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Abstract—Two-dimensional materials are about to
change the world of next-generation electronics by
making it possible to make smaller, more energy-efficient
devices with new features. Because they are so thin and
have great electrical, mechanical, and optical properties,
they are perfect for making ultra-scaled transistors, as
well as neuromorphic and quantum technologies. But
getting these materials ready for production is hard
because there are so many different factors that go into
making and combining them. This problem can be solved
very well with machine learning. ML speeds up the
development cycle by finding hidden patterns in large
experimental datasets and automating high-throughput
testing. This paper examines that pivotal intersection,
elucidating how machine learning improves material
characterisation, refines growth processes to regulate
morphology, and optimises fabrication parameters for
enhanced device performance.

#Machine #Learning #2D #ML #Quantum #Technology

I. INTRODUCTION

The primary objective of this research is to provide a
comprehensive analysis of the expanding synergy
between machine learning and two-dimensional
materials. This study will show the most recent
achievements, the problems that will still be there, and
the huge chances that are still to come in the field of
device engineering. Machine learning (ML) has grown
from being a niche academic field to a game-changing
technology that is changing everything from advanced
speech and image recognition to medical diagnostics
[1-8].

Machine learning has made it much easier to make
sense of complicated experimental data in the field of
materials science. This success has naturally carried
over to the field. Researchers can find small patterns
and connections that aren't straight lines in huge
datasets by using these algorithms. These are insights
that are often hard to see with just standard analysis.
This processing power, along with the current lab
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setup, makes things even more effective. The rise of
automated, high-throughput experimental platforms
has made it much cheaper and faster to run each
experiment, which has made it possible to collect and
analyse experimental data much more quickly [9-12].
Machine learning is now seen as not only a useful tool,
but also a key factor in speeding up the creation of new
2D  material  technologies. All of these
accomplishments point to a shift in the way things are
done, which puts machine learning as.

II. ML ALGORITHMS

Choosing an algorithm is not a routine box-ticking step
in a machine learning workflow; it is a deliberate
decision that must reflect the character of the dataset
how large it is, how many features it has, how sparse
the data may be, and whether the outputs are
continuous values or discrete categories. Because
these conditions vary widely from one problem to
another, no single method can be applied universally.
Instead, researchers select among three broad families
of approaches supervised, unsupervised, and
reinforcement learning depending on the nature of the
task (Figure 1).

Within 2D material informatics, supervised learning
has become the mainstay [13]. Using labelled datasets,
models are trained to capture relationships between
input descriptors and target properties, either through
regression when the target is a continuous quantity or
classification when it falls into distinct classes. In
automated laboratory environments, methods such as
support vector machines (SVMs) and tree-based
algorithms are routinely employed to predict material
properties and guide experiments. More recently, deep
neural networks (DNNs), including large language
models (LLMs), have been introduced to cope with
increasingly complex and high-dimensional data
structures [14,15].
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When labels are not available, unsupervised learning
offers an alternative route. Techniques like k-means
clustering, principal component analysis (PCA), and t-
distributed stochastic neighbour embedding (t-SNE)
are used to reduce dimensionality and uncover patterns
in raw data [16,17]. These methods help reveal
underlying structure, group similar samples, and make
high-dimensional material spaces more accessible and
interpretable. Reinforcement learning provides yet
another perspective: here, a learning agent interacts

with its environment and gradually improves its
decisions by maximising a cumulative reward.
Algorithms such as Q-learning and deep deterministic
policy gradients (DDPG) are particularly suited to
developing strategies for long-term experimental
planning and optimisation [18-20]. Together, these
approaches, summarised schematically in Figure 1,
form a versatile toolkit for exploring, designing, and
optimising 2D materials.

Machine Learning Models and Algorithms

!

!

Supervised Learning

|

* Linear models

Linear regression

Logistic regression

* Non-linear models

Naive bayes

Support vector machine (SVM)
K-Nearest neighbors (KNN)

+ Tree-based models
Decision tree

Random forest

!

Unsupervised Learning

|

Clustering
+  K-means
+ DBSCAN
+ Hierarchical
+ Dimensionality reduction
+ Principal component analysis
(PCA)
+ T-Distributed stochastic
neighbor embedding (T-SNE)
+ Self-organizing map (SOM)

AdaBoost * Association rule learning
Gradient boosting trees (e.g., XGBoost, * Apriori algorithm
LightGBM) * FP-growth algorithm

* Supervised networks
Feed-forward networks
Convolutional networks

* Anomaly detection
* Single-class SVM
* |solation forest

]

Reinforcement Learning

}

* Value-based methods

Deep Q-Network (DQN)
Double DON

Dueling DON
Q-Learning

* Policy-based methods

REINFORCE (Policy Gradient)
Actor-critic

Proximal policy optimization (PPO)
Trust region policy optimization
(TRPO)

* Model-based methods

Monte Carlo tree search (MCTS)
Dyna-Q

Recurrent networks
Graph networks

Figure 1. Various Machine Learning Models and Algorithms

III. TRAINING, VALIDATION, AND TESTING

Any researcher who uses machine learning knows that
training, validation, and testing are not separate
procedures; they are three parts of a whole that affect
how dependable a model will be in the end [21]. What
makes a concept that appears good on paper work in
the real world is getting this pipeline right. The model
is given a batch of labelled examples during training,
and it steadily changes its internal weights to find the
patterns in the data. The problem is that a model might
get too excellent at fitting the training data, which
means it remembers examples instead of learning the
rules that would let it apply what it learnt to new
circumstances.
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Validation is what this is all about. Researchers can
honestly judge how well the model is doing as they
change its settings like how complicated it should be,
how much regularisation to use, or what learning rate
to employ by setting aside a distinct set of data that the
model never trains on. If you don't do this step, you
won't be able to tell if the model is really learning or
just overfitting.

The model's final test is the test set, which it takes once
it has been fully trained and all the settings are
established. This dataset has examples that the model
has never seen before, thus it gives the most accurate
picture of how it will work in the real world. Training
educates the model, validation picks the best one, and
testing tells you if it's ready for the real world.
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(~70-80%):

(~10-15%):

(~10-15%):

Training Set

Validation Set

Test Set

Role: Model Learning

Function: Facilitates feature
learning and weight
adjustment.

Role: Optimization

Function: Used for
hyperparameter tuning
and early stopping to
ensure stability.

Role: Final Evaluation

Function: Provides a
proxy for real-world
performance on strictly
unseen data.

Figure 2. Training, validation, and test set

We can make a good machine learning model in one
go. It happens in three stages: training, validation, and
testing. These stages are all very connected, and each
one affects the nextTraining is where it all begins. The
model is given a set of labelled examples and starts to
change its internal weights so that it can find patterns
in the data. The model reads through examples, makes
mistakes, corrects itself, and slowly gets better at
finding the important features. It's a bit like learning
from a textbook. But there's a problem. If the model
pays too much attention to the training examples, it
might just memorise them instead of learning general
rules. When that happens, it has a hard time with
anything new. That is where validation comes in.
Researchers can see how well the model is really
learning by keeping back a separate piece of data that
the model never trains on. You can change settings like
how deep the network should be or how aggressively
to regularise at this stage. You can also catch
overfitting before it ruins the model. If you skip this
step, it's like giving a student the same questions they
practiced on; the results don't tell you much about how
well they understand.

The test is the last step and the final decision. After all
the tuning is done and the model is set in stone, it has
to deal with data it has never seen before. This new test
shows how the model will work in the real world. In
short, training gives the model its knowledge,
validation checks that knowledge, and testing shows
whether the model is really ready to be used in real life.

IV. RECENT PROGRESS IN ML
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Recent improvements in machine learning have
changed materials science from trial-and-error to data-
driven discovery. This lets scientists quickly search
through huge chemical spaces for new candidates.
Machine learning and physics-informed models can
now accurately predict how different structures affect
properties and find the best synthesis parameters,
which saves a lot of time and money on experiments.
Combining generative algorithms with high-
throughput experimentation is making the goal of
inverse design a reality. This lets researchers design
materials with specific, pre-defined functions on their
own. Because of ML's recent amazing progress in
material synthesis, it is now faster and easier to find
new materials. Merchant et al. [22] introduced
GNoOME, an advanced Al tool that predicts stable
material structures, to speed up the synthesis and
discovery of materials. Szymanski et al. [23] built on
GNoME's features by using its predictions in a
separate lab called A-Lab. This innovative approach
led to the successful synthesis of 41 new materials in
just 17 days. This shows that machine learning can
help material science by automating synthesis and
discovery.

V. ML FOR 2D MATERIAL GROWTH
PROCESSES

Through high-throughput computationally exfoliating
of empirically recognised substances, a large number
of 2D layered materials have been found as building
blocks of 2D-material-based nanodevices [24].
Furthermore, density functional theory predicts a large
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number of new 2D materials. ML-based structure—
function relations [25], hopping methods [26,27],
evolutionary algorithms [28-30], simulated annealing
[31,32], metaheuristic-ML hybrid methods [33],
crystal structure classification [34], generative
models[35], and chemical exfoliation screening based
on large-scale computation [36,37] are just a few of the
varied methods for material prediction that have
recently surfaced with the rise of Al

Recent progress in making 2D materials has led to the
creation of self-driving platforms that use active
learning to get around the limits of traditional chemical
vapour deposition scalability. These platforms can

quickly navigate complex parameter spaces to stabilise
hard-to-find metastable phases. This evolution is even
stronger thanks to the combination of deep learning
with in-situ characterisation. This makes real-time
feedback loops possible, which help with precise
defect engineering and grain boundary control in
wafer-scale van der Waals heterostructures. As a
result, the creation of a closed-loop synergy between
computer-based prediction and robotic
experimentation is making it possible to quickly
reverse-engineer functional materials, which greatly
shortens the time between theoretical discovery and
device use.

Table 1 Research advances in 2D material synthesis techniques combined with experimental methods and ML.

Synthesis Technology Target ML Algorithms Features Year Ref
CcVD Controlled gr9wth of 2D XGBoost parameters for the 2021 [38]
materials experimental growth of WTe2
. . . flash Joule heating reaction
flash Jouleheating Predicted graphene yield XGBoost 2022 [39]
parameters
. Gaussi
CVD Projected growth area ausstan . h-BN growth parameters 2023 [40]
processregression
. laser power, scanning speed,
. L Bayesian .
laser Induction Parameter optimization L reactionchamber pressure and | 2024 [41]
optimization
gas type
Predict .
. . Gaussian
laser Induction conductivity,morphology, . laser speed, power, duty cycle | 2024 [42]
. processregression
and sheet resistance

VI. RESEARCH ADVANCES IN 2D DEVICE
DESIGN USING ML

Researchers now look at microscopy and spectroscopy
data in a different way thanks to machine learning in
the characterisation lab. Things that used to take hours
of manual interpretation can now be done in seconds.
Deep learning models that have been trained on
methods  like and photoluminescence
spectroscopy can almost instantly show layer
thickness, strain distributions, and defect densities.
This combination of computer power and
experimental tools makes it possible to do high-
throughput quality control and find small structural
details that the human eye would probably miss.

Machine learning is changing how 2D electronics are
made on the device side. The old way of doing things

Raman
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running experiment after experiment, changing
parameters one at a time, and hoping for the best is
being replaced by something much better. Researchers
can now use algorithms to predict important
performance numbers like contact resistance,
bandgap, and carrier mobility. This lets them optimise
heterostructure layouts before making a single device.
Generative models and Bayesian optimisation are
changing the design process in ways that go beyond
just making predictions. Researchers can now ask,
"What structure will give me these properties?" instead
of "What properties will this structure have?" and get
an answer. This inverse design strategy is very helpful
for speeding up the creation of new logic circuits and
optoelectronic devices.
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Table 2 Research advances in 2D material characterization techniques combined with experimental methods and

Character;zs:onTechm Target ML Algorithms Year | Ref
identification of 1 MoS2and 3D
optical microscope (dentitication o monq ay'er os-an SVM, KNN and randomforest 2021 | [43]
characterization

PL spectroscopy identify perturbation components PCA and k-meansclustering 2021 | [44]
Raman spectroscopy determine the range of torsionangles random forest, SVM 2022 | [45]
AFM predict crystal coverage CNN 2024 | [46]

AFM identify films at differenttemperatures CNN 2024 | [47]

ti tationCNN and

optical microscope identify thickness and predictingtwist angle semantic seg}t;e ?Il\fztlon an 2024 | [48]
optical microscope detection, classification 2Dmaterials Gaussian mixturemodel 2024 | [49]

VII. CONCLUSION

In a nutshell, machine learning is causing a shift in the
manufacturing process of two-dimensional material
devices by removing experimental barriers and
empowering designers to engage in independent
efforts. Because it makes the entire process, from
synthesis to fabrication, more efficient, it reduces costs
and speeds up the innovation process. It is a well-
known fact that the region continues to face
considerable challenges, including a lack of sufficient
data, standards that are not always consistent, and the
inability to duplicate outcomes. The path forward,
however, is crystal clear: the amalgamation of these
computer techniques with hands-on testing is the most
effective method for accelerating the discovery and
enhancement of electronics of the future generation.
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