
© February 2026 | IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002 

IJIRT 192546 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1477 

Experimental Investigations on Weld Bead Geometry and 

Process Optimization in Robot Assisted Wire Arc 

Additive Manufacturing 
 

 

Sachin Alawe1, Prof. Ghanshyam Dhanera2, Prof. Radheshyam chherkee3 

1M.E. Scholar Department of Mechanical Engineering, BM College of Technology, Indore (M.P.) India 
2Assistant Professor Department of Mechanical Engineering, BM College of Technology, Indore (M.P.) 

India 
3Department of Mechanical Engineering, BM College of Technology, Indore (M.P.) India 

 

 

Abstract—This study investigates the predictive 

modelling of weld bead geometry in wire arc additive 

manufacturing (WAAM) through advanced machine 

learning methods. While WAAM is valued for its ability 

to produce large, complex metal parts with high 

deposition rates, precise control of the weld bead remains 

a critical challenge due to its influence on mechanical 

properties and dimensional accuracy. To address this 

problem, this study utilized machine learning 

approaches—Ridge regression, Lasso regression and 

Bayesian ridge regression, Random Forest and 

XGBoost—to predict the key weld bead characteristics, 

namely height, width and cross-sectional area. A Design 

of experiments (DOE) was used to systematically vary 

the welding current and travelling speed, with 3D weld 

bead geometries captured by laser scanning. Robust data 

pre-processing, including outlier detection and feature 

engineering, improved modelling accuracy. Among the 

models tested, XGBoost provided the highest prediction 

accuracy, emphasizing its potential for real-time control 

of WAAM processes. Overall, this study presents a 

comprehensive framework for predictive modelling and 

provides valuable insights for process optimization and 

the further development of intelligent manufacturing 

systems. 

 

Index Terms—wire arc additive manufacturing 

(WAAM); predictive modelling; machine learning; weld 

bead geometry; XGBoost. 

 

I. INTRODUCTION 

 

Wire Arc Additive Manufacturing (WAAM) has 

emerged as a transformative approach within the 

broader spectrum of Additive Manufacturing (AM) 

technologies. By utilizing arc welding as the heat 

source and wire as the material input, WAAM enables 

the production of large, complex metal components 

with high deposition rates at low costs [1,2]. This 

unique approach differs from other AM processes such 

as Powder Bed Fusion (PBF) and Directed Energy 

Deposition (DED) as it enables the production of 

large-sized metal components, making it particularly 

relevant for industries such as aerospace, automotive, 

shipbuilding and heavy machinery production [3,4]. 

However, despite these promising advantages, 

WAAM has several process-related challenges that 

must be addressed to improve its industrial 

applicability. One of the most critical issues with this 

technology is the high heat input, which contributes to 

uneven thermal cycles and microstructural 

inconsistencies during layer-by-layer deposition [5]. 

This results in coarse and anisotropic grain structures, 

increasing residual stresses and reducing mechanical 

performance compared to other AM methods [6]. 

Additionally, rapid heating and cooling cycles can 

lead to porosity, cracking, and poor interlayer 

bonding, which further degrades component quality 

[7]. These defects are particularly pronounced in 

aluminum and titanium alloys, where oxidation and 

gas entrapment exacerbate microstructural 

weaknesses [5]. 

Beyond material-specific concerns, thermal 

distortions due to excessive heat input result in 

unwanted geometrical deviations, internal stresses, 

and part warping, which compromise dimensional 

accuracy [6]. The control of bead geometry, surface 

roughness, and defect formation also remains a major 

challenge [7,8], as these parameters significantly 
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influence the mechanical properties, surface finish, 

and post-processing requirements. 

Accordingly, considerable efforts have focused on 

data-driven methods by integrating machine learning 

(ML) techniques [3,6,9]. Other areas include precise 

trajectory planning [10], integrating cooling 

conditions and material properties into trajectory 

design [11], employing thermal management to 

produce geometrically correct parts while reducing 

residual stresses [12–14] and, more recently, using 

artificial intelligence-based real-time multiparameter 

control has demonstrated significant potential for 

error-free manufacturing [15]. 

In addition to the areas mentioned, effective process 

monitoring underpins the production of high-quality 

WAAM components. Closed loop and real-time 

monitoring enable parameter adjustment that affect 

weld pool temperature and surface properties without 

compromising mechanical performance [16,17]. 

Thermal imaging cameras track temperature 

distribution, while laser scanners measure layer 

geometry and surface quality in real time [18]. Non-

destructive evaluation methods—such as x-ray 

computed tomography (CT) and ultrasonic testing—

help detect internal porosity and defects, ensuring part 

integrity [19,20]. High-speed cameras capture the 

dynamic behavior of the weld pool and metal transfer, 

offering insights into process stability [21,22]. 

Spectrometers, meanwhile, monitor the composition 

of deposited material, identifying any impurities or 

deviations from the target alloy [23]. 

Despite these advances, the control of weld bead 

geometry remains critically dependent on the 

fundamental process parameters of travel speed and 

current. In this study, the influence of variations in 

these parameters on bead geometry is therefore 

examined, with the aim of refining WAAM process 

models and ultimately improving final part quality. 

Machine learning for WAAM 

ML has proven invaluable for process optimization, 

quality control, and predictive modelling in WAAM. 

By predicting and controlling parameters such as 

electric current and travel speed, ML-based methods 

reduce trial-and-error iterations, enhance bead 

geometry, and minimize material waste [2,9]. 

Decision Trees, Random Forest, Support Vector 

Regression, Back Propagation Neural Networks, and 

XGBoost have all been employed to predict variables 

like surface roughness and defect formation [9,24]. 

Notably, XGBoost and artificial neural networks often 

deliver higher accuracy, especially with nonlinear 

input–output relationships [3,4]. In addition, advanced 

outlier detection techniques (e.g., local outlier factor) 

can help detect anomalies in welding data [25] while 

nested K-fold cross-validation reduces overfitting and 

yields robust performance estimates [26]. 

 

Parametric studies in WAAM 

Parametric studies frequently focus on the influence of 

wire feed rate, travel speed, voltage, and interpass 

temperature across diverse welding materials and 

modelling methods. For instance, the authors of [27] 

employed a Taguchi test plan to optimize parameters 

affecting weld bead geometry and spatter, while in 

[28], wire feed rate and interpass temperature were 

investigated using an SVM-based weld bead 

modelling system. More complex parts were 

manufactured in [29] by systematically varying energy 

input, travel speed, and wire feed rate; however, 

further optimization and mechanical testing were 

deferred. 

 

Study justification 

Despite these advances, prior studies often address 

isolated aspects of WAAM modelling. This research 

provides a more comprehensive framework. The main 

aspects are presented in Table 1. 

 

Table 1. Main aspects of study justification. 

Aspect Previous Studies This Study 

Data acquisition and cleaning Focused on individual aspects of data 

collection and process modelling, often 

lacking systematic experimental design 

and advanced outlier detection 

[5,10,11,20]. Real-time monitoring 

limitations were highlighted [17] 

Implements systematic Design of 

Experiments (DOE) and LOF-based 

outlier detection ([30]) for improved 

data robustness. Enhances real-time 

data acquisition for WAAM process 

monitoring 

Feature extraction and dimensionality 

reduction 

Relied on manual or basic feature 

extraction for bead geometry prediction 

Automates 3D point cloud feature 

extraction and refines data for better 
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with limited refinement [1,9,15,23]. AI-

based process monitoring is emerging 

[18] 

interpretability and model performance. 

Incorporates advanced feature 

engineering for defect prediction 

Model validation Conventional k-fold cross-validation 

used, but concerns remain regarding 

bias mitigation and generalization 

[3,9,12,24] 

Employs nested k-fold cross-validation 

([31]) to improve model generalization 

and selection robustness 

Polynomial feature transformation Nonlinear relationships in WAAM were 

noted but lacked systematic polynomial 

feature transformation [7,8,16,22] 

Systematically explores polynomial 

transformations to capture nonlinear 

bead geometry variations 

Model explainability ML models were treated as “black 

boxes” with limited feature importance 

analysis [6,9,10,14,25] 

Integrates SHAP analysis for feature 

contribution transparency, improving 

model interpretability 

Model comparison Previous studies compared ML models 

for WAAM outcomes but lacked a 

unified framework and ensemble 

methods [3,6,9,19,26,27] 

Conducts a comprehensive ML model 

comparison, integrating ensemble and 

hybrid approaches for WAAM 

predictions 

By uniting these methods, particularly FE, PF, 

rigorous validation, and model explainability, this 

study aims to establish a more holistic and reliable 

approach to ML-driven process modelling in WAAM. 

 

 

 

 

 

II. MATERIALS AND METHODS 

 

A three-stage process was employed to investigate the 

influence of welding parameters on the geometry of 

the resulting weld bead. This process included welding 

tests, measure- ment of weld seams, and 

computational analysis for extracting geometric 

properties. A summary of the process is presented in 

Figure 1. 
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Figure 1. Materials and methods for modelling of weld bead geometry in wire arc additive manufacturing. 

 

2.1 Experimental Setup 

An experiment was conducted to examine how 

welding parameters influence the geometry of the 

resulting weld bead. The test utilized an S355 steel 

plate measuring 250 mm by 120 mm, along with a 

solid copper-coated welding wire (VAC 60) with a 1.2 

mm diameter. The wire’s chemical composition is 

presented in Table2. 

 

 

 

Table 2. Chemical composition of VAC 60 welding 

wire. 

Element Weight Fraction [wt%] 

C 0.08 

Si 0.90 

Mn 1.50 

P <0.025 

S <0.025 

2.1.1. Robotic Cell 

In the robotic cell, a Daihen NV8L-NEFC welding 

robot was paired with an FD1 controller. A WB-

P500L DC welding power source was employed, and 

the robot was outfitted with an MTX group welding 

torch (featuring an integrated shock sensor), and a 

Daihen AF-4012 wire feeder. A mixture of argon and 

carbon dioxide was used as shielding gas. A J. 

Thielmann BRG-2000 DE served for calibration and 

cleaning. The robotic cell with all components was 

provided by Daihen Varstroj Slovenia. 

Offline programming in SLIM (Standard Language 

for Industrial Manipulator) language which complies 

with the JIS B8439 standard was performed, requiring 

only three commands: MOVEX for motion and 

ASWBPL/AEWBPL for arc start/end. Robot motion 

control was restricted to movement type (linear or 

point-to-point), coordinates, speed, and configuration; 

welding current and travel speed were the adjustable 

parameters for the process. 

 2.1.2. Experimental Matrix 

A full factorial design was applied with two 

independent variables (welding current and travel 

speed) and three dependent variables (bead height, 

width, and cross-section area). Welding current ranged 

from 65–155 A (in 10 A increments) and travel speed 

ranged from 20–40 cm/min (in 5 cm/min increments), 

resulting in 50 welded lines (testing samples). Arc 
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start/end parameters remained constant and “Synergic 

Mode” automatically adjusted voltage based on 

welding current. Table A1 presents experimental data 

together with the extracted features. 

 

2.2. Measurement Setup 

A Wenglor MLWL 132 laser scanner (Tettnang, 

Germany) was used to measure the weld bead surface. 

The sensor was mounted on a servo-driven linear 

guide for threedimensional scanning. A Siemens PLC 

S7-1500 (Munich, Germany) with an S120 CU310 

controller (Munich, Germany) controlled the linear 

unit, and the scanning was initiated at 0.5 mm 

intervals. The measurement data was transmitted via 

TCP/IP to a computer running MATLAB R2023b, 

where it was stored in PLY format. The computer also 

served as a virtual human–machine interface (HMI). 

 

2.3. Computational Programs  

Several computer programs were developed to support 

the WAAM process and analyze the results. A CAM 

setup was modelled in Siemens NX, generating 

toolpaths and G-code for post-processing. A custom 

post-processor handled welding activation and 

welding and non-welding movements. Robot-specific 

commands were added, including work frame setup 

and tool cleaning. A custom algorithm extracted 

geometric properties from 3D scan data. Since the 

definition of the regions of interest for the extraction 

of the geometric features was done manually and 

based on the visual identification of the start and end 

zones of the weld bead arc, an outlier detection 

algorithm was integrated to identify possible poorly 

defined regions of interest. Different ML algorithms 

were trained on the prepared data to model geometric 

properties, and the best was chosen based on 

performance metrics. 

 2.3.1. CAM Programming  

In Siemens NX, a base plate and 50 welding lines of 

40 mm each were modelled to prepare the CAM setup 

for the welding process. The manufacturing coordinate 

system was defined in the plate’s corner. The 

freeform_additive_fixed_axis_thinwall operation 

from the NX Additive Manufacturing add-on was used 

to generate the tool paths. Linear movements were 

specified for engagement, retraction, and transfer, with 

a 10 mm safety distance above the plate for transfers.  

2.3.2. Postprocessor 

NC code exported from Siemens NX was automated 

through the postprocessor, which converted motion 

commands into the required SLIM format and 

integrated DOE variables for welding. The NC code 

text file was loaded and analyzed, and the robot frame 

was aligned with the manufacturing coordinate 

system. Robot configuration and linear/pointto-point 

commands were adjusted to ensure desired speeds, and 

position/orientation coordinates were extracted with 

process-specific transformations applied. The DOE 

welding process was integrated by replacing 

deposition-activation commands with arc-start 

commands and adding experimental variables for 

robot travel speed and welding current. Safety and 

cleaning routines were added at the start of the 

program. Finally, a modified SLIM-format program 

was generated, ensuring the required structure and 

robot compatibility. , 

2.3.3. Algorithm for Extraction of Geometric 

Properties  

An algorithm was developed to extract geometric 

properties from the line laser scanner data by 

processing 3D point clouds and isolating regions of 

interest (ROIs). ROIs were individually and manually 

defined for each weld bead by filtering data points on 

spatial coordinates. Because the plate and laser 

scanner were not aligned and the base plate was curved 

due to thermal stress, point cloud data had to be 

realigned with the sensor’s XY plane. First, welded 

bead points were separated from base plate points. 

Next, a plane was fitted to the base plate, rotated to 

align with the XY sensor plane, and translated to the Z 

= 0 plane. A transformation matrix was created from 

these steps and applied to each point in the constrained 

ROI. After the transformation, geometric features 

(height, width and area) were extracted. For each scan 

line in the Y direction, height, width, and area were 

calculated using maximum/minimum X and Z values, 

and a polygon-based area calculation. Finally, 

minimum, average, and maximum values for each 

feature were calculated across the Y direction. 

 2.3.4. Data Analysis and Modelling Techniques  

Once the geometric properties were extracted, data 

analysis and modelling techniques were used to 

transform the raw data into actionable insights. In the 

first phase, outliers were detected so that anomalies 

could be identified and corrected to ensure cleaner and 

more reliable datasets. The data were then 

standardized to ensure that feature scales were aligned 
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for improved model stability and performance. As the 

framework progressed, ML modelling techniques 

were implemented to create predictive models that 

capture relationships within the data. Regression 

metrics were used to evaluate the performance of the 

models created. This structured approach enabled 

comprehensive data analysis and predictive 

modelling. The employed ML modeling process is 

schematically shown in Figure 1., 

2.3.5. Data Standardization 

 To eliminate possible discrepancies in the size and 

units of the entered features, a normalization of the 

features was applied to the numerical data using z-

score normalization. This technique transforms the 

data so that each feature has a mean of zero and a 

standard deviation of one [38]. This step prevents 

certain features from disproportionately influencing 

the model due to their larger size. 

2.3.6. Nested K-Fold Cross-Validation for Model 

Improvement 

 The models were evaluated and the hyperparameters 

were tuned using nested kfold cross-validation to 

obtain an unbiased estimate of the model’s 

generalization performance [31]. The nested cross-

validation approach comprises two loops: an inner 

loop for optimizing the hyperparameters and an outer 

loop for evaluating the predictive ability of the model 

on unseen data. This prevents overfitting and allows 

for a more reliable evaluation of the model’s 

performance on new data. Grid search cross validation 

was used to fine-tune the hyperparameters of the 

created models.  

2.3.7. Regression Metrics for the Model Evaluation  

The metrics used to evaluate the regression models 

created were R2 , mean absolute error (MAE), root 

mean square error (RMSE) and mean absolute 

percentage error (MAPE). Metric R2 provides a 

general indication of the predictive power, MAE 

reflects the closeness of the predictions to the actual 

values, RMSE is used to highlight larger errors, 

MAPE is used to assess the percentage error to provide 

a relative measure of accuracy. The variability of the 

prediction errors is indicated by the standard deviation 

of the residuals. These metrics were used to provide a 

comprehensive assessment of the accuracy, 

consistency and reliability of the model.  

2.3.8. Addressing Potential Model Overfitting  

Overfitting was mitigated through a comprehensive 

strategy that combined model regularization, 

hyperparameter tuning, and data preprocessing. 

Regularized linear models such as RR (using an L2 

penalty) and LR (using an L1 penalty) inherently 

reduce model complexity by shrinking coefficients 

and eliminating irrelevant features, while BR 

leverages a Gaussian prior to naturally control 

coefficient sizes. In parallel, tree-based methods like 

RF and XGBoost were fine-tuned with constraints on 

parameters such as tree depth, the number of 

estimators, and regularization terms, further curbing 

the risk of overfitting. This approach was bolstered by 

a nested k-fold cross-validation framework that 

isolates hyperparameter optimization from model 

evaluation, ensuring unbiased estimates of predictive 

performance. Additionally, data standardization and 

outlier detection using the LOF contributed to a 

cleaner, more consistent dataset, preventing skewed 

model behavior due to noise or extreme values. These 

measures were undertaken not only to address 

potential pitfalls of overfitting but also to fully 

leverage the relatively small dataset, ensuring that its 

inherent quality and subtle patterns were effectively 

captured without succumbing to noise. 

 

III. RESULTS AND DISCUSSION 

 

3.1. Manufacturing and Geometric Properties 

Extraction  

The weld beads produced are displayed in Figure 2, 

featuring three base plates, each divided into two scan 

areas. The welding sequence, determined 

experimentally, is indicated by numbers 1–50 and 

arrows. 

Methodology 

Milling experiments were conducted on AISI D2, D3 

(cold work steels), H13 (hot work steel), and P20 

(plastic injection mold steel) using coated and 

uncoated carbide tools. The cutting parameters—

speed (75, 100, 125 m/min), feed (0.01, 0.015, 0.02 

mm/tooth), and constant 0.5 mm depth of cut—were 

selected to evaluate performance under dry, wet 

(soluble oil flood coolant), and LN2 cryogenic 

cooling. 

The developed cryogenic cooling system delivered 

LN2 using pressurized stainless steel pipes and 

nozzles precisely at the tool-chip interface. Cutting 

temperature was measured by a non-contact infrared 

pyrometer, cutting forces via a Kistler piezo-electric 

dynamometer, and surface roughness with a Taylor-
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Hobson surface tester. Tool wear was observed under 

a microscope and scanning electron microscope to 

assess flank wear and morphological changes. Chip 

morphology was qualitatively analyzed by SEM 

imaging. 

The experimental setup included the ARIX VMC 100 

CNC vertical machining center. Each condition was 

replicated to ensure data reliability. Data acquisition 

software recorded force and temperature metrics. 

Experimental procedures followed IS standards for 

machining and safety. Results were statistically 

analyzed to evaluate the significance of cryogenic 

cooling effects

 

Results and Discussion 
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Each base plate is represented by two point clouds. 

Scan_1_1 and scan_1_2 represent the first base plate. 

When evaluating the geometric properties of the weld 

beads, each weld bead was extracted separately from 

the point cloud of the corresponding base plate by 

defining regions of interest (ROI). The extracted point 

clouds were then split into the points that represent the 

base plate and were used to align the scanned data to 

the scanner normal plane, and the points that represent 

the weld beads. The weld bead seams were determined 

by a narrower ROI that also excludes the arc start and 

end areas, which were not considered in this study, 

from the overall geometry of the weld bead. 

Tool For each of the extracted weld bead seams nine 

features were computationally extracted: minimum, 

average and maximum weld height, width and area. 

For each scan line, the maximum point in the Z 

direction (red points in Figure 2) was used to 

determine the weld bead height. The maximum and 

minimum points in the X direction were used to 

calculate the weld bead width. The weld bead area was 

obtained by polygonizing all scan line points with 

respect to the Z axis. From these data, the minimum, 

average, and maximum weld height, width, and area 

of the entire weld bead seam were determined. The 

processed results are shown in Table A1, where the 

first column is the experiment number and the second 

and third columns are the independent parameters 

current and travel speed. The remaining columns are 

the minimum, average and maximum weld height, 

width and area. 

 

3.2. Outlier Detection 

The LOF settings used in the study—a configuration 

with 20 neighbors, a 5% contamination rate, and the 

Euclidean metric—represent a balanced approach to 

anomaly detection. However, since no outliers were 

detected, there are two possible interpretations: the 

dataset itself might be inherently robust, or the chosen 

settings may not be stringent enough to capture subtler 

anomalies. It is also important to consider that overly 

rigorous detection can be counterproductive; if the 

criteria are too strict, legitimate data points might be 

erroneously classified as outliers and removed, leading 

to a loss of valuable information and potentially 

harming the model’s generalizability. Thus, while the 

current parameter settings may be adequate for certain 

anomalies, they might overlook less obvious ones, and 

overly strict detection could compromise model 

performance. Future work might benefit from further 

parameter tuning or incorporating complementary 

methods to ensure a more comprehensive detection of 

all anomalies. 

  

IV. CONCLUSIONS 

 

The XGBoost regression models augmented with 

feature engineering and polynomial transformations 

showed the strongest predictive performance for all 

three target variables— mean weld height, mean weld 

width and mean weld cross-section area. Mean weld 

height 

The model achieved a training R2 of 0.980 and a test 

R2 of 0.868, indicating that it captured most of the 

variance and generalized well to unseen data. Contrary 

to feature importance analysis, the SHAP analysis 

revealed that current was the most influential 

parameter, exhibiting the broadest range of SHAP 

values, indicating its impact on the model’s 

predictions. The SHAP dependence plot further 

illustrated a generally positive correlation between 

current and its impact on predictions, with variations 

in travel speed influencing this relationship. 

Additionally, the interaction term (current × travel 

speed) showed increased significance at higher travel 

speeds, suggesting a complex interplay between these 

factors in determining the output. 

 

Mean weld cross-section area  

The model achieved a training R2 of 0.999 and a test 

R2 of 0.931, demonstrating both remarkable precision 

and stability. Current was again the most important 

factor, accounting for 55.40% of the feature’s 

importance, closely followed by travel speed at 

39.41%. The SHAP analysis confirmed the dominant 

influence of current as it had the widest range of SHAP 

values.  

These results emphasize the importance of current in 

predicting mean weld height, mean weld width and 

cross-section area. Although the interaction term 

between current and travel speed was less influential, 

it provided important insights into nonlinear and 

synergistic relationships. The low error metrics of the 

models (MAE, RMSE, MAPE) and the high Pearson 

correlation coefficients confirm their reliability. 

Supported by feature importance analyses and SHAP 

analyses, these results provide practical guidance for 



© February 2026 | IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002 

IJIRT 192546 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1485 

the optimization of welding parameters to achieve 

precise control of welding results. Future work  

It is planned that the study be expanded in future work 

by incorporating additional independent variables—

namely, voltage, wire feed speed, shielding gas flow 

rate and composition, electrode/nozzle size, and arc 

length—and by evaluating key material properties 

such as tensile strength, toughness, fracture 

mechanics, microstructure, cracks, and porosity. 

Moreover, the modelling procedure is to be extended 

to multi-layer builds, with layer count introduced as a 

new variable, and investigations on stainless steel as 

well as combinations of plain and stainless steel to be 

conducted.  
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