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Abstract—Two-dimensional materials are about to 

change the world of next-generation electronics by 

making it possible to make smaller, more energy-efficient 

devices with new features. Because they are so thin and 

have great electrical, mechanical, and optical properties, 

they are perfect for making ultra-scaled transistors, as 

well as neuromorphic and quantum technologies. But 

getting these materials ready for production is hard 

because there are so many different factors that go into 

making and combining them. This problem can be solved 

very well with machine learning. ML speeds up the 

development cycle by finding hidden patterns in large 

experimental datasets and automating high-throughput 

testing. This paper examines that pivotal intersection, 

elucidating how machine learning improves material 

characterisation, refines growth processes to regulate 

morphology, and optimises fabrication parameters for 

enhanced device performance. 

#Machine #Learning #2D #ML #Quantum #Technology 

 

I. INTRODUCTION 

 

The primary objective of this research is to provide a 

comprehensive analysis of the expanding synergy 

between machine learning and two-dimensional 

materials. This study will show the most recent 

achievements, the problems that will still be there, and 

the huge chances that are still to come in the field of 

device engineering. Machine learning (ML) has grown 

from being a niche academic field to a game-changing 

technology that is changing everything from advanced 

speech and image recognition to medical diagnostics 

[1–8].  

Machine learning has made it much easier to make 

sense of complicated experimental data in the field of 

materials science. This success has naturally carried 

over to the field. Researchers can find small patterns 

and connections that aren't straight lines in huge 

datasets by using these algorithms. These are insights 

that are often hard to see with just standard analysis. 

This processing power, along with the current lab 

setup, makes things even more effective. The rise of 

automated, high-throughput experimental platforms 

has made it much cheaper and faster to run each 

experiment, which has made it possible to collect and 

analyse experimental data much more quickly [9–12]. 

Machine learning is now seen as not only a useful tool, 

but also a key factor in speeding up the creation of new 

2D material technologies. All of these 

accomplishments point to a shift in the way things are 

done, which puts machine learning as. 

 

II. ML ALGORITHMS 

 

Choosing an algorithm is not a routine box-ticking step 

in a machine learning workflow; it is a deliberate 

decision that must reflect the character of the dataset 

how large it is, how many features it has, how sparse 

the data may be, and whether the outputs are 

continuous values or discrete categories. Because 

these conditions vary widely from one problem to 

another, no single method can be applied universally. 

Instead, researchers select among three broad families 

of approaches supervised, unsupervised, and 

reinforcement learning depending on the nature of the 

task (Figure 1). 

Within 2D material informatics, supervised learning 

has become the mainstay [13]. Using labelled datasets, 

models are trained to capture relationships between 

input descriptors and target properties, either through 

regression when the target is a continuous quantity or 

classification when it falls into distinct classes. In 

automated laboratory environments, methods such as 

support vector machines (SVMs) and tree-based 

algorithms are routinely employed to predict material 

properties and guide experiments. More recently, deep 

neural networks (DNNs), including large language 

models (LLMs), have been introduced to cope with 

increasingly complex and high-dimensional data 

structures [14,15]. 
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When labels are not available, unsupervised learning 

offers an alternative route. Techniques like k-means 

clustering, principal component analysis (PCA), and t-

distributed stochastic neighbour embedding (t-SNE) 

are used to reduce dimensionality and uncover patterns 

in raw data [16,17]. These methods help reveal 

underlying structure, group similar samples, and make 

high-dimensional material spaces more accessible and 

interpretable. Reinforcement learning provides yet 

another perspective: here, a learning agent interacts 

with its environment and gradually improves its 

decisions by maximising a cumulative reward. 

Algorithms such as Q-learning and deep deterministic 

policy gradients (DDPG) are particularly suited to 

developing strategies for long-term experimental 

planning and optimisation [18–20]. Together, these 

approaches, summarised schematically in Figure 1, 

form a versatile toolkit for exploring, designing, and 

optimising 2D materials. 

 

 
Figure 1. Various Machine Learning Models and Algorithms 

 

III. TRAINING, VALIDATION, AND TESTING 

 

Any researcher who uses machine learning knows that 

training, validation, and testing are not separate 

procedures; they are three parts of a whole that affect 

how dependable a model will be in the end [21]. What 

makes a concept that appears good on paper work in 

the real world is getting this pipeline right.  The model 

is given a batch of labelled examples during training, 

and it steadily changes its internal weights to find the 

patterns in the data. The problem is that a model might 

get too excellent at fitting the training data, which 

means it remembers examples instead of learning the 

rules that would let it apply what it learnt to new 

circumstances.  

Validation is what this is all about. Researchers can 

honestly judge how well the model is doing as they 

change its settings like how complicated it should be, 

how much regularisation to use, or what learning rate 

to employ by setting aside a distinct set of data that the 

model never trains on. If you don't do this step, you 

won't be able to tell if the model is really learning or 

just overfitting.  

The model's final test is the test set, which it takes once 

it has been fully trained and all the settings are 

established. This dataset has examples that the model 

has never seen before, thus it gives the most accurate 

picture of how it will work in the real world. Training 

educates the model, validation picks the best one, and 

testing tells you if it's ready for the real world. 
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Figure 2. Training, validation, and test set 

 

We can make a good machine learning model in one 

go. It happens in three stages: training, validation, and 

testing. These stages are all very connected, and each 

one affects the nextTraining is where it all begins. The 

model is given a set of labelled examples and starts to 

change its internal weights so that it can find patterns 

in the data. The model reads through examples, makes 

mistakes, corrects itself, and slowly gets better at 

finding the important features. It's a bit like learning 

from a textbook. But there's a problem. If the model 

pays too much attention to the training examples, it 

might just memorise them instead of learning general 

rules. When that happens, it has a hard time with 

anything new. That is where validation comes in. 

Researchers can see how well the model is really 

learning by keeping back a separate piece of data that 

the model never trains on. You can change settings like 

how deep the network should be or how aggressively 

to regularise at this stage. You can also catch 

overfitting before it ruins the model. If you skip this 

step, it's like giving a student the same questions they 

practiced on; the results don't tell you much about how 

well they understand. 

The test is the last step and the final decision. After all 

the tuning is done and the model is set in stone, it has 

to deal with data it has never seen before. This new test 

shows how the model will work in the real world. In 

short, training gives the model its knowledge, 

validation checks that knowledge, and testing shows 

whether the model is really ready to be used in real life. 

 

IV. RECENT PROGRESS IN ML 

 

Recent improvements in machine learning have 

changed materials science from trial-and-error to data-

driven discovery. This lets scientists quickly search 

through huge chemical spaces for new candidates. 

Machine learning and physics-informed models can 

now accurately predict how different structures affect 

properties and find the best synthesis parameters, 

which saves a lot of time and money on experiments. 

Combining generative algorithms with high-

throughput experimentation is making the goal of 

inverse design a reality. This lets researchers design 

materials with specific, pre-defined functions on their 

own. Because of ML's recent amazing progress in 

material synthesis, it is now faster and easier to find 

new materials. Merchant et al. [22] introduced 

GNoME, an advanced AI tool that predicts stable 

material structures, to speed up the synthesis and 

discovery of materials. Szymanski et al. [23] built on 

GNoME's features by using its predictions in a 

separate lab called A-Lab. This innovative approach 

led to the successful synthesis of 41 new materials in 

just 17 days. This shows that machine learning can 

help material science by automating synthesis and 

discovery. 
 

V. ML FOR 2D MATERIAL GROWTH 

PROCESSES 

 

Through high-throughput computationally exfoliating 

of empirically recognised substances, a large number 

of 2D layered materials have been found as building 

blocks of 2D-material–based nanodevices [24]. 

Furthermore, density functional theory predicts a large 
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number of new 2D materials. ML-based structure–

function relations [25], hopping methods [26,27], 

evolutionary algorithms [28-30], simulated annealing 

[31,32], metaheuristic–ML hybrid methods [33], 

crystal structure classification [34], generative 

models[35], and chemical exfoliation screening based 

on large-scale computation [36,37] are just a few of the 

varied methods for material prediction that have 

recently surfaced with the rise of AI. 

Recent progress in making 2D materials has led to the 

creation of self-driving platforms that use active 

learning to get around the limits of traditional chemical 

vapour deposition scalability. These platforms can 

quickly navigate complex parameter spaces to stabilise 

hard-to-find metastable phases. This evolution is even 

stronger thanks to the combination of deep learning 

with in-situ characterisation. This makes real-time 

feedback loops possible, which help with precise 

defect engineering and grain boundary control in 

wafer-scale van der Waals heterostructures. As a 

result, the creation of a closed-loop synergy between 

computer-based prediction and robotic 

experimentation is making it possible to quickly 

reverse-engineer functional materials, which greatly 

shortens the time between theoretical discovery and 

device use. 

 

Table 1 Research advances in 2D material synthesis techniques combined with experimental methods and ML. 

Synthesis Technology Target ML Algorithms Features Year Ref 

CVD 
Controlled growth of 2D 

materials 
XGBoost 

parameters for the 

experimental growth ofWTe2 
2021 [38] 

flash Jouleheating Predicted graphene yield XGBoost 
flash Joule heating reaction 

parameters 
2022 [39] 

CVD Projected growth area 
Gaussian 

processregression 
h-BN growth parameters 2023 [40] 

laser Induction Parameter optimization 
Bayesian 

optimization 

laser power, scanning speed, 

reactionchamber pressure and 

gas type 

2024 [41] 

laser Induction 

Predict 

conductivity,morphology, 

and sheet resistance 

Gaussian 

processregression 
laser speed, power, duty cycle 2024 [42] 

 

VI. RESEARCH ADVANCES IN 2D DEVICE 

DESIGN USING ML 

 

Researchers now look at microscopy and spectroscopy 

data in a different way thanks to machine learning in 

the characterisation lab.  Things that used to take hours 

of manual interpretation can now be done in seconds.  

Deep learning models that have been trained on 

methods like Raman and photoluminescence 

spectroscopy can almost instantly show layer 

thickness, strain distributions, and defect densities.  

This combination of computer power and 

experimental tools makes it possible to do high-

throughput quality control and find small structural 

details that the human eye would probably miss. 

Machine learning is changing how 2D electronics are 

made on the device side.  The old way of doing things 

running experiment after experiment, changing 

parameters one at a time, and hoping for the best is 

being replaced by something much better.  Researchers 

can now use algorithms to predict important 

performance numbers like contact resistance, 

bandgap, and carrier mobility. This lets them optimise 

heterostructure layouts before making a single device.  

Generative models and Bayesian optimisation are 

changing the design process in ways that go beyond 

just making predictions.  Researchers can now ask, 

"What structure will give me these properties?" instead 

of "What properties will this structure have?" and get 

an answer.  This inverse design strategy is very helpful 

for speeding up the creation of new logic circuits and 

optoelectronic devices. 
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Table 2 Research advances in 2D material characterization techniques combined with experimental methods and 

ML. 

CharacterizationTechni

que 
Target ML Algorithms Year Ref 

optical microscope 
identification of monolayer MoS2and 3D 

characterization 
SVM, KNN and randomforest 2021 [43] 

PL spectroscopy identify perturbation components PCA and k-meansclustering 2021 [44] 

Raman spectroscopy determine the range of torsionangles random forest, SVM 2022 [45] 

AFM predict crystal coverage CNN 2024 [46] 

AFM identify films at differenttemperatures CNN 2024 [47] 

optical microscope identify thickness and predictingtwist angle 
semantic segmentationCNN and 

ResNet 
2024 [48] 

optical microscope detection, classification 2Dmaterials Gaussian mixturemodel 2024 [49] 

 

VII. CONCLUSION 

 

In a nutshell, machine learning is causing a shift in the 

manufacturing process of two-dimensional material 

devices by removing experimental barriers and 

empowering designers to engage in independent 

efforts. Because it makes the entire process, from 

synthesis to fabrication, more efficient, it reduces costs 

and speeds up the innovation process. It is a well-

known fact that the region continues to face 

considerable challenges, including a lack of sufficient 

data, standards that are not always consistent, and the 

inability to duplicate outcomes. The path forward, 

however, is crystal clear: the amalgamation of these 

computer techniques with hands-on testing is the most 

effective method for accelerating the discovery and 

enhancement of electronics of the future generation. 
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