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Abstract—Currently, manipulation of digital images 

with modern powerful image editing software is a 

commonplace approach. Therefore, determining the 

authenticity of the image is one of the crucial challenges 

faced by multimedia forensics. The presented project 

incorporates RIFD-Net, a deep-learning-based system 

for detecting and localizing forged regions in images. At 

the heart of the system is an encoder-decoder network, 

inspired by U-Net architecture, performing pixel-level 

analysis to generate forgery masks visually highlighting 

tampered areas. In addition to the deep learning-based 

detection of forgeries, this system provides a REST API 

to enable real-time forgery confidence estimation that 

allows seamless connection with external applications 

and large-scale image databases. An EXIF metadata 

analysis module has also been included, which could 

identify missing or suspicious metadata patterns of 

images, hinting at tampering. Perceptual hashing for 

efficient detection of duplicate and near-duplicate 

images is conducted. The proposed model is first trained 

on paired original images along with ground-truth 

masks and optimized by using the Adam optimizer with 

mean squared error loss. A web interface using Streamlit 

will be presented that will enable real-time image 

uploading, analysis, and visualization. Experimental 

results establish that the system will be able to combine 

the complementary visual, metadata, and structural cues 

through effective processing, making it practical and 

scalable for modern digital image forensics. 

 

Index Terms—Deep Learning, EXIF Analysis, Forgery 

Mask, Image Forgery, Image Splicing, Noise Detection, 

Perceptual Hashing, U-Net Architecture. 

 

I. INTRODUCTION 

 

Digital images have evolved to become one of the 

most crucial conveyors of information, evidence, or 

communication in several fields of life such as 

journalism, social media, judicial and police 

investigations, and cybersecurity. The ubiquity of 

powerful image editing tools has made the task of 

manipulating digital images without leaving traces 

relatively easy. Images can undergo some important 

content changes via splicing, copy-move operations, 

and noise manipulations, and yet they will appear 

original to the naked eye. Ensuring the authenticity 

and integrity of digital images has, therefore, become 

one of the prime tasks in the area of multimedia 

forensics. 

Conventional approaches to image forgery detection 

rely on handcrafted features, statistical measures, or 

heuristic-based methods. Although such methods can 

indicate the presence of specific types of 

manipulations, their generalization to a wide range of 

forgery techniques and real-world image conditions is 

poor. Furthermore, most of the traditional systems are 

designed to classify images as forged or authentic 

without revealing the exact location of manipulation. 

The absence of localization decreases the 

interpretability and forensic value of the applied 

detection process. 

With the aim of surmounting these limitations, this 

project introduces a Deep Reconstruction-Based 

Framework for Image Forgery Detection, employing 

deep learning for detection and localization of image 

forgeries. The proposed system utilizes a 

convolutional encoder-decoder architecture inspired 

from the U-Net model, which is designed for pixel-

level analysis of input images. The framework learns 

to reconstruct forgery-related patterns, generating a 

forgery mask that highlights manipulated regions, thus 

aiding in precise localization and interpretation of 

tampered areas visually. The encoder captures the 

high-level semantic features relative to forgery 
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artifacts, while the decoder reconstructs spatial details 

required for accurate region-wise detection. 

Besides deep learning-based localization, the 

framework embeds other forensic modules that allow 

increasing the detection reliability: EXIF metadata 

analysis allows for the detection of missing or 

inconsistent metadata that could suggest tampering 

with an image; perceptual hashing allows fast 

detection of duplicate and near-duplicate images. In 

such a way, the system could be integrated with 

external applications and large-scale image databases 

to offer real-time REST APIs for automated forgery 

analysis. A Streamlit-based web interface wraps the 

code in an interactive, user-friendly environment, 

allowing users to upload the images and analyze them, 

while showing the results in a readable format. Overall, 

the proposed framework follows a judicious 

combination of deep reconstruction learning, metadata 

inspection, and system-level deployment to deliver a 

pragmatically effective, scalable, and interpretable 

solution for modern digital image forgery detection. 

  
Figure.1 Illustration of Forgery 

 

II. LITERATURE SURVEY 

 

Digital image forgery detection has emerged as a 

recent highlight in the domain of multimedia forensics, 

considering both the rapid growth of manipulating 

tools and their malicious usage. Early attempts in this 

realm relied more on traditional image processing and 

some statistical analysis techniques. Those techniques 

took issues with inconsistencies in color distribution, 

edges, texture, and compression artefacts for the 

detection of manipulated images [1]. Such methods 

were bound to be effective only under highly 

constrained conditions and relied on handcrafted 

feature extraction. Furthermore, they also showed 

much sensitivity against variations caused by post-

processing of images. 

Copy-move forgery detection was among the first and 

most researched manipulation detection techniques. 

Several block-based methods using DCT and PCA 

were proposed to find duplicated regions in the same 

image. Key-point-based methods applied SIFT and 

SURF key points to enhance robustness against 

rotation and scaling. Still, these techniques were 

computation-intensive and usually failed when images 

were noised, compressed, or underwent complex 

transformations. 

Image splicing detection methods have been proposed 

to identify forged images generated by combining 

regions from different images. Several methods have 

inspected inconsistencies in lighting conditions, color 

correlation, and camera sensor noise patterns to detect 

the splicing operations [4]. While these methods 

achieved performance improvement in detecting 

forgery, their efficiencies were still subject to careful 

forgeries and usually output image-level classification 

results without precise localization of tampered 

regions. 

For overcoming the limitations of handcrafted feature-

based methods, CNNs were introduced with the 

advancement of deep learning. The CNN-based 

methods outperformed others by learning the 

discriminative features automatically from the image 

data itself [5]. However, most of these early deep 

learning models focused on binary classification tasks, 

that is, classifying an image as forged or authentic, 

without providing any visual explanation or even a 

method to determine the location of manipulated areas. 

 

U-Net-inspired encoder-decoder architectures were 

thus adapted for image forgery detection that enabled 

pixel-level localization. These works relied on 

reconstruction learning in order to retain spatial 

information and create forgery masks that highlight 

manipulated regions [6]. Reconstruction-based 

frameworks were thus successfully used to model 

subtle manipulation artifacts, including noise 

inconsistencies and structural distortions. Compared 

with the improved capability of localization, most 

works about deep learning for forgery detection were 

designed only based on visual features, without 

considering complementary forensic information. 

Recent research has investigated metadata-based 

analysis as an added layer of verification to detect 

forgery. EXIF metadata have been analyzed for 

missing, inconsistent, or modified camera information 
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to detect tampering of images [7]. Similarly, 

perceptual hashing has been applied to the fast 

detection of duplicate and near-duplicate images by 

comparing fingerprints of visual similarities [8]. 

Although effective individually, these techniques are 

hardly integrated with deep learning–based forgery 

localization systems. 

Most of the traditional approaches to forgery detection 

only consider offline or experimental settings, offering 

no real-time deployment and practical usability. They 

consequently lack API-based inference and user-

friendly interfaces, so as not to be adopted in a real-

world context, such as large-scale image databases or 

computer-assisted content verification systems. A 

clear research gap from the reviewed literature lies in 

developing a unified image forgery detection system 

scalable and interpretable that unites deep 

reconstruction-based localization with metadata 

analysis and perceptual hashing for real-time 

deployment. The proposed framework for image 

forgery detection based on deep reconstruction fills 

this gap by integrating pixel-level deep learning 

analysis, EXIF metadata check, duplicate image 

detection, and API-based real-time inference within 

one deployable system. 

 

III. PROPOSED METHODOLOGY 

 

The proposed approach is a deep reconstruction-based 

framework for image forgery detection, encircling 

supervised deep learning and structured dataset 

preparation and preprocessing. This framework 

should be able to achieve both forged region detection 

and localization at the pixel level and handle multiple 

kinds of forgery. The total system focuses mainly on 

two broader classes of manipulations: splicing-based 

forgery and noise-based forgery. In accomplishing 

this, both classes are handled with carefully 

constructed datasets that allow the model to learn both 

structural and statistical inconsistencies that are 

caused during image manipulation. Thus, dataset 

preparation is a prime component of the framework 

and bears an important role in achieving complete and 

realistic forgery detection. 

 

3.1 Data Creation 

In creating the dataset for the proposed system, 

publicly available image data was put into a format 

that can be applied to supervised learning. The 

splicing-based forgery dataset is sourced from a 

publicly available Dropbox repository, which contains 

authentic images, spliced images, and corresponding 

ground-truth forgery masks. These masks clearly 

reveal the manipulated regions in each image, 

facilitating effective pixel-level supervision while 

training. The noise-based forgery dataset is sourced 

from a repository of salt-and-pepper noise images on 

Kaggle. This dataset provides the clean images and 

their noise-corrupted version used to learn the 

inconsistencies caused by the artificial insertion of 

noise. 

The dataset is organized into two main categories of 

forgery. In splicing-based forgery, manipulated 

images are generated by splicing regions across 

different source images and exhibit faint discrepancies 

in boundaries and textures. Correspondingly, a binary 

mask is provided for each spliced image, in which 

manipulated pixels are marked against authentic 

regions. On the other hand, noise-based forgery adds 

artificial noise into images, altering statistical 

properties but without apparent changes to any major 

structures. There is no explicit binary mask used in the 

noise-based forgery; instead, clean and noisy image 

pairs are provided to enable the reconstruction-based 

learning of noise inconsistencies. 

Binary masks utilized in the splicing dataset are 

generated by highlighting the exact regions concerned 

with manipulation in the course of splicing. The masks 

are stored as grayscale images and later converted into 

binary representations where forged regions are 

represented by white pixels and non-forged by black 

pixels. This kind of precise labeling helps the model to 

learn accurate forgery boundaries during its supervised 

training. All image data, including original images, 

forged images, masks, and noise pairs, should be 

systematically organized and converted into NumPy 

array format to support efficient loading and 

processing during model training. 



© February 2026 | IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002 

 

IJIRT 192072 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 124 

 

 
Figure 2. Forgery Detection Flow 

 

3.2 Dataset Preprocessing 

It is an important preliminary step in data 

preprocessing for uniformity, numerical stability, and 

compatibility of the dataset with the deep learning 

model. All images are converted into RGB format and 

then resized to a fixed resolution of 256 × 256 pixels 

to have a consistent resolution quality from different 

sources. The pixel values are normalized in the range 

of 0 to 1, which enhances the convergence during 

training and avoids numerical instability. These 

preprocessing steps ensure that the model receives 

standardized input regardless of the original image 

resolution or format. 

For forgery detection based on splicing, binary masks 

go through the same resizing and normalization 

procedures as the original images. Each mask is 

spatially aligned with its corresponding image so that 

pixel-wise correspondence is guaranteed for training. 

This becomes crucial in correctly computing the loss 

and also accurately localizing the forged regions. 

These preprocessed image-mask pairs allow the model 

to effectively learn the reconstruction patterns 

associated with splicing artifacts. It basically pairs 

noisy images with their clean reference images. As a 

result, the images are matched in size, normalized, and 

aligned for the reconstruction-based learning process. 

Such data would then undergo a random shuffle in 

order to minimize any learning bias, followed by a 

division into training and testing sets to evaluate its 

performance in terms of generalization. The above-

mentioned steps belong to preprocessing through 

which the model gets learned about noise 

inconsistencies that hint at tampering. Overall, the 

creation and preprocessing of the dataset ensure that 

the proposed deep reconstruction-based framework is 

trained on good quality and well-structured data. Such 

systematic preparation of splicing and noise-based 

forgery datasets enables effective learning of 

manipulation artifacts and largely contributes to the 

accuracy and reliability of the image forgery detection 

system. 

 

3.3 PROPOSED METHODS  

The proposed system introduces the Deep 

Reconstruction-Based Framework for Image Forgery 

Detection. The main purpose of the proposed approach 

is not only the detection of image manipulation but the 

identification of the forged regions as well. The 

proposed framework is capable of addressing multiple 

types of image manipulations, including splicing-

based image forgery and noise-based image forgery, 

utilizing a unified reconstruction learning approach. 

The proposed approach involves a number of steps, 

including the preparation of the dataset, training of the 

deep learning model, location of the forgery, metadata 

analysis, verification of perceptual similarity, and 

deployment of the system using an interactive 

interface and API.  

 

3.3.1. Deep Reconstruction-Based Forgery Detection 

Algorithm 

The main algorithm applied within this project is a 

Convolutional Encoder-Decoder Network, which is a 

variant of the U-Net structure and is applied for 

reconstruction-based learning. Contrary to common 

classification architectures, this method is applied for 

pixel-wise prediction and is used for locating 

tampering areas. The encoding part of this neural 

network includes a number of convolutional layers 

followed by max pooling layers. These layers, 

gradually, extract higher semantic features like 

texture, edge, and noise irregularities introduced 

during tampering. 
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While the input image progresses through the encoder, 

the resolution is decreased, whereas the depth 

increases, which facilitates abstract feature learning 

for forgery details. The reconstruction phase, 

involving the decoder, recovers the resolution by 

utilizing up sampling layers. The reconstruction-based 

approach for learning facilitates the usage of abnormal 

patterns, as there is no need for feature engineering. 

The mask for forgery, which was previously designed 

manually, can now be obtained from the model. 

The proposed model is trained with input image pairs 

and ground truth. In cases involving image splicing, as 

an example of forgery type, ground truth is in the form 

of a binary mask, with regions as either forged or non-

forged. In cases involving forgery using noise, unlike 

previous approaches, this proposed approach trains an 

image reconstruction mechanism to restore clean 

versions of images using input images contaminated 

with noise, thereby addressing inconsistencies with 

respect to noise. The Adam optimizer has been utilized 

to enable optimal convergence. The mean squared 

error function has been utilized to ensure that 

predictions and ground truth match closely. 

 
Figure 3. U-Net Model Forgery Evaluation 

 

3.3.2 Splicing-Based Forgery 

Splicing-based forgery detection involves assisting in 

finding areas in which image content has been merged 

from other images. Such forgeries bring in 

inconsistencies in boundary areas, textures, and noise. 

In this project, splicing forgery detection involves 

supervised learning in terms of pixels. In this process, 

every spliced image has been provided with a forgery 

image that distinguishes pixels within counterfeit 

areas from real image pixels. 

Through training, the encoder-decoder network is able 

to link visual anomalies with regions that have been 

spliced in order to optimize the loss between the 

predicted and actual masks. The network output is 

hence the forgery mask that helps pinpoint the regions 

for forensic analysis. This method is more 

interpretable than binary classification. 

 
Figure 4. Working of U-Net Model 

 

3.3.3 Noise-Based Forgery  

This model for noise-based forgery focuses on the 

manipulations created by the insertion, filtration, or 

smoothing of artificial noise. This process can 

potentially lack the presence of apparent structural 

alterations but may vary the statistical characteristics 

of the image instead. In this scenario, the idea aims to 

address this issue by incorporating a learning process 

based on the reconstruction of both the clean image 

and the noise. 

The model is trained on reconstructing clean images 

from noisy images. When reconstructing, 

discrepancies between the reconstructed image and 

the original image reveal possible tampering. This 

model allows for detection of noise level 

manipulation, which can be difficult to reveal by 

visual inspection. Noise level manipulation can add 

robustness to the framework since it tackles 

manipulation schemes that are not based on explicit 

region replacement. 
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Figure 5. Denoising Noisy Image 

 

3.3.4  EXIF Metadata Tampering Detection Algorithm 

Apart from the visual analysis feature, the project 

combines the analysis of EXIF image metadata for the 

purpose of complementing the forensic analysis. The 

EXIF image metadata is typically comprised of details 

such as the model type, date taken, resolution, as well 

as the software used in the image processing. The 

project is capable of analyzing the available EXIF 

image metadata for inconsistencies. 

Images lacking metadata, contradictory camera 

information, and traces of photo editing software are 

considered suspicious and potentially tampered. 

Although inconclusive metadata analysis cannot be 

used as proof of tampering, it is important subsidiary 

evidence that enhances the whole analysis 

process.This module enhances the analysis process 

and adds accuracy using both visual and non-visual 

forensic features. 

 

3.3.5 Perceptual Hashing Algorithm of Similarity of 

Images 

Perceptual hashing is applied to find duplicate and 

near-duplicate images effectively. Unlike traditional 

hash functions (cryptographic hashes), perceptual 

hashes produce hashes that are similar for images that 

look alike although possibly different in some way 

owing to compression or minor modifications.This 

project applies perceptual hashing to produce a hash 

of an image that is compared against existing hashes 

to find images that are reused or altered. 

It is helpful in massive-scale forgery verification of 

images because it aids fast similarity searches. 

Perceptual hashing is useful in conjunction with deep 

learning-based forgery detection because it allows 

analysis of structural similarity irrespective of pixel-

wise learning. 

 

3.3.6 Commercial and Customer Contacts 

The FO of the system starts when an image is uploaded 

by a user either through the interface or through an 

API. The image will undergo pre-processing 

techniques like resizing, normalization, and format 

change. The pre-processed image will then go through 

a deep reconstruction-based forgery localization. At 

the same time, the EXIF metadata analysis and 

perceptual hashing process takes place. The results 

obtained from all the modules are combined to obtain 

the final result, which comprises the results for the 

confidence in the forgery, the result for the predicted 

forgery mask, the results for the metadata analysis, and 

the results for the similarity verification. 

 

3.3.7 Key Features of Proposed System 

This system allows for the localization of forgery at 

the pixel level as opposed to just classification, 

making it more interpretable and useful for forensics. 

It handles various types of forgery, including splicing 

and those involving noise, under this single model. 

EXIF analysis and perceptual hashing also make this 

system more robust at visualization-independent 

forensics as it entails both visualization and non-

visualization forensics analysis. This system allows 

for real-time inference using API, thereby easily 

incorporating into other applications or large 

databases. 

 
Figure 6. Prediction of Forgery Image using Binary 

and Heatmap Masks 
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IV. RESULTS 

 

 
Figure 7. U-Net Model Evaluation Metrics 

 

The proposed Deep Reconstruction-Based Framework 

for Image Forgery Detection was tested using a variety 

of image scenarios, including both real and fake areas 

of the image. The proposed framework is capable of 

detecting image forgery, identifying areas of image 

manipulation on a pixel-by-pixel basis, as well as 

examining inconsistencies of image metadata while 

producing accurate confidence scores by means of 

real-time processing. The proposed system is able to 

accomplish these tasks successfully. 

In the context of forgery mask detection using 

splicing, the reconstruction model used in the 

proposed approach successfully identified the 

manipulated parts by providing a pixel-level mask of 

forgery. In different test scenarios, the predicted 

forgery masks were found to be very close to the actual 

masks, thus indicating the delineation of boundaries as 

well as the manipulated areas. The result showed 

successful reconstruction model performance, as the 

model efficiently picked the structural inconsistencies 

like texture, boundary, and light variations, usually 

observed in splicing, using the encoder-decoder 

approach. 

However, in the context of noise-based forgery 

detection, the reconstruction learning algorithm 

helped the network to learn how to spot discrepancies 

resulting from noise insertion and filtering actions. 

The network learned to spot discrepancies in noise 

level manipulation that are usually imperceptible to 

human observation. This clearly showcases that 

despite lack of regional replacement manipulations in 

forgery methods, the proposed framework performs 

well. 

Another aspect that aided the detection system is the 

analysis of the metadata of the images. Missing or 

inconsistent metadata in the EXIF has been identified 

in the test images using metadata analysis. It is 

important to note that the analysis of the metadata of 

the image alone cannot be used to detect image 

forging. However, the combination of the analysis of 

the metadata with the visualization of the forged image 

has been of great use. Images with missing metadata 

or trace amounts of editing software were also 

identified correctly. 

The REST API ensured a steady flow of structured and 

interpretable results for each of the images tested. The 

outcomes of the forgery classification of images 

included the classification result together with the 

quantitative values of the forgery percentage and the 

confidence score. The forgery percentage gave 

information about the amount of manipulation in the 

image, while the confidence score indicated the 

model's certainty in the classification. High 

confidence scores were usually taken in cases of 

heavily forged images, while the scores were lower in 

cases of subtle images. 

 
Figure 8. Forgery Detection API Test Results 

 

The Streamlit interface enabled intuitive visualization 

of the results, allowing direct comparisons between 

the original images and the predicted forge masks. The 

proposed approach has become more interpretable due 

to the web interface and API layer, which ensures the 

stability and readiness to be implemented of the 

design. Consistent results from the web interface and 

API layer emphasize the readiness of the proposed 

approach to be implemented. In conclusion, the 

experimental evaluation proves that the deep 

reconstruction-based method introduced in this article 
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is indeed effective in detecting and locating image 

forgery in images with various types of forgery and 

image conditions. The integration of pixel-level deep 

learning analysis with metadata examination, 

perceptual similarity check, and real-time processing 

capabilities into this method has made it reliable, 

interpretable, and scalable in digital image forgery 

detection tasks. 

 
Figure 9. Forgery Detection using Forgery Mask 

 

V. CONCLUSION 

 

This work presents a Deep Reconstruction-Based 

Framework for Image Forgery Detection with a view 

to the growing challenge of image authenticity 

verification due to advanced digital manipulation 

techniques. Furthermore, the proposed system was 

designed to go beyond traditional methods in image-

level classification with state-of-the-art performance 

in pixel-level forgery detection and localization to 

offer both accurate detection and clear visual 

interpretability. By leveraging a convolutional 

encoder–decoder architecture inspired from U-Net, 

the framework effectively learned structural and 

statistical inconsistencies introduced during image 

tampering. 

The experimental evaluation showed that the 

reconstruction-based learning strategy is effective in 

finding forged regions within varied manipulation 

types, splicing-based and noise-based forgeries. This 

generating of forgery masks for precise localization of 

tampered areas enhanced forensic reliability 

significantly compared to the usual binary detection 

methods. Noise-based forgery analysis further 

improved robustness by rendering the system capable 

of detecting subtle statistical alterations-often very 

difficult to perceive with simple visual inspection. 

Besides deep learning-based visual analysis, the 

combination of EXIF metadata inspection and 

perceptual hashing reinforced the general detection 

process by adding complementary forensic cues. 

Metadata analysis supplied supportive evidence in 

those cases where the detection based on a pure visual 

approach was insufficient, while perceptual hashing 

allowed the identification of near-duplicates and 

duplicates in an efficient manner. Combining the 

results of visual, metadata, and similarity-based 

analysis resulted in a more complete and trustworthy 

forgery detection framework. 

This has been demonstrated in a proposed system 

through the implementation of a REST-based API and 

a Streamlit-powered user interface. Real-time 

inference, structured response outputs, and intuitive 

visualization capabilities make the framework suitable 

for integration with external applications, large-scale 

image repositories, and automated verification 

pipelines. The design at the system level guarantees 

that the proposed solution does not remain limited to 

experimental evaluation but is capable of solving 

digital forensics challenges in real-world scenarios. 

Overall, the proposed Deep Reconstruction-Based 

Framework for Image Forgery Detection effectively 

unifies deep learning, forensic analysis, and system 

deployment to form a single, scalable solution. It 

contributes to the field of digital image forensics, 

providing an interpretable, robust, and practical 

approach toward the detection and localization of 

image manipulations. The results from this work 

illustrate the potential of the reconstruction-based deep 

learning model further down the road toward trust, 

authenticity, and reliability in digital visual media. 
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