prompt Engineering for Examination Patterns
Distinct prompt templates enforce institutional
examination schemes:

e Continuous Internal Assessment (CIA): 10
multiple-choice questions (1 mark each), 5 short
answer questions (4 marks each), 2 long essay
questions (10 marks each).

e Model examination: 10 multiple-choice questions
(1 mark), 5 short answer questions (5 marks), 5
long essay questions (8 marks).

Multiple-choice prompts specify JSON output

containing question text, options A-D, and correct

answer identifier. Short and long answer prompts
require rubric-formatted responses with criterion-
specific mark allocations (e.g., "- Definition and

characteristics (2 marks) \n- Practical applications (3

marks)") concluding with keyword identification.

4) Language Model Invocation and Output Processing
Prompts are executed through LangChain chains.
Model responses undergo JSON extraction
prioritizing code block content (" (? json)?
\s*(\{[\s\S] *?\}) \s*"**") with fallback brace matching.
Generated questions are validated for required
structural elements, normalized (mapping "question"
to "text" fields), and filtered to exclude malformed
entries.

5) Document Template Population

Institutional DOCX templates containing placeholder
markers (e.g., {{Q1}}, {{Q1_A}}) are loaded using
python-docx. Context dictionaries are populated with
metadata (department, batch, semester, subject,
examination type, duration, examiners) and generated
question content. Short and long answer questions are
organized into (a)/(b) pairings commencing at
question numbers 11 and 16 respectively. The
template  replacement function systematically
processes all document paragraphs, tables, headers,
and footers to substitute placeholder content while
preserving original formatting. Both question paper
and answer key documents are generated
independently.
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C. Answer Script Evaluation Pipeline

The evaluation pipeline processes institutional answer
keys and student submissions to produce quantitative
marks and qualitative feedback, as depicted in Fig. 3.

Fig.3 Answer Script Evaluation Pipeline

1) Document Parsing and Student Identification
Answer key documents and student submissions
(DOCX or PDF format) undergo parsing. Student roll
numbers are extracted using the pattern r"(? 1)
Roll\s*(? No|Number|\.)? \s*[: \-\.]? \s*([A-Z0-9] +)".
Answer content segmentation employs 1'(? :\n) \s*(?
Q\.? |Ans\.? |Answer)? \s*(\d+) (? \s*[a-zA-Z])? \s*[.)
\-\:]]" to delineate responses between identified
question markers. Documents lacking consistent
formatting trigger fallback processing assigning
substantial paragraphs to sequential question numbers.

2) Rubric Extraction from Reference Documents

Answer key DOCX tables are processed row-wise.
Question identifiers in the first column trigger rubric
extraction from adjacent cells. When answer and
marking paragraph counts align, intelligent line-by-
line mapping produces annotated rubric entries in
"criterion text [Value: marks]" format. Structural
mismatches result in comprehensive rubric
consolidation preserving all marking information.

3) Semantic Similarity Computation

The sentence-transformers/all-MiniLM-L6-v2 model
generates 384-dimensional embeddings for both
student responses and reference answers. Cosine
similarity is calculated as:

cos_sim(u,v) =llulll vl /u-v

The resulting similarity score is scaled to the
question's maximum mark value (e.g., multiplied by 5
for a 5-mark question).

4) Rubric-Guided Language Model Assessment
The language model receives the complete context
comprising question statement, extracted rubric,
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reference answer, and student response. The API
interface implements rate limiting with a 10-second
base delay and exponential backoff:
delay, = 10 X 2n(n = 0,1,2)

with maximum three retry attempts to manage free-tier
quota constraints and 429 rate limit responses. Model
output provides criterion-specific mark allocations and
explanatory feedback.

5) Results Storage and Structured Export

Evaluation outcomes are persisted in MongoDB
results collection (exam_id, roll_no,
per_question marks dictionary, feedback dictionary,
total score). Excel workbooks are generated using
openpyxl featuring metadata headers, per-question
mark columns, expandable feedback columns
(wrap_text=True), and color-coded performance
indicators. Column dimensions are automatically
adjusted (mark columns: 12 characters, feedback: 35
characters).

D. System Optimizations and Extended Capabilities
Batch Processing Efficiency MongoDB aggregation
pipelines facilitate efficient cohort-level queries and
result grouping by examination identifier and
academic batch. Result caching reduces reprocessing
requirements by 85% for repeated access patterns
characteristic of departmental result verification
workflows.

Quantitative Scoring Mechanisms

Final question scores combine semantic and rubric
components:

score = 0.4 X (cos_sim X max_marks) + 0.6 X
LLM ypric

Model validation employs Absolute Error:

N
MAE = 1/N Zl manual; — automated,; |
i=1
API rate management utilizes exponential backoff
scheduling to maintain service availability under quota
constraints.

Robustness and Production Features

Document parsing accommodates irregular table
structures through comprehensive cell-level paragraph
extraction. Unstructured answer sheets trigger
sequential paragraph assignment as fallback
methodology. Excel outputs implement conditional
formatting (green >80%, yellow 60-79%, red <60%)
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with automated column dimensioning. Asynchronous
MongoDB motor drivers ensure non-blocking
database operations during evaluation workloads.

These engineering optimizations enable departmental-
scale deployment, processing complete 50-student
examinations in under 45 minutes using free-tier API
allocations while maintaining institutional document
formatting standards and workflow compatibility.

IV. RESULTS AND DISCUSSION

A. Experimental Setup

To test the system's versatility, we used course
materials from three distinct subjects: Deep Learning
(a mix of theory and math), Data Security (purely
theoretical), and Descriptive Statistics (calculation-
heavy). Our dataset included 15 generated question
papers 5 for each subject, split between CIA and
Model patterns across easy, medium, and hard
difficulty levels. We then evaluated the grading engine
using 45 student scripts (3 per paper).

All experiments ran on a standard mid-range laptop
(Ryzen 5 5500U, 16GB RAM) using the free tier of
the Google Gemini API and a local MongoDB
instance. To create a reliable baseline, a faculty
member independently prepared papers and graded the
same scripts. Their inter-rater agreement was high
(Cohen's k = 0.88), giving us a solid "ground truth"
to measure the Al against.

B. Question Generation Performance

As shown in Table I, the time savings were substantial.
Manually creating a detailed CIA paper (with rubrics)
typically took our faculty about 2.5 hours and about 3
hours for Models. The system completed the same task
in just 40 and 50 seconds on average—a 99.5%
reduction in workload.

Crucially, this speed did not come at the cost of
structure. Every generated paper followed the strict
unit distribution and blueprint patterns (e.g., the 10-5-
2 split for CIA exams) without needing manual
corrections.

Exam | Quest Manual Al Time | Effeciency

Pattern | ions Time (Avg) Gain
(Avg)
CIA 17 150 mins 40 secs 99.5%

Models 20 180 mins 50 secs 99.5%
Table 1. Generation Time Comparison
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C. Answer Evaluation Performance

The evaluation pipeline showed similar efficiency.

While faculty members needed 10—15 minutes to

grade a single CIA script and 15-20 minutes to grade

a model’s script, the system processed it in about 55

and 65 seconds. This represents a time saving of

roughly 90%.

More importantly, the grading was accurate. Instead of

looking at per-question errors, we measured how close

the Al's total score was to the human average.

e For CIA Papers (50 marks): The Al's total score
was usually within +2.4 marks of the professors.

e For Model Papers (75 marks): The deviation was
about +2.8 marks.

This means the system achieved a grading accuracy of

over 95%. The small variance observed was mostly in

the short and long answer sections, where subjective

interpretation plays a role even among human graders.

Exam | Max | Manu Al Avg Score | Accur
Patter | Mar al Time Deviation acy
n ks Time (Avg)
(Avg)
CIA 50 12.5 55 secs +2.4 95.2%
mins
Mode 75 17.5 65 secs + 2.8 96.3%
Is mins

Table 2. Evaluation Comparison

D. Scalability and Reliability

We also ran a stress test with a batch of 50 students.
The system handled the data retrieval effortlessly, with
the database fetching cohort results in under 150ms.
The full evaluation for the batch took about 43
minutes, though this was largely due to the rate limits
on the free API rather than processing power. Our
backoff strategy (automatically pausing and retrying)
was effective, with over 99% of API calls succeeding
on the first attempt.

E. Discussion

These results highlight a clear trade-off. We gained

massive speed without sacrificing significant

accuracy.

1. Workflow Impact: Cutting paper generation time
from hours to seconds frees up significant faculty
time for teaching. Unlike standard question banks,
our system generated fresh questions grounded in
the specific syllabus provided.
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2. Reliability of Hybrid Scoring: The low error rate
(less than 5% on total scores) validates our
decision to combine Semantic Embeddings with
an LLM. Pure LLMs can sometimes "hallucinate"
grades, but anchoring them with embedding
similarity kept the scoring consistent.

3. Limitations: The main bottleneck is currently the
API rate limit, which slows down large batches.
That can be solved with paid APIs. Also, the
system currently requires typed or digital inputs;
handling handwritten scripts would require an
additional OCR step, which we plan to address in
future work.

Overall, the system proves that RAG-based

assessment is not just a theoretical concept but a

practical tool that can handle the complex, pattern-

heavy requirements of university examinations.

V. CONCLUSION

This work presented an integrated assessment engine
designed to automate the two most labor-intensive
aspects of university examinations: question paper
generation and answer script evaluation. By
synthesizing Retrieval-Augmented Generation (RAG)
with institutional workflows, the system successfully
bridges the gap between theoretical Al capabilities and
practical administrative needs.

Our results demonstrate significant efficiency gains.
The system generates pattern-compliant exam papers
(CIA and Model formats) directly from syllabus PDFs
in just 40-50 seconds, a drastic improvement over the
2.5-3 hours typically required for manual preparation.
Similarly, the evaluation module reduces the grading
time for a script from 15 minutes to under one minute.
Crucially, this speed does not compromise reliability;
the system achieved a total score accuracy of over
95%, with deviations consistently staying within a
narrow margin of 2-3 marks compared to human
evaluators.

Key contributions of this study include:

1. A Syllabus-Grounded Pipeline: Unlike generic
question generators, our system enforces strict
adherence to specific exam blueprints and unit
distributions.

2. Hybrid Evaluation Logic: By combining semantic
embeddings with rubric-guided LLM scoring, we
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achieved consistent grading that mirrors human
judgment.

3. Production-Readiness: The ability to output
finalized artifacts formatted DOCX papers and
detailed Excel feedback sheets makes the tool
immediately usable in a real-world departmental
setting.

While currently limited by API rate constraints and the

need for digital inputs, the system offers a viable,

scalable solution for higher education institutions.

Future iterations will focus on integrating OCR for

handwritten scripts and expanding support for

multilingual assessments, further streamlining the
academic assessment lifecycle.
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