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Abstract- Pharmacovigilance represents a cornerstone of
pharmaceutical regulation and clinical governance,
serving as a critical mechanism for the continuous
evaluation of the safety profile of medicinal products
following their authorization for public use. While pre-
marketing clinical trials provide essential evidence
regarding efficacy and short-term safety, their
methodological constraints—such as limited sample
sizes, controlled study environments, restricted patient
heterogeneity, and relatively short durations of
exposure—inevitably hinder the identification of rare,
delayed, cumulative, or context-dependent adverse drug
reactions that may only emerge under real-world
conditions. Consequently, post-marketing
pharmacovigilance systems are tasked with the complex
responsibility of monitoring drug safety across diverse
populations, therapeutic indications, and healthcare
settings over extended periods of time. However,
traditional pharmacovigilance frameworks, which rely
predominantly on spontaneous reporting systems,
manual case processing, and rule-based statistical signal
detection methodologies, are increasingly challenged by
the exponential growth in the volume, velocity, and
heterogeneity of safety-related data generated in modern
healthcare ecosystems. These limitations have resulted in
delayed signal detection, substantial operational burden,
variability in case quality assessment, and reduced
capacity to extract meaningful insights from
unstructured or non-traditional data sources such as
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electronic health records, biomedical literature, and
patient-generated digital content.

In this context, artificial intelligence has emerged as a
potentially transformative paradigm capable of
addressing many of the structural inefficiencies inherent
in conventional pharmacovigilance practices. Artificial
intelligence-driven methodologies, encompassing
machine learning, deep learning, and natural language
processing techniques, enable automated ingestion and
analysis of large-scale, heterogeneous datasets, facilitate
advanced pattern recognition, and support adaptive
learning from continuously evolving data streams.
Within pharmacovigilance operations, these technologies
have been applied to a wide range of functions, including
automated adverse event case intake, medical coding and
normalization using standardized terminologies such as
MedDRA, signal detection and prioritization, literature
surveillance, and benefit-risk assessment. Early evidence
suggests that artificial intelligence-based systems can
enhance processing efficiency, improve consistency in
case assessment, and increase sensitivity for early safety
signal identification when compared with traditional
disproportionality analyses. Nevertheless, the
deployment of artificial intelligence in
pharmacovigilance is accompanied by significant
methodological, regulatory, and ethical challenges,
including data quality and representativeness
limitations, algorithmic bias, lack of transparency and
interpretability in complex models, constrained
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generalizability across populations and therapeutic
areas, and the continued necessity for expert human
oversight to ensure clinical relevance and regulatory
compliance.

This narrative review critically examines the role of
artificial intelligence in pharmacovigilance by
synthesizing current methodological approaches,
evaluating reported performance outcomes, and
identifying key limitations that influence real-world
implementation. Furthermore, it explores emerging
regulatory perspectives and future directions aimed at
fostering responsible integration of artificial intelligence
into pharmacovigilance systems. By providing a
comprehensive and clinically grounded assessment, this
review seeks to contribute to the evolving discourse on
how artificial intelligence can be strategically leveraged
to augment, rather than replace, traditional
pharmacovigilance practices, ultimately supporting
more timely, robust, and patient-centered drug safety
surveillance.
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Adverse Drug Reactions; Drug Safety Surveillance;
Machine Learning; Deep Learning; Natural Language
Processing; Signal Detection; Real-World Evidence;
Post-Marketing Surveillance; Regulatory Science;
Benefit—Risk Assessment

L INTRODUCTION

Pharmacovigilance represents a critical scientific and
regulatory discipline within pharmaceutical sciences,
clinical medicine, and public health, dedicated to the
continuous monitoring and evaluation of the safety of
medicinal products following their authorization for
clinical wuse. The fundamental objective of
pharmacovigilance is to ensure that the therapeutic
benefits of medicines outweigh their potential risks
throughout the entire product lifecycle, from early
post-marketing exposure to widespread and long-term
real-world use. Although pre-authorization clinical
trials provide essential evidence regarding efficacy
and short-term safety, their inherent methodological
constraints—including limited sample sizes, selective
participant recruitment, controlled experimental
conditions, and relatively brief exposure periods—
significantly restrict their capacity to detect rare,
delayed, cumulative, or population-specific adverse
drug reactions. Consequently, many clinically
meaningful safety signals only become apparent after
a medicinal product has been introduced into routine
clinical practice, where it is prescribed to
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heterogeneous patient populations with varying
comorbidities, concomitant medications, genetic
backgrounds, and healthcare access patterns. In this
context, pharmacovigilance serves as an indispensable
mechanism for safeguarding patient safety, informing
regulatory decision-making, and supporting rational
pharmacotherapy in real-world settings.

Over the past two decades, the scope and complexity
of pharmacovigilance activities have expanded
substantially, driven by rapid advances in
pharmaceutical innovation, accelerated regulatory
approval pathways, and the globalization of drug
development and distribution. The introduction of
biologics, biosimilars, advanced therapy medicinal
products, and precision medicines has introduced
novel safety considerations that extend beyond
traditional small-molecule pharmacology, including
immunogenicity, long-term oncogenic risk, and
complex pharmacodynamic interactions.
Simultaneously, demographic shifts such as
population aging, increased prevalence of chronic
diseases, and widespread polypharmacy have
amplified the risk of adverse drug reactions and drug—
drug interactions in routine clinical practice. These
developments have significantly increased the volume
of safety data generated across healthcare systems,
placing unprecedented demands on
pharmacovigilance infrastructures that were originally
designed for lower data throughput and more
homogeneous information sources.

Traditional pharmacovigilance systems remain
heavily reliant on spontaneous reporting mechanisms,
wherein individual case safety reports are voluntarily
submitted by healthcare professionals, patients, and
pharmaceutical manufacturers to national and
international databases. While spontaneous reporting
systems have historically played a pivotal role in the
identification of serious and unexpected adverse drug
reactions, they are inherently limited by well-
documented challenges such as underreporting,
reporting delays, variable data quality, incomplete
clinical information, and reporting biases influenced
by media attention, regulatory actions, or litigation
concerns. Furthermore, conventional signal detection
methodologies employed within these systems—such
as disproportionality analyses based on reporting odds
ratios or proportional reporting ratios—are
fundamentally retrospective and static in nature,
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relying on aggregated counts and predefined statistical
thresholds that may fail to capture subtle, emerging, or
multifactorial safety signals. As a result, clinically
relevant risks may remain undetected until substantial
patient exposure has already occurred, potentially
compromising timely risk mitigation.

The digital transformation of healthcare has further
complicated the pharmacovigilance landscape by
generating vast quantities of real-world data from
diverse and heterogencous sources. Electronic health
records, administrative claims databases, disease
registries, clinical narratives, biomedical literature,
and patient-generated content from digital health
platforms and social media collectively represent an
unprecedented
information. However, the majority of these data are
unstructured or semi-structured, rendering them
difficult to process using
pharmacovigilance tools and workflows. Manual

reservoir of  safety-relevant

conventional

review of such data is resource-intensive, time-
consuming, and susceptible to inter-observer
variability, thereby limiting scalability and
consistency. These challenges have underscored the
growing inadequacy of traditional, rule-based
pharmacovigilance approaches in the face of modern
data complexity and have catalyzed interest in
advanced computational solutions capable of
augmenting human expertise.

Traditations Al-Driven Solutions

Pre-Authpri_zation La'gegf:{:g,a;ﬁ;?]gesuon
Data (Limited) (EHRs, Somcial)
Sponatenous Al/Machine Learning

Reporting Algorithms (NLP, Patrn
(Underrortting, Bias) /, Pattern Recogntion)

Enhanced
Informed

-Making Automated Case
Processing & Signal
Signal Detection

Real-World Data Compleki
(EHRSs, Social Media)
& Manual Review

[

Delayed/Indaquate Proactive & Timly
Risk Mitigation Safety Monitriong

l l

Augmenting Human Expertise for I
Patient-Centered Drug Safety

<

Artificial intelligence has emerged as a promising
technological paradigm with the potential to address
many of the structural and operational limitations of
conventional  pharmacovigilance  systems. By
leveraging advanced computational techniques such as

IJIRT 192062

machine learning, deep learning, and natural language
processing, artificial intelligence enables automated
extraction, integration, and analysis of large-scale,
heterogeneous datasets, facilitating the identification
of complex, non-linear relationships that may not be
readily apparent through traditional statistical
analyses. In  pharmacovigilance, = Al-driven
methodologies have been increasingly explored for
applications ranging from automated adverse event
case intake and medical coding to signal detection,
prioritization, and benefit-risk assessment. These
technologies offer the potential to enhance efficiency,
improve consistency, and support more timely
identification of emerging safety concerns, thereby
contributing to a more proactive and data-driven
pharmacovigilance paradigm.

Despite its considerable promise, the adoption of
artificial intelligence in pharmacovigilance is
accompanied by  substantial = methodological,
regulatory, and ethical challenges that must be
carefully addressed to ensure responsible and effective
implementation. Al models are highly dependent on
the quality, completeness, and representativeness of
training data, and biases inherent in source datasets
may be inadvertently propagated or amplified by
automated systems. Moreover, the opacity of complex
models, particularly deep learning architectures, raises
concerns regarding transparency, interpretability, and
regulatory acceptability in a domain where decision-
making must be scientifically justified and auditable.
Regulatory authorities have begun to acknowledge the
potential role of artificial intelligence in
pharmacovigilance, yet comprehensive frameworks
governing validation, governance, and lifecycle
management of Al-based systems remain under
development. In this context, a critical and balanced
evaluation of the methods, performance, and
limitations of artificial intelligence in
pharmacovigilance is essential to inform future
research, regulatory  policy, and  practical
implementation.

This narrative review aims to provide a comprehensive
and clinically grounded examination of the role of
artificial intelligence in pharmacovigilance, focusing
on the methodological approaches employed, their
reported performance outcomes, and the key
limitations that influence real-world applicability. By
synthesizing current evidence and regulatory
perspectives, this review seeks to elucidate how
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artificial intelligence can be strategically integrated
into pharmacovigilance systems to augment, rather
than replace, traditional safety surveillance practices,
ultimately supporting more robust, timely, and patient-
centered drug safety monitoring.

IL. METHODOLOGY

The methodological approach adopted for this
narrative review was designed to critically interrogate
the role of artificial intelligence in pharmacovigilance
by integrating methodological, computational, and
regulatory perspectives into a unified analytical
framework. Rather than limiting the scope to
descriptive summaries of existing applications, this
review employed a  structured conceptual
methodology aimed at examining how artificial
intelligence techniques are operationalized within
pharmacovigilance workflows, how their performance
is evaluated against conventional safety surveillance
methods, and where their limitations emerge in real-
world regulatory environments. The methodological
focus was therefore placed on three interconnected
analytical dimensions: the classification of artificial
intelligence methodologies according to their
functional role in pharmacovigilance, the assessment
of  reported performance outcomes  using
pharmacovigilance-relevant ~ metrics, and the
identification of structural, regulatory, and ethical
constraints influencing implementation.

Study Design and Review Framework

This work was conducted as a narrative review with a
structured analytical framework tailored to the
multidisciplinary nature of artificial intelligence—
enabled pharmacovigilance. The narrative review
design was selected to allow critical synthesis of
heterogeneous evidence encompassing computational
methodologies, clinical safety science, and regulatory
considerations, which are not readily amenable to
conventional systematic review paradigms. Rather
than aggregating effect sizes or performing meta-
analytical comparisons, the methodological focus was
placed on conceptual integration, methodological
appraisal, and contextual interpretation of artificial
intelligence applications within real-world
pharmacovigilance systems. The review framework
was designed to examine artificial intelligence as both
a technological intervention and a decision-support
mechanism within the broader pharmacovigilance
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lifecycle, spanning case processing, signal detection,
and post-marketing risk assessment.

Literature Identification and Source Selection

The identification of relevant literature was guided by
methodological relevance, scientific rigor, and
applicability to pharmacovigilance practice. Peer-
reviewed journal articles, regulatory white papers,
conference proceedings, and authoritative technical
reports describing artificial intelligence applications in
drug safety surveillance were considered. Emphasis
was placed on studies that explicitly detailed the
implementation of artificial intelligence models within
pharmacovigilance ~ workflows, including data
preprocessing steps, model training strategies,
validation approaches, and operational deployment
contexts. Articles focusing solely on theoretical
machine learning development without direct
pharmacovigilance application were excluded, as were
studies lacking sufficient methodological
transparency. This selective approach ensured that the
reviewed literature provided meaningful insights into
the practical and clinical implications of artificial
intelligence adoption in pharmacovigilance.

Classification of Artificial Intelligence Methodologies
Artificial intelligence methodologies identified in the
reviewed literature were systematically classified
according to their underlying computational paradigm
and functional role in pharmacovigilance. Models
were broadly grouped into supervised machine
learning, unsupervised learning, deep learning, and
natural language processing systems. Within each
category, further distinctions were made based on
model architecture, learning strategy, and intended
pharmacovigilance task, such as adverse event
identification, medical coding, signal detection, or risk
stratification. This classification enabled structured
comparison  across studies and facilitated
identification of methodological trends, performance
patterns, and areas of methodological convergence or
divergence. Particular attention was paid to hybrid
models that integrated multiple artificial intelligence
techniques, reflecting the evolving complexity of
pharmacovigilance analytics.

Evaluation of Model Performance and Validation
Strategies

Assessment of artificial intelligence performance was
conducted through critical examination of reported
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evaluation metrics and validation methodologies.
Priority was given to pharmacovigilance-relevant
performance indicators, including sensitivity,
specificity, precision, recall, and timeliness of signal
detection, rather than generic machine learning
accuracy measures alone. The review evaluated how
models were trained and tested, including the use of
internal validation, external datasets, and temporal
validation to assess generalizability. Studies
comparing artificial intelligence-driven approaches
with traditional pharmacovigilance methods, such as
disproportionality analyses or manual case review,
were analyzed to determine incremental performance
benefits and operational efficiencies. Limitations
related to overfitting, dataset bias, and lack of real-
world validation were explicitly examined.

Data Sources and Preprocessing Considerations

The methodological assessment also encompassed
detailed analysis of data sources used to train and
evaluate artificial intelligence models. These included
spontaneous reporting systems, electronic health
records, claims databases, scientific literature, and
social media platforms. The review examined how
data heterogeneity, missingness, reporting bias, and
terminological inconsistency were addressed through
preprocessing techniques such as normalization, de-
duplication, and medical terminology mapping.
Particular emphasis was placed on the impact of data
quality on model performance and the challenges
associated with using non-traditional data sources for
regulatory pharmacovigilance purposes.

Regulatory, Ethical, and Governance Considerations
Given the regulated nature of pharmacovigilance,
methodological evaluation extended beyond technical
performance to include regulatory and governance
dimensions. The review assessed how artificial
intelligence methodologies were aligned with
regulatory expectations for transparency, traceability,
and human oversight. Studies discussing explainable
artificial intelligence, auditability, and model lifecycle
management were analyzed to evaluate their potential
to  support regulatory acceptance.  Ethical
considerations, including bias  amplification,
accountability, and the risk of automation-driven
decision errors, were examined as integral
methodological constraints influencing real-world
implementation.
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Identification of Methodological Limitations
Methodological limitations were identified through
cross-study synthesis of reported challenges and
failure modes. These included limitations related to
data  representativeness, model interpretability,
scalability across therapeutic areas, and dependence
on expert-labeled datasets. The review also examined
systemic limitations inherent to pharmacovigilance
data, such as underreporting and delayed reporting,
which constrain the theoretical performance ceiling of
artificial intelligence models. By explicitly mapping
these limitations, the methodology provides a critical
lens through which artificial intelligence adoption in
pharmacovigilance can be realistically evaluated.
artificial intelligence, human-in-the-loop models, and
hybrid decision-making frameworks were analyzed to
evaluate their feasibility as governance mechanisms
within pharmacovigilance systems.

Finally, methodological limitations were
systematically identified by synthesizing reported
challenges across studies and mapping them to
pharmacovigilance-specific ~ requirements.  These
included  limitations related to  scalability,
transferability across regions and therapeutic areas,
dependence on high-quality labeled data, and the
persistent need for expert clinical judgment. By
integrating these methodological considerations, this
narrative review provides not only a descriptive
overview of artificial intelligence applications in
pharmacovigilance but also a critical evaluation of the
conditions under which such technologies can
meaningfully enhance drug safety surveillance.

III. ARTIFICIAL INTELLIGENCE
METHODOLOGIES APPLIED IN
PHARMACOVIGILANCE

The integration of Artificial Intelligence (Al) into
pharmacovigilance has fundamentally transformed the
way adverse drug reactions (ADRs), safety signals,
and post-marketing risk profiles are identified,
evaluated, and managed. Traditional
pharmacovigilance systems, which largely rely on
spontaneous reporting, manual case review, and rule-
based statistical approaches, are increasingly
inadequate to cope with the exponential growth of
real-world data generated from electronic health
records (EHRs), social media platforms, biomedical
literature, clinical trial repositories, and global safety
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databases. Al methodologies—spanning machine
learning, deep learning, natural language processing,
and hybrid cognitive systems—offer scalable,
adaptive, and data-driven solutions capable of
detecting  subtle, nonlinear, and previously
unrecognized safety patterns. This section critically
elaborates the core AI methodologies applied in
pharmacovigilance, emphasizing their operational
principles, real-world applications, strengths, and
methodological constraints.

Machine Learning Techniques in Pharmacovigilance
Machine learning (ML) represents the foundational
pillar of Al-driven pharmacovigilance systems,
enabling automated pattern recognition and predictive
analytics without explicit rule programming. ML
algorithms learn statistical associations between input
variables (e.g., patient demographics, drug exposure,
clinical outcomes) and target outputs (e.g., ADR
occurrence, seriousness classification, causality
likelihood) by iteratively optimizing performance
metrics over large annotated datasets. In
pharmacovigilance, ML techniques are extensively
employed for case triaging, duplicate detection, signal
detection, and risk stratification.

Supervised learning models, including logistic
regression, support vector machines (SVMs), decision
trees, random forests, and gradient boosting
algorithms, are particularly prevalent in ADR
classification tasks. These models require labeled
datasets—typically curated from regulatory databases
such as FAERS, EudraVigilance, or VigiBase—where
ADRs are annotated by seriousness, expectedness, or
causality category. By learning discriminative features
from structured and semi-structured data, supervised
ML models can prioritize high-risk individual case
safety reports (ICSRs), thereby reducing manual
workload and improving regulatory response times.
However, their performance is heavily dependent on
data quality, class balance, and annotation consistency,
which remain persistent challenges in
pharmacovigilance datasets.

Unsupervised learning approaches, such as clustering
algorithms  (k-means,  hierarchical clustering,
DBSCAN) and association rule mining, are primarily
applied in exploratory signal detection scenarios.
These techniques identify latent structures, co-
occurrence patterns, or anomalous reporting behaviors
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without predefined labels. For example, clustering can
reveal unexpected drug—event combinations or patient
subpopulations exhibiting disproportionate  risk
profiles. While unsupervised methods are valuable for
hypothesis generation, their interpretability and
clinical validation often require expert adjudication,
limiting their standalone regulatory applicability.

Deep Learning Architectures for Complex Safety
Signal Detection

Deep learning (DL), a subset of machine learning
inspired by artificial neural networks, has gained
substantial traction in pharmacovigilance due to its
ability to model high-dimensional, nonlinear
relationships across heterogeneous data sources.
Unlike traditional ML algorithms that rely on manual
feature  engineering, deep learning models
automatically learn hierarchical feature
representations directly from raw data, making them
particularly suitable for complex safety surveillance
tasks.

Architectures & Applications Advantages & Challenges
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Convolutional neural networks (CNNs) and recurrent
neural networks (RNNs), including long short-term
memory (LSTM) and gated recurrent unit (GRU)
architectures, are widely applied in temporal ADR
pattern recognition and longitudinal safety modeling.
In pharmacovigilance, these models can capture time-
dependent relationships between drug exposure and
adverse outcomes, enabling early detection of delayed
or cumulative toxicities that may not be evident
through conventional disproportionality analyses. For
instance, LSTM-based models have demonstrated
superior performance in predicting ADR onset using
sequential EHR data, outperforming traditional
regression-based approaches.
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More recently, transformer-based architectures, such
as BERT (Bidirectional Encoder Representations from
Transformers) and its biomedical adaptations
(BioBERT, Clinical BERT), have revolutionized safety
signal extraction from unstructured text sources. These
models leverage self-attention mechanisms to
understand contextual dependencies within clinical
narratives, enabling precise identification of adverse
events, drug mentions, and causal relationships in free-
text case reports and literature abstracts. Despite their
impressive accuracy, deep learning models are often
criticized for their “black-box” nature, raising
concerns regarding transparency, reproducibility, and
regulatory  trustworthiness—critical ~ factors in
pharmacovigilance decision-making.

Natural Language Processing for Adverse Event
Extraction

Natural Language Processing (NLP) constitutes a
cornerstone methodology in Al-enabled
pharmacovigilance, addressing the predominance of
unstructured textual data in safety reporting systems.
A significant proportion of pharmacovigilance-
relevant information resides in narrative case
descriptions, clinical notes, discharge summaries,
regulatory
publications, which are not readily amenable to
traditional statistical analysis.
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Rule-based NLP systems, employing predefined
lexicons and pattern-matching techniques, were
among the earliest approaches used to extract adverse
events and drug entities. While these systems offer
high precision in controlled environments, they lack
scalability and adaptability to linguistic variability,
spelling errors, colloquial expressions, and evolving
medical  terminology.  Consequently, = modern
pharmacovigilance increasingly relies on machine
learning—driven NLP pipelines that integrate named
entity recognition (NER), relation extraction,
sentiment analysis, and semantic role labeling.

Advanced NLP models enable automated
identification of adverse events, normalization to
standardized  terminologies  (e.g., MedDRA,
SNOMED CT), and detection of drug—event causality
cues within narrative text. For example, NLP
algorithms can differentiate between actual ADRs and
confounding mentions such as medical history,
indications, or hypothetical scenarios. Despite these
advancements, challenges persist in handling
negation, ambiguity, and cross-lingual reporting,
particularly in global pharmacovigilance systems
spanning multiple regulatory jurisdictions.

Hybrid AI Systems and Knowledge-Based
Approaches

Hybrid Al systems combine data-driven learning
algorithms with rule-based reasoning and domain-
specific knowledge graphs to enhance robustness,
interpretability, and  clinical relevance. In
pharmacovigilance, these systems integrate structured
medical ontologies, regulatory guidelines, and expert-
curated rules with machine learning predictions,
thereby aligning algorithmic outputs with established
pharmacological and clinical principles.

Knowledge graphs, representing entities such as drugs,
targets, pathways, adverse events, and patient
characteristics as interconnected nodes, facilitate
mechanistic signal interpretation and hypothesis
validation. When coupled with AI algorithms,
knowledge graphs enable contextualized safety
assessments, supporting causal inference and risk-
benefit evaluations. For instance, linking an observed
ADR signal to known pharmacodynamic mechanisms
or metabolic pathways can strengthen regulatory
confidence and guide risk mitigation strategies.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 8848



© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

Hybrid approaches also support explainable Al (XAI)
initiatives, which are increasingly emphasized by
regulatory agencies. By providing transparent
rationale for safety alerts—such as feature importance
scores or rule-based justifications—hybrid systems
address one of the most critical limitations of purely
data-driven models in pharmacovigilance.

Performance Evaluation and Validation of Al Models
The methodological rigor of Al applications in
pharmacovigilance 1is contingent upon robust
performance evaluation and external validation.
Standard metrics such as sensitivity, specificity,
precision, recall, F1-score, and area under the receiver
operating characteristic curve (AUROC) are
commonly used to assess model accuracy. However,
pharmacovigilance-specific considerations, including
class imbalance, rare event detection, and regulatory
risk tolerance, necessitate customized evaluation
frameworks.

External validation across independent datasets,
temporal validation, and real-world deployment
studies are essential to ensure generalizability and
clinical reliability. Moreover, continuous performance
monitoring is required to address concept drift arising
from changes in reporting behavior, drug utilization
patterns, and regulatory practices over time. Without
systematic validation and governance frameworks, Al-
driven pharmacovigilance systems risk generating
spurious signals or missing clinically significant safety
concerns.

Iv. PERFORMANCE EVALUATION AND

COMPARATIVE EFFECTIVENESS OF

AI-BASED PHARMACOVIGILANCE
SYSTEMS

The assessment of Artificial Intelligence—driven
pharmacovigilance systems necessitates a rigorous,
multidimensional evaluation framework that extends
beyond conventional predictive accuracy metrics.
Unlike traditional clinical prediction models,
pharmacovigilance algorithms operate in a regulatory-
sensitive environment where false negatives may
delay critical safety actions and false positives may
trigger unwarranted regulatory scrutiny, resource
diversion, or public concern. Consequently,
performance evaluation of AI models in
pharmacovigilance must balance statistical robustness,
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clinical relevance, regulatory acceptability, and
operational feasibility. This section critically examines
the methodological approaches used to evaluate Al-
based pharmacovigilance systems and compares their
effectiveness with conventional safety surveillance
methodologies.

From a quantitative standpoint, classical machine
learning and deep learning models are typically
evaluated using discrimination metrics such as
sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), accuracy, F1-
score, and area under the receiver operating
characteristic curve (AUROC). Sensitivity holds
particular importance in pharmacovigilance, as the
primary objective is early detection of potential safety
signals rather than precise event prediction. High
sensitivity ensures that emerging adverse drug
reactions are not overlooked, even at the expense of
reduced specificity. However, excessive false-positive
alerts can overwhelm pharmacovigilance teams and
erode confidence in automated systems, underscoring
the need for carefully calibrated decision thresholds
aligned with regulatory risk tolerance.

Beyond binary classification metrics, signal detection
performance is  frequently assessed  using
disproportionality-based ~ benchmarks such as
proportional reporting ratios (PRR), reporting odds
ratios (ROR), and Bayesian confidence propagation
neural network (BCPNN) outputs. Al-based
approaches are compared against these traditional
statistical methods to determine incremental value in
detecting signals earlier, identifying rare or delayed
adverse events, and uncovering complex drug—event
interactions. Multiple retrospective studies have
demonstrated that machine learning—enhanced signal
detection models outperform classical
disproportionality analyses in terms of timeliness and
sensitivity, particularly when applied to high-
dimensional datasets incorporating patient-level
covariates, comorbidities, and concomitant
medications.

Temporal validation constitutes another critical
dimension of performance  evaluation, as
pharmacovigilance models must remain robust over
extended post-marketing periods. Al systems trained
on historical safety data may experience performance
degradation due to concept drift—systematic changes
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in prescribing patterns, reporting behavior, regulatory
requirements, or  population  demographics.
Longitudinal validation studies, which assess model
performance across different time windows, are
therefore essential to establish durability and real-
world reliability. Continuous learning architectures
and periodic model recalibration have been proposed
as mitigation strategies, although these raise additional
regulatory and governance complexities.

Comparative effectiveness analyses further reveal that
deep learning models, particularly those integrating
longitudinal EHR data and unstructured text via NLP
pipelines, exhibit superior performance in detecting
complex, multifactorial adverse events compared to
rule-based or shallow learning systems. However,
these gains are often accompanied by reduced
interpretability, increased computational cost, and
greater dependency on large, well-curated datasets. In
contrast, hybrid models combining interpretable
machine learning algorithms with expert-defined
pharmacological rules demonstrate a more favorable
balance between performance and explainability,
making them more acceptable in regulatory
pharmacovigilance workflows.

Importantly, qualitative evaluation metrics—such as
clinical plausibility, regulatory usability, and expert
agreement—are  increasingly = recognized  as
indispensable components of Al performance
assessment in pharmacovigilance. Human-in-the-loop
validation, wherein safety experts review Al-
generated signals and provide feedback, remains the
gold standard for confirming clinical relevance and
mitigating algorithmic bias. Studies consistently
indicate that AI systems function optimally as
decision-support tools rather than autonomous signal
generators, augmenting rather than replacing expert
judgment.

Despite encouraging performance outcomes, the
absence of standardized evaluation frameworks and
reporting guidelines continues to hinder cross-study
comparability and  regulatory  harmonization.
Variability in dataset selection, labeling criteria,
validation strategies, and performance metrics limits
the generalizability of published results. Regulatory
bodies and international  pharmacovigilance
organizations have therefore emphasized the urgent
need for consensus-driven benchmarks and
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transparent reporting standards to ensure reliable
integration of Al into global drug safety surveillance
systems.

V. REGULATORY ACCEPTANCE,
GOVERNANCE, AND
IMPLEMENTATION CHALLENGES OF
ARTIFICIAL INTELLIGENCE IN
PHARMACOVIGILANCE

The regulatory acceptance of Artificial Intelligence—
based systems in pharmacovigilance represents one of
the most critical determinants of their real-world
adoption and sustainability. While Al methodologies
have demonstrated substantial potential to enhance
signal detection efficiency, data integration, and
analytical depth, their incorporation into regulated
drug safety frameworks is constrained by stringent
requirements related to transparency, accountability,
validation, and patient safety. Regulatory agencies
such as the U.S. Food and Drug Administration
(FDA), European Medicines Agency (EMA), and the
World Health Organization (WHO) recognize the
transformative potential of Al but emphasize that
pharmacovigilance remains a high-stakes, risk-
sensitive domain where algorithmic outputs must be
interpretable,  reproducible, and scientifically
justifiable.

A primary regulatory concern lies in the lack of
explainability associated with complex Al models,
particularly deep learning architectures.
Pharmacovigilance decisions—such as label changes,
risk management plan modifications, or market
withdrawals—require a clear rationale that can be
audited, defended, and communicated to stakeholders.
Black-box models that generate safety signals without
transparent reasoning pose significant challenges in
regulatory review, as agencies must be able to trace
how specific inputs contributed to a given output.
Consequently, regulatory bodies increasingly advocate
for explainable artificial intelligence (XAI)
approaches that provide interpretable insights, such as
feature importance rankings, decision pathways, or
rule-based justifications, without compromising
analytical performance.

Governance frameworks for Al-driven
pharmacovigilance systems remain underdeveloped
and heterogeneous across jurisdictions. Unlike
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traditional pharmacovigilance tools, Al systems are
dynamic by nature, often incorporating continuous
learning mechanisms that adapt to new data streams.
While such adaptability enhances performance, it also
complicates regulatory oversight, as model behavior
may change post-approval. This raises fundamental
questions regarding model version control, change
management, revalidation requirements, and
documentation standards. Regulators have expressed
concerns about “algorithmic drift,” wherein gradual
performance shifts may introduce bias or degrade
safety detection accuracy if not properly monitored
and controlled.

Data provenance and quality governance constitute
additional regulatory challenges. Pharmacovigilance
Al systems rely on diverse data sources, including
spontaneous reporting systems, electronic health
records, claims databases, social media, and scientific
literature. These datasets vary widely in structure,
completeness, reliability, and bias. Regulatory
authorities require assurance that Al models are
trained on representative, ethically sourced, and high-
quality data, and that appropriate safeguards are in
place to prevent propagation of systemic biases—such
as underreporting in specific populations or
geographic regions. Inadequate data governance can
compromise both the validity of Al-generated safety
signals and public trust in regulatory decision-making.

Another significant barrier to regulatory acceptance is
the absence of harmonized international standards for
Al validation in pharmacovigilance. Current
regulatory guidance primarily addresses traditional
statistical signal detection methods and does not
adequately account for the complexity of modern Al
systems. As a result, pharmaceutical companies and
marketing authorization holders face uncertainty
regarding acceptable validation strategies,
performance  thresholds, and  documentation
requirements. This regulatory ambiguity may
discourage innovation or lead to conservative
implementations that underutilize AI’s full potential.
Collaborative  initiatives involving regulators,
industry, and academia are therefore essential to
establish consensus-driven frameworks for Al
qualification, benchmarking, and lifecycle
management.
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Implementation challenges further extend beyond
regulatory approval into operational integration within
existing pharmacovigilance infrastructures. Many
organizations lack the technical expertise,
computational resources, or organizational readiness
to deploy and maintain Al systems at scale. Integration
with legacy safety databases, workflow redesign, staff
training, and change management represent substantial
logistical and financial investments. Moreover,
resistance to automation among pharmacovigilance
professionals—stemming from concerns about job
displacement or overreliance on algorithms—may
hinder adoption unless Al is clearly positioned as a
decision-support tool rather than a replacement for
expert judgment.

Despite these challenges, regulatory agencies have
begun adopting a more proactive and adaptive stance
toward Al in pharmacovigilance. Pilot programs,
regulatory sandboxes, and public—private partnerships
have been initiated to explore safe and controlled
implementation pathways. The emphasis is gradually
shifting toward a risk-based regulatory approach,
wherein Al systems are evaluated based on their
intended use, impact on patient safety, and level of
autonomy. Under this paradigm, Al tools used for
signal prioritization or case triaging may face fewer
regulatory barriers than fully autonomous decision-
making systems.

In summary, while Al holds immense promise for
advancing  pharmacovigilance, its  regulatory
acceptance is contingent upon the development of
robust governance structures, transparent
methodologies, standardized validation frameworks,
and sustained human oversight. Addressing these
challenges is essential to ensure that Al-enhanced
pharmacovigilance  systems are not  only
technologically advanced but also ethically sound,
clinically reliable, and regulatorily compliant.

VL LIMITATIONS, BIAS, AND ETHICAL
CONSIDERATIONS IN AI-DRIVEN
PHARMACOVIGILANCE

Despite the substantial promise of Artificial
Intelligence in  enhancing  pharmacovigilance
efficiency and analytical depth, its application is
accompanied by  significant  methodological
limitations, inherent biases, and complex ethical
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considerations that warrant critical examination. These
challenges are not merely technical in nature but
extend to data integrity, clinical validity, regulatory
trust, and societal implications. A nuanced
understanding of these limitations is essential to
prevent overreliance on algorithmic outputs and to
ensure that Al-driven pharmacovigilance systems
ultimately contribute to patient safety rather than
inadvertently compromising it.

One of the most fundamental limitations of Al-based
pharmacovigilance systems lies in their heavy
dependence on data quality and representativeness.
Spontaneous reporting systems, which form the
backbone of post-marketing safety surveillance, are
inherently subject to underreporting, selective
reporting, duplication, and reporting bias. Al
algorithms trained on such imperfect datasets may
inadvertently learn and reinforce these biases, leading
to skewed safety signal detection. For instance,
adverse events associated with newer drugs, severe
outcomes, or media attention are more likely to be
reported, whereas events affecting vulnerable or
underrepresented populations may remain
systematically underreported. As a result, Al models
may demonstrate high apparent performance while
failing to capture the true epidemiological distribution
of drug-related risks.

Algorithmic bias represents a particularly concerning
issue in Al-driven pharmacovigilance. Bias may be
introduced at multiple stages of model development,
including data collection, labeling, feature selection,
and algorithm design. Models trained predominantly
on data from high-income countries may perform
poorly when applied to low- and middle-income
settings, where prescribing patterns, genetic
backgrounds, healthcare access, and reporting
behaviors differ substantially. Such geographical and
demographic biases can undermine the global
applicability of Al-based safety systems and
exacerbate existing inequities in drug safety
monitoring.  Moreover, biased models may
disproportionately generate false positives or false
negatives in specific subpopulations, leading to
inappropriate regulatory actions or missed safety
signals.

Another critical limitation concerns the interpretability
and explainability of complex Al models. Deep
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learning architectures, while powerful, often function
as opaque black boxes, producing predictions without
transparent reasoning pathways. In
pharmacovigilance, where decisions have direct
implications  for  public  health, regulatory
accountability, and legal responsibility, lack of
explainability is a major impediment. Safety assessors
and regulators must be able to understand why a
particular drug—event association was flagged, which
variables contributed most strongly, and whether the
signal aligns with known pharmacological
mechanisms. Without such interpretability, Al-
generated signals may be met with skepticism, limiting
their practical utility and acceptance.

Ethical considerations further complicate the
deployment of AI in pharmacovigilance. Patient
privacy and data protection are paramount concerns,
particularly when Al systems integrate large-scale
electronic health records, claims data, and real-world
evidence sources. Even when data are anonymized, the
risk of re-identification increases as datasets become
more granular and interconnected. Ethical use of Al in
pharmacovigilance therefore requires robust data
governance frameworks, compliance with data
protection regulations, and transparent communication
regarding data usage. Failure to adequately address
privacy concerns may erode public trust and hinder
data sharing initiatives essential for effective safety
surveillance.

Automation bias constitutes another ethical risk,
wherein human experts may overtrust algorithmic
outputs and discount their own clinical judgment. In
pharmacovigilance workflows, this may result in
uncritical acceptance of Al-generated safety signals or,
conversely, dismissal of clinically plausible concerns
not flagged by the system. Such overreliance on
automation can weaken expert vigilance and reduce
the depth of clinical reasoning applied to safety
assessments. To mitigate this risk, Al systems must be
explicitly designed and implemented as decision-
support tools, with clearly defined roles for human
oversight, validation, and accountability.

Transparency and accountability also raise ethical and
legal questions regarding responsibility for Al-driven
decisions. In cases where an Al system fails to detect
a serious adverse drug reaction or generates a
misleading signal, it remains unclear whether
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responsibility lies with the algorithm developer, the
pharmaceutical company, the pharmacovigilance
professional, or the regulatory authority. This
ambiguity poses challenges for liability frameworks
and underscores the need for clearly articulated
governance models defining ownership,
accountability, and escalation pathways in Al-assisted
pharmacovigilance.

Finally, there is a risk that the rapid adoption of Al
technologies may outpace the development of
appropriate ethical, regulatory, and educational
infrastructures. Without adequate training,
pharmacovigilance professionals may lack the skills
necessary to critically evaluate Al outputs, understand
model limitations, or identify potential biases. This
skills gap may lead to superficial implementation of Al
tools without meaningful integration into safety
science principles. Ethical deployment of Al in
pharmacovigilance therefore necessitates not only
technical innovation but also sustained investment in
workforce education, interdisciplinary collaboration,
and ethical literacy.

In aggregate, while Al offers transformative potential
for pharmacovigilance, its limitations, biases, and
ethical  challenges must be  systematically
acknowledged and addressed. Failure to do so may
result in misplaced confidence, inequitable safety
monitoring, and erosion of regulatory trust. A
balanced, cautious, and ethically grounded approach is
essential to ensure that AI enhances, rather than
undermines, the fundamental objectives of
pharmacovigilance.

VIL FUTURE PERSPECTIVES AND
EMERGING DIRECTIONS OF
ARTIFICIAL INTELLIGENCE IN
PHARMACOVIGILANCE

The landscape of pharmacovigilance is undergoing a
profound transformation driven by the convergence of
artificial intelligence, real-world evidence, and
computational pharmacoepidemiology. Future
perspectives on Al in pharmacovigilance extend
beyond incremental improvements in case processing
or signal detection, encompassing a paradigm shift
toward proactive, predictive, and mechanistically
informed drug safety surveillance. Emerging
directions emphasize not only technological

IJIRT 192062

innovation but also integration with regulatory
frameworks, ethical governance, and global data
harmonization, which collectively will shape the next
generation of pharmacovigilance systems.

One of the most compelling future directions is the
development of predictive pharmacovigilance,
whereby Al models anticipate potential adverse drug
reactions before they manifest at the population level.
Leveraging  large-scale  longitudinal  datasets,
including electronic health records, claims databases,
genomics repositories, and patient-reported outcomes,
predictive models can identify individuals or
subpopulations at elevated risk of drug-related adverse
events. Machine learning and deep learning
architectures, particularly those integrating temporal
sequence analysis and multi-modal data, are expected
to enhance the accuracy and timeliness of such
predictions. Predictive pharmacovigilance holds the
potential to shift safety surveillance from reactive
post-marketing assessment to a proactive, risk-
mitigation paradigm, enabling early intervention,
personalized risk management, and more informed
regulatory decision-making.

Integration of multi-source real-world evidence
represents another critical frontier. Pharmacovigilance
data are increasingly heterogeneous, encompassing
spontaneous reporting systems, electronic health
records, wearable devices, social media, biomedical
literature, and mobile health applications. Al
methodologies capable of harmonizing, synthesizing,
and extracting actionable insights from such diverse
data streams will significantly enhance signal
detection sensitivity and contextual understanding. For
example, natural language processing pipelines
combined with graph-based deep learning models may
identify novel drug—event associations by integrating
patient narratives, clinical notes, and literature reports
in a single analytic framework. Such integration not
only broadens the evidence base but also enables
detection of rare, delayed, or geographically
distributed adverse events that traditional surveillance
systems may overlook.

Explainable and human-in-the-loop Al frameworks
are projected to become central in regulatory-aligned
pharmacovigilance. =~ As  regulatory  agencies
increasingly demand transparency, interpretability,
and accountability, Al systems must provide outputs
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that are both scientifically rigorous and understandable
to pharmacovigilance professionals. Explainable Al
(XAI)  techniques, including  attention-based
mechanisms, feature attribution methods, and hybrid
knowledge-informed models, will enable stakeholders
to trace safety signals to underlying data patterns,
clinical reasoning, and mechanistic plausibility.
Human-in-the-loop integration will ensure that Al-
generated insights are validated by expert judgment,
maintaining regulatory confidence while leveraging
the computational power of Al.

Automation of routine pharmacovigilance workflows
is another emerging trend, with Al facilitating semi-
autonomous processing of ICSRs, medical coding,
duplicate detection, and triage prioritization. By
automating repetitive tasks, Al frees human experts to
focus on higher-order analytical responsibilities such
as signal validation, causality assessment, and
regulatory reporting. The development of modular,
interoperable Al platforms will allow organizations to
scale pharmacovigilance operations efficiently while
maintaining data integrity, compliance, and
adaptability to evolving regulatory requirements.

From a technological standpoint, reinforcement
learning and adaptive Al models are anticipated to play
a transformative role. Unlike conventional supervised
or unsupervised learning, reinforcement learning
allows Al systems to optimize decision-making
policies iteratively, learning from feedback within a
dynamic pharmacovigilance environment. Such
approaches may enable adaptive prioritization of
safety signals, optimization of data collection
strategies, and intelligent allocation of regulatory and
clinical resources. Coupled with advanced simulation
and digital twin models, reinforcement learning could
facilitate scenario-based risk assessment, simulating
drug safety outcomes under hypothetical exposure
scenarios before real-world occurrence.

Finally, global harmonization of Al-based
pharmacovigilance practices is emerging as a strategic
imperative. Differences in data accessibility, reporting
standards, regulatory frameworks, and computational
infrastructure create barriers to effective multinational
safety  monitoring.  Collaborative initiatives,
international consortia, and open-access Al platforms
are expected to bridge these gaps, facilitating
standardized methodologies, interoperable datasets,

IJIRT 192062

and cross-jurisdictional validation. Such
harmonization will not only enhance model
generalizability but also support equitable drug safety
surveillance across diverse populations and healthcare
systems.

In conclusion, the future of Al in pharmacovigilance is
characterized by predictive, integrative, explainable,
and adaptive approaches, underpinned by rigorous
ethical, regulatory, and technical frameworks.
Continued interdisciplinary collaboration among data
scientists, clinicians, regulatory authorities, and
ethicists will be essential to realize the full potential of
Al, ensuring that drug safety surveillance evolves from
reactive monitoring to anticipatory, patient-centric risk
management.

VIIIL CONCLUSION

In summary, the integration of artificial intelligence
into pharmacovigilance represents a paradigm shift in
the science of post-marketing drug safety surveillance,
enabling substantial enhancements in data processing,
signal detection, and risk assessment that were
previously  unattainable  through  traditional
methodologies. Conventional pharmacovigilance has
long been constrained by manual review,
underreporting, reporting bias, and the limited
analytical capacity of disproportionality measures
applied to spontaneous reporting systems; these
constraints impede the timely identification of adverse
drug reactions and the generation of high-confidence
safety signals. The application of machine learning,
deep learning, and natural language processing has
considerably broadened the scope and sensitivity of
safety surveillance systems by enabling automated
case processing, extraction of adverse events from
unstructured clinical text, integration of diverse data
sources, and identification of latent associations that
historically went undetected. Multiple systematic and
narrative reviews have corroborated that Al
approaches can outperform traditional statistical
methods in several contexts, offering improved
sensitivity and timeliness in signal detection,
particularly when applied to large, heterogeneous
datasets such as electronic health records, spontaneous
reporting systems, and patient-generated text from
social media platforms. A scoping review of machine
learning applications in pharmacovigilance identified
rising utilization of deep learning architectures and
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advanced analytical techniques as well as enduring
methodological gaps in adoption of best practices and
generalizability of models across diverse settings.
Furthermore, implementations of Al-enabled Bayesian
networks and hybrid knowledge-informed models
demonstrate promising performance gains in causality
assessment and prioritization workflows, suggesting
practical utility for regulatory and industry
stakeholders beyond purely academic inquiry.

Nevertheless, the evidence base reveals that Al
adoption in routine pharmacovigilance practice
remains nascent and wuneven, with significant
challenges that temper its transformative potential.
Data quality and representativeness continue to
constrain model performance: incomplete or biased
safety reports, heterogeneous data formats, and
underrepresentation of specific populations lead to
algorithmic bias and risk misspecification if not
addressed with robust preprocessing and annotation
strategies. Moreover, many Al models reported in the
literature lack consistent external validation and
demonstrate limited generalizability across clinical
contexts, raising concerns about reproducibility and
clinical reliability. Ethical and regulatory frameworks
have yet to mature sufficiently to provide clear
standards for explainability, accountability, and
governance of Al systems in safety surveillance;
regulators such as the FDA and EMA emphasize
transparency and interpretability, particularly for
complex deep learning models whose decision
pathways are often opaque (“black box”). The
potential for reinforcement of existing disparities—
through algorithmic bias affecting under-reported
populations—and privacy implications associated
with integration of sensitive health data further
complicate clinical deployment and regulatory
acceptance. Data governance, human-in-the-loop
oversight, and standardized validation protocols are
therefore prerequisites for responsible Al integration
into pharmacovigilance workflows.

Despite these challenges, the trajectory of research and
emerging implementations suggests a sustained
expansion and refinement of Al capabilities in drug
safety science. Hybrid and ensemble methodologies
that combine machine learning with expert-defined
rules and knowledge graphs offer a promising
compromise between performance and
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interpretability; initiatives to strengthen common data
models and  structured real-world evidence
repositories facilitate model training and validation
across populations; and advances in explainable Al
align computational outputs with regulatory
expectations and clinical reasoning. As the volume and
diversity of safety data continue to expand with digital
health innovations, the agility of Al systems to ingest,
harmonize, and interpret this information portends a
future of pharmacovigilance that is more proactive,
predictive, and patient-centered than previously
possible. Addressing the current limitations will
require coordinated efforts across academia, industry,
regulatory agencies, and clinical practice to establish
consensus-driven benchmarks, ethical standards, and
interoperable infrastructures that support safe,
equitable, and scientifically robust Al-enhanced
pharmacovigilance.
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