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Abstract- Mathematical modeling provides a powerful 

framework for understanding the spread of infectious 

diseases and evaluating control strategies. In this 

study, a susceptible–infected–recovered (SIR) 

epidemic model incorporating vaccination is proposed 

and analyzed. The model is formulated as a system of 

nonlinear ordinary differential equations. The basic 

reproduction number 𝑹𝟎is derived to characterize the 

threshold behavior of disease transmission. Stability 

analysis is performed to investigate the local and global 

dynamics of the equilibrium points. Bifurcation 

analysis is carried out to study qualitative changes in 

the system near critical parameter values. Sensitivity 

analysis is used to determine the relative importance of 

model parameters. Numerical simulations based on the 

fourth-order Runge–Kutta method are presented to 

validate the analytical results. The results demonstrate 

that vaccination significantly reduces the infected 

population and plays a crucial role in preventing 

epidemic outbreaks. 
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I. INTRODUCTION 

Infectious diseases remain one of the major global 

challenges to public health systems. Epidemics such 

as influenza, tuberculosis, HIV/AIDS, malaria, and 

more recently COVID-19 have highlighted the 

urgent need for effective tools to understand disease 

transmission and control mechanisms [1]. The rapid 

spread of infectious diseases often leads to severe 

social, economic, and healthcare impacts, making 

epidemic prediction and prevention a priority for 

policymakers and researchers. 

Mathematical modeling has emerged as an 

important approach for studying the dynamics of 

infectious diseases [2]. Mathematical models 

provide simplified but systematic representations of 

biological processes, allowing researchers to 

analyze how diseases spread within populations and 

how interventions such as vaccination and treatment 

influence disease dynamics [3]. 

Among various modeling approaches, 

compartmental models are widely used in 

epidemiology [4]. These models divide the 

population into distinct classes according to disease 

status and describe transitions between classes using 

differential equations. The classical susceptible–

infected–recovered (SIR) model is one of the most 

fundamental compartmental models and has been 

extensively studied in the literature [5]. 

Over time, the SIR model has been extended to 

incorporate additional biological features such as 

exposed classes, temporary immunity, treatment, 

vaccination, age structure, and spatial diffusion 

[6,7]. In particular, vaccination has received 

significant attention as it is one of the most effective 

strategies for controlling infectious diseases [8]. 

Vaccination reduces the number of susceptible 

individuals and thereby limits the transmission of 

infection. 

A key concept in mathematical epidemiology is the 

basic reproduction number 𝑅0, which represents the 

average number of secondary infections generated 

by a single infected individual in a fully susceptible 

population [9]. The value of 𝑅0determines whether 

a disease can invade and persist in a population. If 

𝑅0 < 1, the disease dies out, whereas if 𝑅0 > 1, the 

disease becomes endemic [10]. 

Stability and bifurcation analyses are important tools 

in nonlinear dynamical systems and play a central 

role in epidemic modeling [11]. Stability analysis 

helps determine the long-term behavior of 

equilibrium points, while bifurcation analysis 

identifies critical thresholds at which qualitative 

changes in system dynamics occur [12]. 

The main objective of this study is to formulate an 

SIR epidemic model with vaccination and to analyze 

its stability, bifurcation, and sensitivity properties. 

Numerical simulations are also performed to support 

the theoretical results and to provide insights into the 
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effectiveness of vaccination as a disease control 

strategy. 

II. MATHEMATICAL PRELIMINARIES 

This section presents the basic mathematical 

concepts and definitions required for the theoretical 

analysis of the proposed epidemic model. These 

preliminaries provide the necessary background for 

stability and bifurcation analysis of nonlinear 

dynamical systems [11,12]. 

2.1 Basic Concepts of Dynamical Systems 

A dynamical system is a mathematical formulation 

that describes how the state of a system evolves over 

time according to a fixed rule [13]. In continuous-

time epidemiological models, dynamical systems 

are typically represented using systems of ordinary 

differential equations of the form: 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥) 

where 𝑥 ∈ ℝ𝑛is the state vector and 𝑓(𝑥)is a 

continuously differentiable vector field. 

In epidemic modeling, the state variables usually 

represent population compartments such as 

susceptible, infected, and recovered individuals. The 

trajectories of the system describe how these 

populations evolve over time. 

2.2 Stability Theory of Nonlinear Systems 

Let 𝑥∗be an equilibrium point of the dynamical 

system 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥). The equilibrium point is said to 

be locally asymptotically stable if all solutions 

starting sufficiently close to 𝑥∗converge to 𝑥∗as time 

tends to infinity [14]. 

The local stability of an equilibrium point is 

commonly determined by analyzing the eigenvalues 

of the Jacobian matrix 𝐽, defined as: 

𝐽 = [
∂𝑓𝑖
∂𝑥𝑗
] 

evaluated at the equilibrium point. If all 

eigenvalues of 𝐽have negative real parts, then the 

equilibrium is locally asymptotically stable [15]. 

Stability analysis is widely used in epidemic 

modeling to determine whether a disease-free or 

endemic state will persist under small perturbations. 

2.3 Bifurcation Theory: Basic Definitions 

Bifurcation theory deals with qualitative changes in 

the behavior of a dynamical system as system 

parameters vary [12]. A bifurcation occurs when a 

small change in a parameter causes a sudden change 

in the number or stability of equilibrium points. 

Common types of bifurcations observed in epidemic 

models include transcritical, saddle-node, and Hopf 

bifurcations [11]. In particular, transcritical 

bifurcation often arises in compartmental epidemic 

models when the basic reproduction number crosses 

unity. 

Bifurcation analysis provides deeper insight into the 

global behavior of epidemic systems and helps 

identify critical thresholds for disease control. 

2.4 Epidemiological Terminologies 

Several epidemiological concepts are frequently 

used in mathematical modeling [2,9]. These include: 

• Incidence: the rate at which new infections 

occur in a population. 

• Prevalence: the total number of infected 

individuals at a given time. 

• Transmission rate: the rate at which susceptible 

individuals become infected. 

• Recovery rate: the rate at which infected 

individuals recover. 

• Basic reproduction number (𝑅0): the average 

number of secondary infections caused by a 

single infected individual in a fully susceptible 

population. 

These concepts form the basis for interpreting the 

mathematical results in biological and public health 

contexts. 

III. MODEL FORMULATION AND 

ASSUMPTIONS 

This section presents the formulation of the SIR 

epidemic model with vaccination and describes the 

biological assumptions underlying the model 

structure [4,6]. 

3.1 Description of the Model Variables 

Let the total population at time 𝑡be denoted by 𝑁(𝑡), 

which is divided into three epidemiological 

compartments: 

𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) 
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where: 

• 𝑆(𝑡)represents the number of susceptible 

individuals, 

• 𝐼(𝑡)represents the number of infected 

individuals, and 

• 𝑅(𝑡)represents the number of recovered 

individuals. 

This compartmental structure is widely used in 

classical epidemic modeling [5]. 

3.2 Model Parameters and Their Biological Meaning 

The model parameters represent key biological 

processes governing disease transmission. These 

include: 

• Λ: recruitment rate of individuals into the 

population, 

• 𝛽: transmission rate of the disease, 

• 𝜇: natural death rate, 

• 𝛾: recovery rate, 

• 𝑣: vaccination rate. 

These parameters are consistent with those used in 

standard epidemic models [3,7]. 

3.3 Assumptions of the Model 

The following assumptions are made in formulating 

the model: 

1. The population is homogeneous and well-

mixed. 

2. All individuals have equal probability of 

coming into contact with infected individuals. 

3. Recovered individuals acquire permanent 

immunity. 

4. Vaccinated individuals move directly from the 

susceptible class to the recovered class. 

5. The disease does not cause disease-induced 

mortality. 

6. Recruitment occurs only in the susceptible 

class. 

These assumptions simplify the biological system 

and allow analytical treatment of the model [4,6,8]. 

3.4 Flow Diagram of the SIR Model with 

Vaccination 

The model structure follows a standard SIR 

framework with vaccination. Susceptible 

individuals may become infected through contact 

with infected individuals or may move directly to the 

recovered class through vaccination. Infected 

individuals recover at a constant rate, and all 

compartments experience natural death. 

This flow structure captures the essential 

mechanisms of disease transmission and control 

[5,8]. 

IV. BASIC PROPERTIES OF THE MODEL 

This section establishes the fundamental 

mathematical properties of the proposed model. 

These properties ensure that the model is well-

posed, biologically meaningful, and suitable for 

further qualitative analysis [14,15]. 

4.1 Positivity of Solutions 

For an epidemiological model to be biologically 

realistic, all state variables must remain non-

negative for all time. Let the initial conditions 

satisfy: 

𝑆(0) > 0, 𝐼(0) > 0, 𝑅(0) > 0 

From the first equation of the model, 

𝑑𝑆

𝑑𝑡
= Λ − 𝛽𝑆𝐼 − 𝜇𝑆 − 𝑣𝑆 

when 𝑆(𝑡) = 0, we obtain: 

𝑑𝑆

𝑑𝑡
= Λ > 0 

which implies that 𝑆(𝑡)cannot become negative. 

Similarly, from the second and third equations, 

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − (𝛾 + 𝜇)𝐼 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 + 𝑣𝑆 − 𝜇𝑅 

it follows that when 𝐼(𝑡) = 0or 𝑅(𝑡) = 0, the 

corresponding derivatives are non-negative. 

Therefore, all state variables remain non-negative 

for all 𝑡 > 0. 

Hence, the solutions of the system are positive 

invariant in the region ℝ+
3 [15,16]. 

4.2 Boundedness of Solutions 

To prove boundedness, we consider the total 

population: 
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𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) 

Differentiating with respect to time: 

𝑑𝑁

𝑑𝑡
= Λ − 𝜇𝑁 

The solution of this differential equation is: 

𝑁(𝑡) =
Λ

𝜇
+ (𝑁(0) −

Λ

𝜇
) 𝑒−𝜇𝑡  

As 𝑡 → ∞, we obtain: 

0 < 𝑁(𝑡) ≤
Λ

𝜇
 

Therefore, the total population remains bounded for 

all time. This implies that each compartment 𝑆(𝑡), 

𝐼(𝑡), and 𝑅(𝑡)is also bounded [4,7]. 

4.3 Invariant Region 

From the positivity and boundedness results, the 

biologically feasible region for the model is defined 

as: 

Ω = {(𝑆, 𝐼, 𝑅) ∈ ℝ+
3 : 𝑁(𝑡) ≤

Λ

𝜇
} 

 

The region Ωis positively invariant, meaning that 

any solution starting in Ωremains in Ωfor all 𝑡 > 0. 

Therefore, the proposed model is mathematically 

consistent and biologically meaningful within the 

region Ω[14,17]. 

V. EQUILIBRIUM POINTS AND BASIC 

REPRODUCTION NUMBER 

In this section, the equilibrium points of the system 

are determined and the basic reproduction number 

𝑅0is derived. These quantities play a central role in 

understanding the long-term behavior of the disease 

dynamics [2,9]. 

5.1 Disease-Free Equilibrium (DFE) 

The disease-free equilibrium corresponds to the state 

in which no infected individuals are present in the 

population, that is, 𝐼 = 0. 

At equilibrium, the derivatives of all state variables 

are zero: 

𝑑𝑆

𝑑𝑡
= 0,

𝑑𝐼

𝑑𝑡
= 0,

𝑑𝑅

𝑑𝑡
= 0 

Setting 𝐼 = 0in the first equation gives: 

Λ − 𝜇𝑆 − 𝑣𝑆 = 0 

Solving for 𝑆, we obtain: 

𝑆 =
Λ

𝜇 + 𝑣
 

Hence, the disease-free equilibrium point is: 

𝐸0 = (
Λ

𝜇 + 𝑣
,   0,   0) 

This equilibrium represents a situation where the 

disease is completely absent from the population 

[5,9]. 

5.2 Endemic Equilibrium (EE) 

The endemic equilibrium represents a state in which 

the disease persists in the population with a positive 

number of infected individuals, that is, 𝐼∗ > 0. 

From the second equation of the model, 

𝛽𝑆∗𝐼∗ − (𝛾 + 𝜇)𝐼∗ = 0 

Since 𝐼∗ ≠ 0, we obtain: 

𝑆∗ =
𝛾 + 𝜇

𝛽
 

Substituting this into the remaining equations and 

solving, the endemic equilibrium is given by: 

𝐸∗ = (𝑆∗, 𝐼∗, 𝑅∗) 

where the explicit expressions exist only when 𝑅0 >

1[10,18]. 

5.3 Derivation of the Basic Reproduction Number 

𝑅0 

The basic reproduction number is derived using the 

next-generation matrix method [9]. 

The infected compartment equation is: 

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − (𝛾 + 𝜇)𝐼 

At the disease-free equilibrium, 𝑆 =
Λ

𝜇+𝑣
. 

Substituting this into the infection term yields: 

𝑑𝐼

𝑑𝑡
= 𝛽

Λ

𝜇 + 𝑣
𝐼 − (𝛾 + 𝜇)𝐼 

Thus, the basic reproduction number is: 

𝑅0 =
𝛽Λ

(𝜇 + 𝑣)(𝛾 + 𝜇)
 

This expression shows that increasing the 

vaccination rate 𝑣decreases 𝑅0, thereby reducing 

disease transmission [9,20]. 

5.4 Epidemiological Interpretation of 𝑅0 

The basic reproduction number 𝑅0represents the 

average number of secondary infections generated 
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by a single infected individual in a fully susceptible 

population [9]. 

• If 𝑅0 < 1, the disease-free equilibrium is stable 

and the disease eventually dies out. 

• If 𝑅0 > 1, the endemic equilibrium exists and 

the disease persists in the population. 

Therefore, reducing 𝑅0below unity is a fundamental 

goal of public health interventions such as 

vaccination and treatment. 

VI. STABILITY ANALYSIS 

This section investigates the stability of the disease-

free and endemic equilibrium points of the proposed 

model using linear stability theory and Lyapunov 

function methods. Stability analysis is essential to 

determine whether the disease will die out or persist 

in the population over time [14,15]. 

6.1 Local Stability of the Disease-Free Equilibrium 

To analyze the local stability of the disease-free 

equilibrium 𝐸0, we compute the Jacobian matrix of 

the system. Let the system be written in vector form 

as: 

𝑑𝑋

𝑑𝑡
= 𝐹(𝑋) 

where 𝑋 = (𝑆, 𝐼, 𝑅)𝑇. The Jacobian matrix 𝐽is given 

by: 

𝐽 = (
−𝛽𝐼 − 𝜇 − 𝑣 −𝛽𝑆 0

𝛽𝐼 𝛽𝑆 − (𝛾 + 𝜇) 0
𝑣 𝛾 −𝜇

) 

Evaluating the Jacobian at the disease-free 

equilibrium 𝐸0 = (
Λ

𝜇+𝑣
, 0, 0), we obtain: 

𝐽(𝐸0) =

(

 
 
−(𝜇 + 𝑣) −𝛽

Λ

𝜇 + 𝑣
0

0 𝛽
Λ

𝜇 + 𝑣
− (𝛾 + 𝜇) 0

𝑣 𝛾 −𝜇)

 
 

 

The eigenvalues of 𝐽(𝐸0)are: 

𝜆1 = −(𝜇 + 𝑣), 𝜆2 = 𝛽
Λ

𝜇 + 𝑣
− (𝛾 + 𝜇), 𝜆3 = −𝜇 

Since 𝜆1 < 0and 𝜆3 < 0, the sign of 𝜆2determines 

the stability of the disease-free equilibrium. We 

note that: 

𝜆2 < 0if and only if𝑅0 < 1 

Therefore, the disease-free equilibrium 𝐸0is locally 

asymptotically stable when 𝑅0 < 1and unstable 

when 𝑅0 > 1[14,18]. 

6.2 Local Stability of the Endemic Equilibrium 

The local stability of the endemic equilibrium 𝐸∗is 

analyzed by evaluating the Jacobian matrix at 𝐸∗. 

Using standard eigenvalue analysis, it can be shown 

that all eigenvalues of the Jacobian matrix have 

negative real parts when 𝑅0 > 1. 

Hence, the endemic equilibrium is locally 

asymptotically stable whenever it exists, that is, for 

𝑅0 > 1[11,15]. 

This result implies that once the disease becomes 

established in the population, it will persist unless 

strong intervention strategies are implemented. 

6.3 Global Stability Analysis (Lyapunov Function) 

To investigate global stability, a suitable Lyapunov 

function 𝑉is constructed. Consider the Lyapunov 

function: 

𝑉 = 𝐼 

Taking the derivative of 𝑉along the trajectories of 

the system, we obtain: 

𝑑𝑉

𝑑𝑡
=
𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − (𝛾 + 𝜇)𝐼 

At the disease-free equilibrium, substituting 𝑆 =
Λ

𝜇+𝑣
, we have: 

𝑑𝑉

𝑑𝑡
= 𝐼 (𝛽

Λ

𝜇 + 𝑣
− (𝛾 + 𝜇)) 

Thus, 

𝑑𝑉

𝑑𝑡
≤ 0if𝑅0 ≤ 1 

and 
𝑑𝑉

𝑑𝑡
= 0if and only if 𝐼 = 0. 

By LaSalle’s Invariance Principle, the disease-free 

equilibrium is globally asymptotically stable when 

𝑅0 ≤ 1[16,19]. 

This result confirms that the disease will be 

eliminated from the population irrespective of initial 

conditions, provided that the basic reproduction 

number is less than or equal to unity. 

VII. BIFURCATION ANALYSIS 

This section examines the qualitative behavior of the 

system near the critical threshold 𝑅0 = 1. 

Bifurcation analysis provides insight into how small 

changes in system parameters can lead to significant 

changes in disease dynamics [11,12]. 

7.1 Bifurcation at 𝑅0 = 1 
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Bifurcation occurs when a small variation in a 

parameter causes a qualitative change in the 

structure of equilibrium points. In the proposed 

model, the basic reproduction number 𝑅0serves as 

the primary bifurcation parameter. 

When 𝑅0 < 1, the disease-free equilibrium 𝐸0is 

stable and no endemic equilibrium exists. When 

𝑅0 > 1, the disease-free equilibrium becomes 

unstable and a positive endemic equilibrium 

emerges. This transition indicates the presence of a 

bifurcation at the critical threshold 𝑅0 = 1. 

7.2 Forward and Backward Bifurcation 

A forward (supercritical) bifurcation occurs when 

the endemic equilibrium appears only for 𝑅0 > 1. In 

such cases, reducing 𝑅0below unity is sufficient to 

eradicate the disease. 

A backward (subcritical) bifurcation occurs when a 

stable endemic equilibrium exists even when 𝑅0 <

1. This phenomenon complicates disease control, as 

reducing 𝑅0below one may not guarantee 

elimination of the disease [13,21]. 

For the proposed SIR model with vaccination, the 

system exhibits a forward bifurcation, indicating 

that disease elimination can be achieved by reducing 

𝑅0below unity. 

7.3 Center Manifold Analysis 

To rigorously determine the nature of the 

bifurcation, center manifold theory is applied near 

the critical point 𝑅0 = 1. Using standard results 

from bifurcation theory, it can be shown that the 

bifurcation coefficient associated with the endemic 

equilibrium is positive. 

This confirms that the system undergoes a forward 

transcritical bifurcation at 𝑅0 = 1[11,12]. 

7.4 Biological Interpretation of Bifurcation Results 

The bifurcation results have important biological 

implications. The presence of a forward bifurcation 

implies that public health interventions such as 

vaccination and reduction of contact rates are 

sufficient to eliminate the disease. Increasing 

vaccination coverage directly reduces 𝑅0, thereby 

shifting the system from an endemic state to a 

disease-free state. 

 

 

VIII. SENSITIVITY ANALYSIS 

Sensitivity analysis is used to quantify how 

variations in model parameters influence the basic 

reproduction number 𝑅0. This analysis helps 

identify the most influential parameters in disease 

transmission and control [21,22]. 

8.1 Sensitivity Indices of Model Parameters 

The normalized forward sensitivity index of 𝑅0with 

respect to a parameter 𝑝is defined as: 

Υ𝑝
𝑅0 =

∂𝑅0
∂𝑝

⋅
𝑝

𝑅0
 

Using the expression: 

𝑅0 =
𝛽Λ

(𝜇 + 𝑣)(𝛾 + 𝜇)
 

the sensitivity indices for the parameters 𝛽, 𝑣, 𝛾, and 

𝜇are computed analytically. 

8.2 Impact of Vaccination on 𝑅0 

The sensitivity index of 𝑅0with respect to the 

vaccination rate 𝑣is negative, which implies that an 

increase in vaccination reduces the basic 

reproduction number. This result confirms that 

vaccination is a highly effective control strategy 

8.3 Ranking of Parameters 

Based on the computed sensitivity indices, the 

parameters are ranked according to their influence 

on 𝑅0as follows: 

𝛽 > 𝑣 > 𝛾 > 𝜇 

This ranking indicates that the transmission rate and 

vaccination rate are the most critical parameters 

affecting disease dynamics [21,23]. 

IX. NUMERICAL SIMULATIONS 

In this section, numerical simulations are performed 

to validate the analytical results obtained in the 

previous sections. The system of nonlinear ordinary 

differential equations is solved using the classical 

fourth-order Runge–Kutta (RK4) method, which is 

widely used due to its accuracy and numerical 

stability [24]. 

The parameter values used in the simulations are 

selected from standard epidemiological literature: 

Λ = 10, 𝛽 = 0.02, 𝜇 = 0.01, 𝛾 = 0.1, 𝑣 = 0.05 

The initial conditions are chosen as: 

𝑆(0) = 500, 𝐼(0) = 10, 𝑅(0) = 0 
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9.1 Parameter Estimation and Data Source 

The parameter values are consistent with those used 

in classical epidemic modeling studies and represent 

a hypothetical infectious disease scenario [2,20,21]. 

The purpose of the simulations is not to fit a specific 

disease but to illustrate the qualitative behavior of 

the proposed model. 

9.2 Numerical Method Used 

The fourth-order Runge–Kutta method is employed 

to solve the system numerically with step size ℎ =

0.01. This method provides high accuracy and is 

commonly applied in nonlinear dynamical systems 

[24]. 

9.3 Time Series Analysis 

 

 

 

 

 

 

 

Figure 1. Time series dynamics of susceptible, infected, and recovered populations. 

Figure 1 shows the temporal evolution of the three population compartments. The infected population initially 

increases, reaches a peak, and then gradually decreases due to recovery and vaccination effects. The susceptible 

population decreases over time, while the recovered population increases. 

9.4 Phase Plane Analysis 

 

 

 

 

 

 

Figure 2. Phase plane diagram in the 𝑆–𝐼 plane. 

Figure 2 illustrates the phase plane portrait of the system. The trajectories converge towards the endemic 

equilibrium point, confirming the analytical results obtained from stability analysis. 

9.5 Bifurcation Diagrams 

 

 

 

 

 

 

Figure 3. Bifurcation diagram with respect to the transmission rate 𝛽. 
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Figure 3 demonstrates a forward bifurcation occurring at the critical threshold 𝑅0 = 1. The infected population 

becomes positive only when the transmission rate exceeds a critical value. 

9.6 Effect of Vaccination Coverage 

 

 

 

 

 

 

 

 

 

Figure 4. Effect of vaccination rate on the infected population. 

Figure 4 shows that increasing the vaccination rate significantly reduces the infected population. This confirms 

the effectiveness of vaccination as a control strategy. 

X. RESULTS AND DISCUSSION 

The numerical simulations are in strong agreement 

with the analytical results obtained from 

equilibrium, stability, and bifurcation analyses. The 

basic reproduction number 𝑅0plays a central role in 

determining the long-term behavior of the disease. 

When 𝑅0 < 1, the disease-free equilibrium is stable 

and the infection dies out. When 𝑅0 > 1, the 

endemic equilibrium becomes stable and the disease 

persists in the population. The bifurcation analysis 

confirms that a forward bifurcation occurs at 𝑅0 =

1, indicating that reducing 𝑅0below unity is 

sufficient for disease elimination. 

Sensitivity analysis reveals that the transmission rate 

and vaccination rate are the most influential 

parameters affecting disease dynamics. This 

suggests that public health strategies should focus 

primarily on reducing transmission and increasing 

vaccination coverage. 

Overall, the results demonstrate that vaccination is 

an effective tool for controlling infectious diseases 

and can significantly reduce epidemic outbreaks. 

XI. CONCLUSION AND FUTURE WORK 

In this study, a mathematical SIR epidemic model 

with vaccination was proposed and analyzed. The 

basic reproduction number was derived, and 

stability and bifurcation analyses were performed to 

investigate the qualitative behavior of the system. 

Sensitivity analysis identified the most important 

parameters influencing disease transmission. 

Numerical simulations validated the analytical 

results and illustrated the impact of vaccination. 

The findings indicate that vaccination plays a crucial 

role in reducing disease prevalence and preventing 

epidemic outbreaks. Future work may extend this 

model by incorporating additional features such as 

treatment strategies, time delays, spatial diffusion, 

or age-structured populations to obtain more 

realistic epidemic dynamics. 
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