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Abstract- Mathematical modeling provides a powerful
framework for understanding the spread of infectious
diseases and evaluating control strategies. In this
study, a susceptible-infected—recovered (SIR)
epidemic model incorporating vaccination is proposed
and analyzed. The model is formulated as a system of
nonlinear ordinary differential equations. The basic
reproduction number R is derived to characterize the
threshold behavior of disease transmission. Stability
analysis is performed to investigate the local and global
dynamics of the equilibrium points. Bifurcation
analysis is carried out to study qualitative changes in
the system near critical parameter values. Sensitivity
analysis is used to determine the relative importance of
model parameters. Numerical simulations based on the
fourth-order Runge—Kutta method are presented to
validate the analytical results. The results demonstrate
that vaccination significantly reduces the infected
population and plays a crucial role in preventing
epidemic outbreaks.
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I. INTRODUCTION

Infectious diseases remain one of the major global
challenges to public health systems. Epidemics such
as influenza, tuberculosis, HIV/AIDS, malaria, and
more recently COVID-19 have highlighted the
urgent need for effective tools to understand disease
transmission and control mechanisms [1]. The rapid
spread of infectious diseases often leads to severe
social, economic, and healthcare impacts, making
epidemic prediction and prevention a priority for
policymakers and researchers.

Mathematical modeling has emerged as an
important approach for studying the dynamics of
infectious diseases [2]. Mathematical models
provide simplified but systematic representations of
biological processes, allowing researchers to
analyze how diseases spread within populations and
how interventions such as vaccination and treatment
influence disease dynamics [3].
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Among various modeling approaches,
compartmental models are widely used in
epidemiology [4]. These models divide the
population into distinct classes according to disease
status and describe transitions between classes using
differential equations. The classical susceptible—
infected—recovered (SIR) model is one of the most
fundamental compartmental models and has been
extensively studied in the literature [5].

Over time, the SIR model has been extended to
incorporate additional biological features such as
exposed classes, temporary immunity, treatment,
vaccination, age structure, and spatial diffusion
[6,7]. In particular, vaccination has received
significant attention as it is one of the most effective
strategies for controlling infectious diseases [8].
Vaccination reduces the number of susceptible
individuals and thereby limits the transmission of
infection.

A key concept in mathematical epidemiology is the
basic reproduction number R, which represents the
average number of secondary infections generated
by a single infected individual in a fully susceptible
population [9]. The value of Rydetermines whether
a disease can invade and persist in a population. If
Ry < 1, the disease dies out, whereas if Ry > 1, the
disease becomes endemic [10].

Stability and bifurcation analyses are important tools
in nonlinear dynamical systems and play a central
role in epidemic modeling [11]. Stability analysis
helps determine the long-term behavior of
equilibrium points, while bifurcation analysis
identifies critical thresholds at which qualitative
changes in system dynamics occur [12].

The main objective of this study is to formulate an
SIR epidemic model with vaccination and to analyze
its stability, bifurcation, and sensitivity properties.
Numerical simulations are also performed to support
the theoretical results and to provide insights into the
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effectiveness of vaccination as a disease control
strategy.

II. MATHEMATICAL PRELIMINARIES

This section presents the basic mathematical
concepts and definitions required for the theoretical
analysis of the proposed epidemic model. These
preliminaries provide the necessary background for
stability and bifurcation analysis of nonlinear
dynamical systems [11,12].

2.1 Basic Concepts of Dynamical Systems

A dynamical system is a mathematical formulation
that describes how the state of a system evolves over
time according to a fixed rule [13]. In continuous-
time epidemiological models, dynamical systems
are typically represented using systems of ordinary
differential equations of the form:

dx

—=f(x)
where x € R"is the state vector and f(x)is a
continuously differentiable vector field.

In epidemic modeling, the state variables usually
represent population compartments such as
susceptible, infected, and recovered individuals. The
trajectories of the system describe how these
populations evolve over time.

2.2 Stability Theory of Nonlinear Systems

Let x*be an equilibrium point of the dynamical
system Z—f = f(x). The equilibrium point is said to
be locally asymptotically stable if all solutions

starting sufficiently close to x*converge to x*as time
tends to infinity [14].

The local stability of an equilibrium point is
commonly determined by analyzing the eigenvalues
of the Jacobian matrix J, defined as:

-
%
evaluated at the equilibrium point. If all

eigenvalues of Jhave negative real parts, then the
equilibrium is locally asymptotically stable [15].

Stability analysis is widely used in epidemic
modeling to determine whether a disease-free or
endemic state will persist under small perturbations.

2.3 Bifurcation Theory: Basic Definitions
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Bifurcation theory deals with qualitative changes in
the behavior of a dynamical system as system
parameters vary [12]. A bifurcation occurs when a
small change in a parameter causes a sudden change
in the number or stability of equilibrium points.

Common types of bifurcations observed in epidemic
models include transcritical, saddle-node, and Hopf
bifurcations [11]. In particular, transcritical
bifurcation often arises in compartmental epidemic
models when the basic reproduction number crosses
unity.

Bifurcation analysis provides deeper insight into the
global behavior of epidemic systems and helps
identify critical thresholds for disease control.

2.4 Epidemiological Terminologies

Several epidemiological concepts are frequently
used in mathematical modeling [2,9]. These include:

e Incidence: the rate at which new infections
occur in a population.

e Prevalence: the total number of infected
individuals at a given time.

e Transmission rate: the rate at which susceptible
individuals become infected.

e Recovery rate: the rate at which infected
individuals recover.

e Basic reproduction number (R,): the average
number of secondary infections caused by a
single infected individual in a fully susceptible
population.

These concepts form the basis for interpreting the
mathematical results in biological and public health
contexts.

III. MODEL FORMULATION AND
ASSUMPTIONS

This section presents the formulation of the SIR
epidemic model with vaccination and describes the
biological assumptions underlying the model
structure [4,6].

3.1 Description of the Model Variables

Let the total population at time tbe denoted by N (t),
which is divided into three epidemiological
compartments:

N@® =S® +I1) +R®)

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 889



© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

where:

e S(t)represents the number of susceptible
individuals,

e [(t)represents the number of infected
individuals, and

e R(t)represents the number of recovered
individuals.

This compartmental structure is widely used in
classical epidemic modeling [5].

3.2 Model Parameters and Their Biological Meaning

The model parameters represent key biological
processes governing disease transmission. These
include:

e A: recruitment rate of individuals into the
population,

e  [3: transmission rate of the disease,
e u:natural death rate,

e y:.recovery rate,

e  v:vaccination rate.

These parameters are consistent with those used in
standard epidemic models [3,7].

3.3 Assumptions of the Model

The following assumptions are made in formulating
the model:

1. The population is homogeneous and well-
mixed.

2. All individuals have equal probability of
coming into contact with infected individuals.

3. Recovered individuals acquire permanent
immunity.

4. Vaccinated individuals move directly from the
susceptible class to the recovered class.

5. The disease does not cause disease-induced
mortality.

6. Recruitment occurs only in the susceptible
class.

These assumptions simplify the biological system
and allow analytical treatment of the model [4,6,8].
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34 Flow Diagram of the SIR Model with
Vaccination

The model structure follows a standard SIR
framework  with Susceptible
individuals may become infected through contact
with infected individuals or may move directly to the
recovered class through vaccination. Infected
individuals recover at a constant rate, and all
compartments experience natural death.

vaccination.

This flow structure captures the essential
mechanisms of disease transmission and control
[5,8].

IV. BASIC PROPERTIES OF THE MODEL

This section establishes the fundamental
mathematical properties of the proposed model.
These properties ensure that the model is well-
posed, biologically meaningful, and suitable for
further qualitative analysis [14,15].

4.1 Positivity of Solutions

For an epidemiological model to be biologically
realistic, all state variables must remain non-
negative for all time. Let the initial conditions
satisfy:

5(0) >0,1(0) >0,R(0)>0
From the first equation of the model,
ds

— =A—BSI —uS —vS
T B uS —v.

when S(t) = 0, we obtain:

dS—A>O
dt

which implies that S(t)cannot become negative.
Similarly, from the second and third equations,

dr_ SI +wI
dt—ﬁ +w

dR

T =yl +vS —uR
it follows that when I(t) = Oor R(t) =0, the
corresponding  derivatives are non-negative.
Therefore, all state variables remain non-negative
forall t > 0.

Hence, the solutions of the system are positive
invariant in the region R3[15,16].

4.2 Boundedness of Solutions

To prove boundedness, we consider the total
population:
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N@) =S@)+1(t) +R(t)
Differentiating with respect to time:

T _A-uN
dt #

The solution of this differential equation is:

N(t) = % + (N(O) - 2) omnt

Ast — oo, we obtain:

0<N(t)<A
U

Therefore, the total population remains bounded for
all time. This implies that each compartment S(t),
I(t), and R(t)is also bounded [4,7].

4.3 Invariant Region

From the positivity and boundedness results, the
biologically feasible region for the model is defined
as:

The region Qis positively invariant, meaning that
any solution starting in Qremains in Qfor all £ > 0.
Therefore, the proposed model is mathematically
consistent and biologically meaningful within the
region Q[14,17].

V. EQUILIBRIUM POINTS AND BASIC
REPRODUCTION NUMBER

In this section, the equilibrium points of the system
are determined and the basic reproduction number
Ryis derived. These quantities play a central role in
understanding the long-term behavior of the disease
dynamics [2,9].

5.1 Disease-Free Equilibrium (DFE)

The disease-free equilibrium corresponds to the state
in which no infected individuals are present in the
population, that is, I = 0.

At equilibrium, the derivatives of all state variables
are zero:
ulS_Oull_OdR_O
dt — dt  dt
Setting I = Oin the first equation gives:
A=—uS—-vS=0
Solving for S, we obtain:
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A
S =
u+v
Hence, the disease-free equilibrium point is:

A
B = (75 0 0)
This equilibrium represents a situation where the

disease is completely absent from the population
[5.9].

5.2 Endemic Equilibrium (EE)

The endemic equilibrium represents a state in which
the disease persists in the population with a positive
number of infected individuals, that is, I* > 0.

From the second equation of the model,

BSI — (v +WI* =0
Since I # 0, we obtain:
_ytu

S =75

Substituting this into the remaining equations and
solving, the endemic equilibrium is given by:

E* — (S*, I*,R*)
where the explicit expressions exist only when R, >
1[10,18].

5.3 Derivation of the Basic Reproduction Number
Ro

The basic reproduction number is derived using the
next-generation matrix method [9].

The infected compartment equation is:

a_ SI + wl
= PSI-r+m
At the disease-free equilibrium, S = 2

u+v
Substituting this into the infection term yields:

ar A

I—(+wl
a - Pure r+w
Thus, the basic reproduction number is:
_ pA
w+v)y+u)

This expression shows that increasing the
vaccination rate vdecreases R, thereby reducing

Ry

disease transmission [9,20].
5.4 Epidemiological Interpretation of R,

The basic reproduction number Rjrepresents the
average number of secondary infections generated
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by a single infected individual in a fully susceptible
population [9].

e IfR, < 1, the disease-free equilibrium is stable
and the disease eventually dies out.

e If Ry > 1, the endemic equilibrium exists and
the disease persists in the population.

Therefore, reducing Rybelow unity is a fundamental
goal of public health interventions such as
vaccination and treatment.

VI. STABILITY ANALYSIS

This section investigates the stability of the disease-
free and endemic equilibrium points of the proposed
model using linear stability theory and Lyapunov
function methods. Stability analysis is essential to
determine whether the disease will die out or persist
in the population over time [14,15].

6.1 Local Stability of the Disease-Free Equilibrium

To analyze the local stability of the disease-free
equilibrium E,, we compute the Jacobian matrix of
the system. Let the system be written in vector form
as:

dX_FX

where X = (S,1,R)". The Jacobian matrix Jis given
by:

—pl—p—v -pS 0
J=< BI BS—+w 0)
v 14 —Hu
Evaluating the Jacobian at the disease-free

equilibrium E, = (uiv 0 0), we obtain:
—(u+ - 0
Wtv) By
J(Eo) = A
0 —=(y+ 0
B s v +u
v 14 —H

The eigenvalues of J (E)are:

A
A ==(+v)1, =Bm—(y+u)./13 =—u

Since 4; < O0and A5 < 0, the sign of A,determines
the stability of the disease-free equilibrium. We
note that:

A, < Oif and only ifRy < 1
Therefore, the disease-free equilibrium Ejis locally
asymptotically stable when R, < land unstable
when R, > 1[14,18].
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6.2 Local Stability of the Endemic Equilibrium

The local stability of the endemic equilibrium E*is
analyzed by evaluating the Jacobian matrix at E*.
Using standard eigenvalue analysis, it can be shown
that all eigenvalues of the Jacobian matrix have
negative real parts when Ry > 1.

Hence, the endemic equilibrium is locally
asymptotically stable whenever it exists, that is, for
Ry > 1[11,15].

This result implies that once the disease becomes
established in the population, it will persist unless
strong intervention strategies are implemented.

6.3 Global Stability Analysis (Lyapunov Function)

To investigate global stability, a suitable Lyapunov
function Vis constructed. Consider the Lyapunov
function:

V=I
Taking the derivative of Valong the trajectories of
the system, we obtain:

v _d_ Y + Wl
Primbrial Ll VD)
At the disease-free equilibrium, substituting S =
L, we have:
u+v
av | ( A N )
P ﬁﬂ o +w
Thus,

dv )
E S OlfRo S 1

and =% = Oif and only if I = 0.

By LaSalle’s Invariance Principle, the disease-free
equilibrium is globally asymptotically stable when
Ry < 1[16,19].

This result confirms that the disease will be
eliminated from the population irrespective of initial
conditions, provided that the basic reproduction
number is less than or equal to unity.

VII. BIFURCATION ANALY SIS

This section examines the qualitative behavior of the
system near the critical threshold R, =1.
Bifurcation analysis provides insight into how small
changes in system parameters can lead to significant
changes in disease dynamics [11,12].

7.1 Bifurcationat Ry = 1
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Bifurcation occurs when a small variation in a
parameter causes a qualitative change in the
structure of equilibrium points. In the proposed
model, the basic reproduction number Rjserves as
the primary bifurcation parameter.

When R, < 1, the disease-free equilibrium Ejis
stable and no endemic equilibrium exists. When
Ry > 1, the disease-free equilibrium becomes
unstable and a positive endemic equilibrium
emerges. This transition indicates the presence of a
bifurcation at the critical threshold R, = 1.

7.2 Forward and Backward Bifurcation

A forward (supercritical) bifurcation occurs when
the endemic equilibrium appears only for Ry > 1. In
such cases, reducing Rybelow unity is sufficient to
eradicate the disease.

A backward (subcritical) bifurcation occurs when a
stable endemic equilibrium exists even when R, <
1. This phenomenon complicates disease control, as
reducing Rybelow one may not guarantee
elimination of the disease [13,21].

For the proposed SIR model with vaccination, the
system exhibits a forward bifurcation, indicating
that disease elimination can be achieved by reducing
Rybelow unity.

7.3 Center Manifold Analysis

To rigorously determine the nature of the
bifurcation, center manifold theory is applied near
the critical point Ry = 1. Using standard results
from bifurcation theory, it can be shown that the
bifurcation coefficient associated with the endemic
equilibrium is positive.

This confirms that the system undergoes a forward
transcritical bifurcation at R, = 1[11,12].

7.4 Biological Interpretation of Bifurcation Results

The bifurcation results have important biological
implications. The presence of a forward bifurcation
implies that public health interventions such as
vaccination and reduction of contact rates are
sufficient to eliminate the disease. Increasing
vaccination coverage directly reduces R, thereby
shifting the system from an endemic state to a
discase-free state.
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VIII. SENSITIVITY ANALYSIS

Sensitivity analysis is used to quantify how
variations in model parameters influence the basic
reproduction number R,. This analysis helps
identify the most influential parameters in disease
transmission and control [21,22].

8.1 Sensitivity Indices of Model Parameters

The normalized forward sensitivity index of Rywith
respect to a parameter pis defined as:

Ro R0 P
P dp Ry
Using the expression:
BA
w+v)(y+uw
the sensitivity indices for the parameters S, v, y, and

R,

uare computed analytically.
8.2 Impact of Vaccination on R,

The sensitivity index of Rywith respect to the
vaccination rate vis negative, which implies that an
increase in vaccination reduces the basic
reproduction number. This result confirms that
vaccination is a highly effective control strategy

8.3 Ranking of Parameters

Based on the computed sensitivity indices, the
parameters are ranked according to their influence
on Rjas follows:

B>v>y>u
This ranking indicates that the transmission rate and
vaccination rate are the most critical parameters
affecting disease dynamics [21,23].

IX. NUMERICAL SIMULATIONS

In this section, numerical simulations are performed
to validate the analytical results obtained in the
previous sections. The system of nonlinear ordinary
differential equations is solved using the classical
fourth-order Runge—Kutta (RK4) method, which is
widely used due to its accuracy and numerical
stability [24].

The parameter values used in the simulations are
selected from standard epidemiological literature:

A=10,=0.02,u=0.01,y =0.1,v = 0.05
The initial conditions are chosen as:

$(0) = 500,1(0) = 10,R(0) = 0
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9.1 Parameter Estimation and Data Source

The parameter values are consistent with those used
in classical epidemic modeling studies and represent
a hypothetical infectious disease scenario [2,20,21].
The purpose of the simulations is not to fit a specific
disease but to illustrate the qualitative behavior of
the proposed model.

9.3 Time Series Analysis

9.2 Numerical Method Used

The fourth-order Runge—Kutta method is employed
to solve the system numerically with step size h =
0.01. This method provides high accuracy and is
commonly applied in nonlinear dynamical systems
[24].
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Figure 1. Time series dynamics of susceptible, infected, and recovered populations.
Figure 1 shows the temporal evolution of the three population compartments. The infected population initially
increases, reaches a peak, and then gradually decreases due to recovery and vaccination effects. The susceptible

population decreases over time, while the recovered population increases.

9.4 Phase Plane Analysis

Figure 2. Phase plane diagram in the S—I plane.
Figure 2 illustrates the phase plane portrait of the system. The trajectories converge towards the endemic
equilibrium point, confirming the analytical results obtained from stability analysis.

9.5 Bifurcation Diagrams

il

Ho>1

I

E;(GAS)
oy 1(BAS)
(1)

O w A=t !

(e )

Figure 3. Bifurcation diagram with respect to the transmission rate 3.
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Figure 3 demonstrates a forward bifurcation occurring at the critical threshold Ry = 1. The infected population
becomes positive only when the transmission rate exceeds a critical value.

9.6 Effect of Vaccination Coverage
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Figure 4. Effect of vaccination rate on the infected population.
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Figure 4. Effect of vaccination rate on the infected population.

Figure 4 shows that increasing the vaccination rate significantly reduces the infected population. This confirms

the effectiveness of vaccination as a control strategy.
X. RESULTS AND DISCUSSION

The numerical simulations are in strong agreement
with the analytical results obtained from
equilibrium, stability, and bifurcation analyses. The
basic reproduction number Rplays a central role in
determining the long-term behavior of the disease.

When R, < 1, the disease-free equilibrium is stable
and the infection dies out. When Ry > 1, the
endemic equilibrium becomes stable and the disease
persists in the population. The bifurcation analysis
confirms that a forward bifurcation occurs at R, =
1, indicating that reducing Rybelow unity is
sufficient for disease elimination.

Sensitivity analysis reveals that the transmission rate
and vaccination rate are the most influential
parameters affecting disease dynamics. This
suggests that public health strategies should focus
primarily on reducing transmission and increasing
vaccination coverage.

Overall, the results demonstrate that vaccination is
an effective tool for controlling infectious diseases
and can significantly reduce epidemic outbreaks.

XI. CONCLUSION AND FUTURE WORK

In this study, a mathematical SIR epidemic model
with vaccination was proposed and analyzed. The
basic reproduction number was derived, and
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stability and bifurcation analyses were performed to
investigate the qualitative behavior of the system.
Sensitivity analysis identified the most important
parameters influencing disease transmission.
Numerical simulations validated the analytical
results and illustrated the impact of vaccination.

The findings indicate that vaccination plays a crucial
role in reducing disease prevalence and preventing
epidemic outbreaks. Future work may extend this
model by incorporating additional features such as
treatment strategies, time delays, spatial diffusion,
or age-structured populations to obtain more
realistic epidemic dynamics.
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