© February 2026 | IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

Experimental Investigations on Weld Bead Geometry and
Process Optimization in Robot Assisted Wire Arc

Additive Manufacturing

Sachin Alawe!, Prof. Ghanshyam Dhanera?, Prof. Radheshyam chherkee?
'M.E. Scholar Department of Mechanical Engineering, BM College of Technology, Indore (M.P.) India
?Assistant Professor Department of Mechanical Engineering, BM College of Technology, Indore (M.P.)

’Department of Mechanical Engineering, BM College of Technology, Indore (M.P.) India

Abstract—This study investigates the predictive
modelling of weld bead geometry in wire arc additive
manufacturing (WAAM) through advanced machine
learning methods. While WAAM is valued for its ability
to produce large, complex metal parts with high
deposition rates, precise control of the weld bead remains
a critical challenge due to its influence on mechanical
properties and dimensional accuracy. To address this
problem, this study utilized machine learning
approaches—Ridge regression, Lasso regression and
Bayesian ridge regression, Random Forest and
XGBoost—to predict the key weld bead characteristics,
namely height, width and cross-sectional area. A Design
of experiments (DOE) was used to systematically vary
the welding current and travelling speed, with 3D weld
bead geometries captured by laser scanning. Robust data
pre-processing, including outlier detection and feature
engineering, improved modelling accuracy. Among the
models tested, XGBoost provided the highest prediction
accuracy, emphasizing its potential for real-time control
of WAAM processes. Overall, this study presents a
comprehensive framework for predictive modelling and
provides valuable insights for process optimization and
the further development of intelligent manufacturing
systems.

Index Terms—wire arc additive manufacturing
(WAAM); predictive modelling; machine learning; weld
bead geometry; XGBoost.

[. INTRODUCTION

Wire Arc Additive Manufacturing (WAAM) has
emerged as a transformative approach within the
broader spectrum of Additive Manufacturing (AM)
technologies. By utilizing arc welding as the heat
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source and wire as the material input, WAAM enables
the production of large, complex metal components
with high deposition rates at low costs [1,2]. This
unique approach differs from other AM processes such
as Powder Bed Fusion (PBF) and Directed Energy
Deposition (DED) as it enables the production of
large-sized metal components, making it particularly
relevant for industries such as aerospace, automotive,
shipbuilding and heavy machinery production [3,4].
However, despite these promising advantages,
WAAM has several process-related challenges that
must be addressed to improve its industrial
applicability. One of the most critical issues with this
technology is the high heat input, which contributes to
uneven thermal cycles and microstructural
inconsistencies during layer-by-layer deposition [5].
This results in coarse and anisotropic grain structures,
increasing residual stresses and reducing mechanical
performance compared to other AM methods [6].
Additionally, rapid heating and cooling cycles can
lead to porosity, cracking, and poor interlayer
bonding, which further degrades component quality
[7]. These defects are particularly pronounced in
aluminum and titanium alloys, where oxidation and
gas entrapment exacerbate microstructural
weaknesses [5].

Beyond  material-specific ~ concerns,  thermal
distortions due to excessive heat input result in
unwanted geometrical deviations, internal stresses,
and part warping, which compromise dimensional
accuracy [6]. The control of bead geometry, surface
roughness, and defect formation also remains a major
challenge [7,8], as these parameters significantly
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influence the mechanical properties, surface finish,
and post-processing requirements.

Accordingly, considerable efforts have focused on
data-driven methods by integrating machine learning
(ML) techniques [3,6,9]. Other areas include precise
trajectory planning [10], integrating cooling
conditions and material properties into trajectory
design [11], employing thermal management to
produce geometrically correct parts while reducing
residual stresses [12—14] and, more recently, using
artificial intelligence-based real-time multiparameter
control has demonstrated significant potential for
error-free manufacturing [15].

In addition to the areas mentioned, effective process
monitoring underpins the production of high-quality
WAAM components. Closed loop and real-time
monitoring enable parameter adjustment that affect
weld pool temperature and surface properties without
compromising mechanical performance [16,17].
Thermal imaging cameras track temperature
distribution, while laser scanners measure layer
geometry and surface quality in real time [18]. Non-
destructive evaluation methods—such as x-ray
computed tomography (CT) and ultrasonic testing—
help detect internal porosity and defects, ensuring part
integrity [19,20]. High-speed cameras capture the
dynamic behavior of the weld pool and metal transfer,
offering insights into process stability [21,22].
Spectrometers, meanwhile, monitor the composition
of deposited material, identifying any impurities or
deviations from the target alloy [23].

Despite these advances, the control of weld bead
geometry remains critically dependent on the
fundamental process parameters of travel speed and
current. In this study, the influence of variations in
these parameters on bead geometry is therefore
examined, with the aim of refining WAAM process
models and ultimately improving final part quality.
Machine learning for WAAM

ML has proven invaluable for process optimization,
quality control, and predictive modelling in WAAM.
By predicting and controlling parameters such as
electric current and travel speed, ML-based methods
reduce trial-and-error iterations, enhance bead
geometry, and minimize material waste [2,9].
Decision Trees, Random Forest, Support Vector
Regression, Back Propagation Neural Networks, and
XGBoost have all been employed to predict variables
like surface roughness and defect formation [9,24].
Notably, XGBoost and artificial neural networks often
deliver higher accuracy, especially with nonlinear
input—output relationships [3,4]. In addition, advanced
outlier detection techniques (e.g., local outlier factor)
can help detect anomalies in welding data [25] while
nested K-fold cross-validation reduces overfitting and
yields robust performance estimates [26].

Parametric studies in WAAM

Parametric studies frequently focus on the influence of
wire feed rate, travel speed, voltage, and interpass
temperature across diverse welding materials and
modelling methods. For instance, the authors of [27]
employed a Taguchi test plan to optimize parameters
affecting weld bead geometry and spatter, while in
[28], wire feed rate and interpass temperature were
investigated using an SVM-based weld bead
modelling system. More complex parts were
manufactured in [29] by systematically varying energy
input, travel speed, and wire feed rate; however,
further optimization and mechanical testing were
deferred.

Study justification

Despite these advances, prior studies often address
isolated aspects of WAAM modelling. This research
provides a more comprehensive framework. The main
aspects are presented in Table 1.

Table 1. Main aspects of study justification.

Aspect Previous Studies

This Study

Data acquisition and cleaning

Focused on individual aspects of data
collection and process modelling, often
lacking systematic experimental design

and advanced outlier detection
[5,10,11,20]. Real-time monitoring
limitations were highlighted [17]

Implements systematic Design of
Experiments (DOE) and LOF-based
outlier detection ([30]) for improved
data robustness. Enhances real-time
data acquisition for WAAM process

monitoring

Feature extraction and dimensionality

Relied on manual or basic feature
reduction extraction for bead geometry prediction

Automates 3D point cloud feature
extraction and refines data for better
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with limited refinement [1,9,15,23]. Al-
based process monitoring is emerging
[18]

interpretability and model performance.
Incorporates advanced feature
engineering for defect prediction

Model validation

Conventional k-fold cross-validation
used, but concerns remain regarding
bias mitigation and generalization
[3,9,12,24]

Employs nested k-fold cross-validation
([31]) to improve model generalization
and selection robustness

Polynomial feature transformation

Nonlinear relationships in WAAM were
noted but lacked systematic polynomial
feature transformation [7,8,16,22]

Systematically explores polynomial
transformations to capture nonlinear
bead geometry variations

Model explainability

ML models were treated as “black
boxes” with limited feature importance
analysis [6,9,10,14,25]

Integrates SHAP analysis for feature
contribution transparency, improving
model interpretability

Model comparison

Previous studies compared ML models
for WAAM outcomes but lacked a
unified framework and ensemble
methods [3,6,9,19,26,27]

Conducts a comprehensive ML model
comparison, integrating ensemble and
hybrid approaches for WAAM
predictions

By uniting these methods, particularly FE, PF,
rigorous validation, and model explainability, this
study aims to establish a more holistic and reliable
approach to ML-driven process modelling in WAAM.

II. MATERIALS AND METHODS

A three-stage process was employed to investigate the
influence of welding parameters on the geometry of
the resulting weld bead. This process included welding
tests, ment of weld seams, and
computational analysis for extracting geometric
properties. A summary of the process is presented in

measure-

Figure 1.
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Figure 1. Materials and methods for modelling of weld bead geometry in wire arc additive manufacturing.

2.1 Experimental Setup

An experiment was conducted to examine how
welding parameters influence the geometry of the
resulting weld bead. The test utilized an S355 steel
plate measuring 250 mm by 120 mm, along with a
solid copper-coated welding wire (VAC 60) with a 1.2
mm diameter. The wire’s chemical composition is
presented in Table2.

Table 2. Chemical composition of VAC 60 welding

wire.
Element Weight Fraction [wt%]
C 0.08
Si 0.90
Mn 1.50
P <0.025
S <0.025

2.1.1. Robotic Cell

In the robotic cell, a Daihen NV8L-NEFC welding
robot was paired with an FD1 controller. A WB-
P500L DC welding power source was employed, and
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the robot was outfitted with an MTX group welding
torch (featuring an integrated shock sensor), and a
Daihen AF-4012 wire feeder. A mixture of argon and
carbon dioxide was used as shielding gas. A J.
Thielmann BRG-2000 DE served for calibration and
cleaning. The robotic cell with all components was
provided by Daihen Varstroj Slovenia.

Offline programming in SLIM (Standard Language
for Industrial Manipulator) language which complies
with the JIS B8439 standard was performed, requiring
only three commands: MOVEX for motion and
ASWBPL/AEWBPL for arc start/end. Robot motion
control was restricted to movement type (linear or
point-to-point), coordinates, speed, and configuration;
welding current and travel speed were the adjustable
parameters for the process.

2.1.2. Experimental Matrix

A full factorial design was applied with two
independent variables (welding current and travel
speed) and three dependent variables (bead height,
width, and cross-section area). Welding current ranged
from 65—155 A (in 10 A increments) and travel speed
ranged from 20-40 cm/min (in 5 cm/min increments),
resulting in 50 welded lines (testing samples). Arc
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start/end parameters remained constant and “Synergic
Mode” automatically adjusted voltage based on
welding current. Table Al presents experimental data
together with the extracted features.

2.2. Measurement Setup

A Wenglor MLWL 132 laser scanner (Tettnang,
Germany) was used to measure the weld bead surface.
The sensor was mounted on a servo-driven linear
guide for threedimensional scanning. A Siemens PLC
S7-1500 (Munich, Germany) with an S120 CU310
controller (Munich, Germany) controlled the linear
unit, and the scanning was initiated at 0.5 mm
intervals. The measurement data was transmitted via
TCP/IP to a computer running MATLAB R2023b,
where it was stored in PLY format. The computer also
served as a virtual human—machine interface (HMI).

2.3. Computational Programs

Several computer programs were developed to support
the WAAM process and analyze the results. A CAM
setup was modelled in Siemens NX, generating
toolpaths and G-code for post-processing. A custom
post-processor handled welding activation and
welding and non-welding movements. Robot-specific
commands were added, including work frame setup
and tool cleaning. A custom algorithm extracted
geometric properties from 3D scan data. Since the
definition of the regions of interest for the extraction
of the geometric features was done manually and
based on the visual identification of the start and end
zones of the weld bead arc, an outlier detection
algorithm was integrated to identify possible poorly
defined regions of interest. Different ML algorithms
were trained on the prepared data to model geometric
properties, and the best was chosen based on
performance metrics.

2.3.1. CAM Programming

In Siemens NX, a base plate and 50 welding lines of
40 mm each were modelled to prepare the CAM setup
for the welding process. The manufacturing coordinate
system was defined in the plate’s corner. The
freeform_additive fixed axis thinwall operation
from the NX Additive Manufacturing add-on was used
to generate the tool paths. Linear movements were
specified for engagement, retraction, and transfer, with
a 10 mm safety distance above the plate for transfers.

2.3.2. Postprocessor
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NC code exported from Siemens NX was automated
through the postprocessor, which converted motion
commands into the required SLIM format and
integrated DOE variables for welding. The NC code
text file was loaded and analyzed, and the robot frame
was aligned with the manufacturing coordinate
system. Robot configuration and linear/pointto-point
commands were adjusted to ensure desired speeds, and
position/orientation coordinates were extracted with
process-specific transformations applied. The DOE
welding process was integrated by replacing
deposition-activation commands with  arc-start
commands and adding experimental variables for
robot travel speed and welding current. Safety and
cleaning routines were added at the start of the
program. Finally, a modified SLIM-format program
was generated, ensuring the required structure and
robot compatibility. ,

2.3.3. Algorithm for Extraction of Geometric
Properties

An algorithm was developed to extract geometric
properties from the line laser scanner data by
processing 3D point clouds and isolating regions of
interest (ROIs). ROIs were individually and manually
defined for each weld bead by filtering data points on
spatial coordinates. Because the plate and laser
scanner were not aligned and the base plate was curved
due to thermal stress, point cloud data had to be
realigned with the sensor’s XY plane. First, welded
bead points were separated from base plate points.
Next, a plane was fitted to the base plate, rotated to
align with the XY sensor plane, and translated to the Z
= 0 plane. A transformation matrix was created from
these steps and applied to each point in the constrained
ROI. After the transformation, geometric features
(height, width and area) were extracted. For each scan
line in the Y direction, height, width, and area were
calculated using maximum/minimum X and Z values,
and a polygon-based area -calculation. Finally,
minimum, average, and maximum values for each
feature were calculated across the Y direction.

2.3.4. Data Analysis and Modelling Techniques
Once the geometric properties were extracted, data
analysis and modelling techniques were used to
transform the raw data into actionable insights. In the
first phase, outliers were detected so that anomalies
could be identified and corrected to ensure cleaner and
more reliable datasets. The data were then
standardized to ensure that feature scales were aligned
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for improved model stability and performance. As the
framework progressed, ML modelling techniques
were implemented to create predictive models that
capture relationships within the data. Regression
metrics were used to evaluate the performance of the
models created. This structured approach enabled
comprehensive data analysis and predictive
modelling. The employed ML modeling process is
schematically shown in Figure 1.,

2.3.5. Data Standardization

To eliminate possible discrepancies in the size and
units of the entered features, a normalization of the
features was applied to the numerical data using z-
score normalization. This technique transforms the
data so that each feature has a mean of zero and a
standard deviation of one [38]. This step prevents
certain features from disproportionately influencing
the model due to their larger size.

2.3.6. Nested K-Fold Cross-Validation for Model
Improvement

The models were evaluated and the hyperparameters
were tuned using nested kfold cross-validation to
obtain an unbiased estimate of the model’s
generalization performance [31]. The nested cross-
validation approach comprises two loops: an inner
loop for optimizing the hyperparameters and an outer
loop for evaluating the predictive ability of the model
on unseen data. This prevents overfitting and allows
for a more reliable evaluation of the model’s
performance on new data. Grid search cross validation
was used to fine-tune the hyperparameters of the
created models.

2.3.7. Regression Metrics for the Model Evaluation
The metrics used to evaluate the regression models
created were R2 , mean absolute error (MAE), root
mean square error (RMSE) and mean absolute
percentage error (MAPE). Metric R2 provides a
general indication of the predictive power, MAE
reflects the closeness of the predictions to the actual
values, RMSE is used to highlight larger errors,
MAPE is used to assess the percentage error to provide
a relative measure of accuracy. The variability of the
prediction errors is indicated by the standard deviation
of the residuals. These metrics were used to provide a
comprehensive  assessment of the accuracy,
consistency and reliability of the model.

2.3.8. Addressing Potential Model Overfitting
Overfitting was mitigated through a comprehensive
strategy that combined model regularization,
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hyperparameter tuning, and data preprocessing.
Regularized linear models such as RR (using an L2
penalty) and LR (using an L1 penalty) inherently
reduce model complexity by shrinking coefficients
and eliminating irrelevant features, while BR
leverages a Gaussian prior to naturally control
coefficient sizes. In parallel, tree-based methods like
RF and XGBoost were fine-tuned with constraints on
parameters such as tree depth, the number of
estimators, and regularization terms, further curbing
the risk of overfitting. This approach was bolstered by
a nested k-fold cross-validation framework that
isolates hyperparameter optimization from model
evaluation, ensuring unbiased estimates of predictive
performance. Additionally, data standardization and
outlier detection using the LOF contributed to a
cleaner, more consistent dataset, preventing skewed
model behavior due to noise or extreme values. These
measures were undertaken not only to address
potential pitfalls of overfitting but also to fully
leverage the relatively small dataset, ensuring that its
inherent quality and subtle patterns were effectively
captured without succumbing to noise.

III. RESULTS AND DISCUSSION

3.1. Manufacturing and Geometric Properties
Extraction

The weld beads produced are displayed in Figure 2,
featuring three base plates, each divided into two scan
areas. The welding sequence, determined
experimentally, is indicated by numbers 1-50 and
arrows.

Methodology

Milling experiments were conducted on AISI D2, D3
(cold work steels), HI3 (hot work steel), and P20
(plastic injection mold steel) using coated and
uncoated carbide tools. The cutting parameters—
speed (75, 100, 125 m/min), feed (0.01, 0.015, 0.02
mm/tooth), and constant 0.5 mm depth of cut—were
selected to evaluate performance under dry, wet
(soluble oil flood coolant), and LN2 cryogenic
cooling.

The developed cryogenic cooling system delivered
LN2 using pressurized stainless steel pipes and
nozzles precisely at the tool-chip interface. Cutting
temperature was measured by a non-contact infrared
pyrometer, cutting forces via a Kistler piezo-electric
dynamometer, and surface roughness with a Taylor-
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Hobson surface tester. Tool wear was observed under
a microscope and scanning electron microscope to
assess flank wear and morphological changes. Chip
morphology was qualitatively analyzed by SEM
imaging.

The experimental setup included the ARIX VMC 100
CNC vertical machining center. Each condition was

Results and Discussion

1. THE SCANNING PROCESS

replicated to ensure data reliability. Data acquisition
software recorded force and temperature metrics.
Experimental procedures followed IS standards for
machining and safety. Results were statistically
analyzed to evaluate the significance of cryogenic
cooling effects
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Each base plate is represented by two point clouds.
Scan_1 1 and scan_1_2 represent the first base plate.
When evaluating the geometric properties of the weld
beads, each weld bead was extracted separately from
the point cloud of the corresponding base plate by
defining regions of interest (ROI). The extracted point
clouds were then split into the points that represent the
base plate and were used to align the scanned data to
the scanner normal plane, and the points that represent
the weld beads. The weld bead seams were determined
by a narrower ROI that also excludes the arc start and
end areas, which were not considered in this study,
from the overall geometry of the weld bead.

Tool For each of the extracted weld bead seams nine
features were computationally extracted: minimum,
average and maximum weld height, width and area.
For each scan line, the maximum point in the Z
direction (red points in Figure 2) was used to
determine the weld bead height. The maximum and
minimum points in the X direction were used to
calculate the weld bead width. The weld bead area was
obtained by polygonizing all scan line points with
respect to the Z axis. From these data, the minimum,
average, and maximum weld height, width, and area
of the entire weld bead seam were determined. The
processed results are shown in Table Al, where the
first column is the experiment number and the second
and third columns are the independent parameters
current and travel speed. The remaining columns are
the minimum, average and maximum weld height,
width and area.

3.2. Outlier Detection

The LOF settings used in the study—a configuration
with 20 neighbors, a 5% contamination rate, and the
Euclidean metric—represent a balanced approach to
anomaly detection. However, since no outliers were
detected, there are two possible interpretations: the
dataset itself might be inherently robust, or the chosen
settings may not be stringent enough to capture subtler
anomalies. It is also important to consider that overly
rigorous detection can be counterproductive; if the
criteria are too strict, legitimate data points might be
erroneously classified as outliers and removed, leading
to a loss of valuable information and potentially
harming the model’s generalizability. Thus, while the
current parameter settings may be adequate for certain
anomalies, they might overlook less obvious ones, and
overly strict detection could compromise model
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performance. Future work might benefit from further
parameter tuning or incorporating complementary
methods to ensure a more comprehensive detection of
all anomalies.

IV. CONCLUSIONS

The XGBoost regression models augmented with
feature engineering and polynomial transformations
showed the strongest predictive performance for all
three target variables— mean weld height, mean weld
width and mean weld cross-section area. Mean weld
height

The model achieved a training R2 of 0.980 and a test
R2 of 0.868, indicating that it captured most of the
variance and generalized well to unseen data. Contrary
to feature importance analysis, the SHAP analysis
revealed that current was the most influential
parameter, exhibiting the broadest range of SHAP
values, indicating its impact on the model’s
predictions. The SHAP dependence plot further
illustrated a generally positive correlation between
current and its impact on predictions, with variations
in travel speed influencing this relationship.
Additionally, the interaction term (current x travel
speed) showed increased significance at higher travel
speeds, suggesting a complex interplay between these
factors in determining the output.

Mean weld cross-section area

The model achieved a training R2 of 0.999 and a test
R2 0f 0.931, demonstrating both remarkable precision
and stability. Current was again the most important
factor, accounting for 55.40% of the feature’s
importance, closely followed by travel speed at
39.41%. The SHAP analysis confirmed the dominant
influence of current as it had the widest range of SHAP
values.

These results emphasize the importance of current in
predicting mean weld height, mean weld width and
cross-section area. Although the interaction term
between current and travel speed was less influential,
it provided important insights into nonlinear and
synergistic relationships. The low error metrics of the
models (MAE, RMSE, MAPE) and the high Pearson
correlation coefficients confirm their reliability.
Supported by feature importance analyses and SHAP
analyses, these results provide practical guidance for
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the optimization of welding parameters to achieve
precise control of welding results. Future work

It is planned that the study be expanded in future work
by incorporating additional independent variables—
namely, voltage, wire feed speed, shielding gas flow
rate and composition, electrode/nozzle size, and arc
length—and by evaluating key material properties
such as tensile strength, toughness, fracture
mechanics, microstructure, cracks, and porosity.
Moreover, the modelling procedure is to be extended
to multi-layer builds, with layer count introduced as a
new variable, and investigations on stainless steel as
well as combinations of plain and stainless steel to be
conducted.
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