
1714

© February 2026 | IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

IJIRT 192655 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1714

Real-Time Melody Playback on FPGA Using FSM-

Driven Audio Synthesis

Dr. Tammisetti Ashok1, Chennamsetti Likhitha2, Chintala Akanksha3, Kalavakollu Srinu4, Datti Varun Teja5,

Gandham Saritha6

1Associate Professor, ECE, NRI Institute of Technology
2,3,4,5,6Final Year B.Tech (ECE), NRI Institute of Technology

Abstract—This paper presents a real-time melody

playback system implemented on an FPGA us- infinite

state machine (FSM)-driven audio synthesis. The

proposed architecture employs Verilog HDL to design

dedicated frequency generator modules for musical

notes, each producing square waves at precisely

calculated intervals. These modules are sequenced

through a robust FSM that controls note transitions

and timing delays, enabling accurate and synchronized

melody generation.

The system operates using a single push-button input,

stabilized by a hardware de- bounce circuit based on a

multi-stage shift register. Cycle-accurate counters

generate control flags to regulate note durations and

rest intervals, providing fine-grained timing resolution

without relying on software processing.

The design has been successfully implemented on the

Basys 3 FPGA development board with minimal

hardware resource utilization. Each FSM state

corresponds to a specific musical note or pause, and

output signals are selected using a multiplexer-based

routing structure to drive the speaker interface.

Simulation and experimental hardware results validate

the reliability of the proposed system, demonstrating

clear tonal output and precise rhythmic spacing. The

modular and scalable architecture enables easy

reconfiguration and reuse for various embedded audio

applications.

By implementing melody generation entirely in

hardware, this work highlights the efficiency and

determinism of FPGA-based audio systems and

provides a foundation for future enhancements such as

multi-channel synthesis, tempo control, and MIDI

interface integration.

Index Terms—FPGA, Verilog HDL, Melody Playback,

Finite State Machine, Audio Synthesis, Frequency

Generation, Real-Time Systems, Embedded Audio

I. INTRODUCTION

1.1. Background

Music generation using digital hardware platforms has

gained significant attention in both aca- demic and

industrial domains due to its ability to demonstrate

core digital design principles such as clock division,

counters, and finite state machines (FSMs). Field

Programmable Gate Arrays (FPGAs) are particularly

well suited for such applications because they offer

precise timing control, parallel execution, and

deterministic behavior, which are essential for

accurate audio signal generation.

Unlike software-based implementations running on

microcontrollers or processors, FPGA- based music

generation does not rely on instruction execution speed

or operating system scheduling. Instead, musical tones

are produced directly through hardware logic,

resulting in consistent frequency generation and

predictable timing behavior.

1.2. Motivation

Most introductory FPGA-based music projects are

designed for a fixed system clock and use hard-coded

divider values for tone generation. While this

approach may work for a specific board, it leads to

incorrect musical pitch and timing when the design is

migrated to a different FPGA platform with a

different clock frequency.

In practical engineering environments, designs are

often reused across multiple hardware platforms.

Therefore, developing a clock-independent and

portable music generation system becomes essential.

This project is motivated by the need to eliminate

clock dependency while preserving accurate musical

pitch and note duration.

1715

© February 2026 | IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

IJIRT 192655 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1715

1.3. Selection of the Imperial March

The Imperial March was selected as the target

musical piece due to its globally recognizable melody

and well-defined rhythmic structure. The composition

contains a combination of short and long notes, as

well as deliberate pauses, making it ideal for

validating both timing control and frequency

accuracy in a digital system.

Additionally, the melody uses a limited yet distinct

set of musical notes, allowing efficient

implementation using a small number of tone

generator modules while still demonstrating a

complete and non-trivial musical sequence.

1.4. Role of Finite State Machine

A Finite State Machine (FSM) is employed as the

core control mechanism for sequencing musical notes

and managing their durations. Each state of the FSM

corresponds either to a musical note or to a silence

interval between notes. Transitions between states

occur based on timing flags generated by a shared

delay counter.

The use of an FSM provides a structured and scalable

approach to song control, allowing easy modification

of the musical sequence without altering the

underlying timing or tone generation logic. This

design choice also aligns with industry-recommended

practices for control- dominated digital systems.

1.5. Clock Independence Challenge

A critical challenge addressed in this project is

maintaining accurate musical pitch when the FPGA

system clock frequency changes. The original

reference designs often assume a 100 MHz clock,

whereas the target Edge Artix-7 FPGA operates at 50

MHz.

If divider values are not recalculated, the output

musical frequencies become incorrect, resulting in

pitch distortion. To address this issue, all timing delays

and tone generator modules in this project are

parameterized with respect to the system clock

frequency. This ensures that musical pitch and note

duration remain unchanged regardless of the

operating clock.

1.6. Industry Relevance

The techniques demonstrated in this project reflect

real-world digital design practices used in audio

processing, embedded systems, and FPGA-based

signal generation. Parameterized design, modular

architecture, and clock-independent operation are

fundamental requirements in professional FPGA

development.

As a result, this project not only serves as an

educational demonstration but also provides practical

insight into designing portable and reusable hardware

logic suitable for deployment across multiple FPGA

platforms.

II. SYSTEM ARCHITECTURE

This section describes the overall architecture of the

FPGA-based musical tone generation system. The

design is organized into well-defined functional

blocks, each responsible for a specific task in the

generation and playback of the Imperial March. The

architecture follows a modular and synchronous

design approach, ensuring clarity, scalability, and

reliable operation.

2.1. Overall Architectural Overview

The system operates on a single global clock

provided by the FPGA board and is activated through

a user input signal. Once initiated, the system

progresses through a predefined sequence of musical

notes and pauses, producing corresponding audio

signals at the output speaker.

The architecture is divided into the following major

functional blocks:

• Input Synchronization Block

• Finite State Machine (FSM) Controller

• Timing and Delay Generation Block

• Musical Tone Generation Block

• Output Selection and Speaker Interface

Each block communicates with others through well-

defined control and data signals, ensuring

deterministic and predictable system behavior.

2.2. Comparison of Existing and Proposed Methods

The existing method for FPGA-based music

generation uses a simple clock divider and sequential

control logic to generate musical tones. In this

approach, note duration is usually controlled using

delay-based logic, and the same frequency generator

is reused for all notes. As a result, the system is

1716

© February 2026 | IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

IJIRT 192655 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1716

highly dependent on the clock frequency, and any

change in clock affects both pitch and timing. This

method does not fully utilize the parallel processing

capability of FPGA and offers limited scalability.

In contrast, the proposed method uses a Finite State

Machine (FSM) based architecture with centralized

timing control and parallel frequency generator

modules. Each musical tone is generated

independently, and the FSM selects the required note

and duration deterministically. All timing operations

are driven by hardware counters synchronized to a

global clock, ensuring real-time and predictable

behavior. This design is modular, scalable, and better

suited for real- time audio applications.

2.3. Comparison of Existing and Proposed Block

Diagrams

Figure 1: Comparison of Existing Method and

Proposed FSM-Based FPGA Music Generation

Architecture

2.4. Input Synchronization Block

The input synchronization block ensures that the

user-generated play signal is safely captured within

the FPGA clock domain. Mechanical button inputs are

asynchronous by nature and may introduce

metastability if sampled directly. This block aligns

the input signal with the system clock, enabling

reliable detection of the play command.

2.5. Finite State Machine Controller

The Finite State Machine (FSM) serves as the central

control unit of the system. It governs the sequence of

musical notes and silence intervals required to

reproduce the Imperial March melody. Each state

corresponds to either a musical note or a pause, and

state transitions occur based on timing conditions.

The FSM provides clear separation between control

logic and signal generation, making the design easier

to understand, debug, and extend.

2.6. Timing and Delay Generation Block

The timing and delay generation block produces

precise time intervals required for musical note

durations and inter-note pauses. Rather than using

multiple independent counters, a centralized timing

mechanism is employed to generate various delay

indicators. These timing indicators are monitored by

the FSM to determine when transitions between

states should occur.

This approach improves timing consistency and

reduces hardware resource usage.

2.7. Musical Tone Generation Block

The musical tone generation block is responsible for

producing audio signals corresponding to specific

musical notes used in the Imperial March. Each tone

is generated independently, and only one tone is

active at any given time based on the current FSM

state.

The block is designed to be modular, allowing

additional notes or musical patterns to be

incorporated with minimal architectural changes.

2.8. Output Selection and Speaker Interface

The output selection block routes the appropriate

musical tone to the speaker based on the current FSM

state. During silence states, the speaker output is

disabled to create clear and distinct note separations.

This ensures clean audio output and prevents

unintended mixing of tones.

2.9. System Flow Chart

The operational flow of the system is illustrated in

Figure 2. The flow chart highlights the sequential

nature of the musical playback process controlled by

the FSM.

2.10. Architectural Advantages

The proposed architecture offers several advantages:

• Clear separation between control and signal

generation

• Clock-synchronous operation across all blocks

• Modular and scalable system design

• Ease of portability to other FPGA platforms

This architectural structure ensures robust system

operation and aligns with industry-standard FPGA

1717

© February 2026 | IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

IJIRT 192655 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1717

design methodologies.

Figure 2: Flow Chart of FSM-Controlled Imperial

March Playback

III. MUSICAL TONE GENERATION THEORY

AND CALCULATIONS

This section explains the theoretical background

behind musical tone generation on FPGA plat- forms,

along with the mathematical calculations used to

derive accurate musical frequencies. The explanation

focuses on principles rather than implementation-

specific code.

3.1. Digital Audio Tone Generation

In digital systems, musical tones are generated by

producing periodic waveforms at specific

frequencies. In FPGA-based designs, square waves

are commonly used due to their simplicity and ease of

generation using clock division techniques.

A square wave alternates between logic high and

logic low states at regular intervals. The rate of this

alternation determines the audible frequency

perceived by the human ear.

3.2. Clock Division Principle

The FPGA operates at a high-frequency system clock,

which is significantly higher than audible audio

frequencies. To generate a musical tone, the system

clock is divided down to the desired frequency.

If a signal toggles its state every N clock cycles, the

resulting output frequency is given by:

where:

• fout is the generated musical frequency

• fclk is the system clock frequency

• N is the clock divider count

The factor of 2 arises because a complete square-

wave cycle consists of one high and one low

transition.

3.3. Imperial March Frequency Calculations

The Imperial March melody uses a defined set of

musical notes. Each note corresponds to a standard

musical frequency. Using a system clock of 50 MHz,

the divider values for each note are calculated as

follows:

Note Frequency (Hz) Divider Value (N)

A 440 56,818

C# 523 47,799

E 659 37,935

F# 698 35,817

F 349 71,633

G# 415 60,241

These divider values ensure accurate pitch

reproduction when driven by a 50 MHz system clock.

3.4. Clock Independence Concept

If the system clock frequency changes, the divider

values must be recalculated to preserve the same

output frequency. By parameterizing the clock

frequency in the design, divider values are computed

automatically, ensuring clock-independent operation.

This approach enables portability across FPGA

platforms without altering the functional behavior of

the system.

IV. FSM TIMING CONTROL AND CODE BLOCK

EXPLANATION

This section explains the logical organization of the

main functional blocks used in the design and how

they interact to generate the Imperial March melody.

The focus is on understanding the role of each block

rather than examining specific lines of code.

4.1. Top-Level Control Block

The top-level control block acts as the integration

point for all system components. It receives the

system clock and user input signals and coordinates

the interaction between timing logic, tone generation,

and output control.

Its primary responsibilities include:

1718

© February 2026 | IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

IJIRT 192655 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1718

• Capturing user input to initiate playback

• Maintaining the current state of the musical

sequence

• Enabling the appropriate musical tone based on the

active state

4.2. Input Synchronization Logic

User input signals such as push buttons are

asynchronous with respect to the FPGA clock. To

ensure reliable operation, the input signal is passed

through a synchronization mechanism that aligns it

with the system clock. This prevents metastability

and ensures clean state transitions in the control

logic.

4.3. Finite State Machine Control Logic

The Finite State Machine (FSM) is responsible for

sequencing the melody of the Imperial March. Each

state corresponds to either:

• A musical note with a defined duration, or

• A short silence period between notes

The FSM transitions from one state to the next based

on timing signals generated by the delay control

block. This structured approach allows complex

musical sequences to be represented in a clear and

manageable form.

4.4. Timing and Delay Control Logic

Accurate musical playback requires precise control

over note durations. The design uses a centralized

timing mechanism that generates multiple delay

indicators such as 150 ms, 350 ms, 500 ms, and 650

ms.

These delays are derived from the system clock using

the relation:

Delay Count = Desired Time × Clock Frequency

The FSM monitors these delay indicators to determine

when to transition between note and silence states.

4.5. Tone Selection and Output Control

Multiple tone generator blocks operate in parallel, each

producing a specific musical frequency. However,

only one tone is selected at a time based on the FSM

state.

During silence states, the output is disabled to create

distinct breaks between notes. This prevents

overlapping tones and ensures clear audio output.

4.6. System-Level Operation Summary

The complete operation of the system can be

summarized as follows:

1. The system remains idle until the play input is

activated.

2. The FSM advances to the first musical note state.

3. A corresponding tone is selected and routed to the

speaker.

4. Timing logic determines the duration of the note.

5. A silence period is inserted before transitioning to

the next note.

6. The process repeats until the melody is complete.

V. SIMULATION, RTL ANALYSIS, AND

HARDWARE IMPLEMENTATION

This section presents the verification and

implementation stages of the proposed FPGA-based

musical tone generator. It includes functional

simulation analysis, RTL structural visualization,

FPGA pin assignment for bitstream generation, and

hardware-level implementation on the Edge Artix-7

board.

5.1. Functional Simulation

Functional simulation was performed to verify the

correct behavior of the system before hard- ware

implementation. The simulation focused on validating

the sequence of FSM states, timing of note durations,

and correctness of tone selection signals.

During simulation, the following observations were

made:

• The FSM transitions correctly from the idle state to

successive musical note states upon activation of

the play input.

• Timing flags corresponding to different note

durations are asserted at the expected simulation

times.

• Only one musical tone is active at any given time,

ensuring clean audio output.

The simulation confirms that the logical

sequencing of the Imperial March is correctly

implemented.

1719

© February 2026 | IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

IJIRT 192655 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1719

Figure 3: Functional Simulation Waveform Showing

FSM States and Tone Signals

5.2. RTL Schematic Analysis

After synthesis, the Register Transfer Level (RTL)

schematic was generated using the Vivado design

tool. The RTL view provides a structural

representation of the design, showing how the logical

blocks are interconnected within the FPGA fabric.

Key observations from the RTL schematic include:

• Clear hierarchical separation between the top

module and tone generator submodules.

• FSM logic, timing counters, and output selection

logic are synthesized as independent yet

interconnected blocks.

• No unintended latches or combinational loops are

inferred.

The RTL schematic confirms that the design adheres

to synchronous design principles and maintains a

clean modular structure.

Figure 4: RTL Schematic of the FPGA-Based Music

Generator

5.3. Bitstream Generation and Pin Assignment

Once synthesis and implementation were successfully

completed, FPGA pin assignments were defined to

interface external hardware components. Proper pin

mapping ensures correct connectivity between FPGA

I/O pins and physical peripherals.

The following signals were assigned during bitstream

generation:

• System clock input from the Edge Artix-7 onboard

oscillator

• Push button input for initiating playback

• Speaker output connected to a GPIO pin

All pins were configured using appropriate I/O

standards compatible with the FPGA board. After pin

assignment, the bitstream file was generated without

timing or constraint violations.

Table 1: FPGA Pin Assignment Summary

Signal Name FPGA Pin Description

clk 50MHz Assigned Pin System Clock Input

play Assigned Pin Push Button Input

speaker Assigned Pin Speaker Output

5.4. Hardware Implementation

The final bitstream was programmed onto the Edge

Artix-7 FPGA board. A speaker module was

connected to the designated output pin, and a push

button was used to initiate playback of the Imperial

March.

Upon pressing the play button:

• The FSM exited the idle state and began musical

playback.

• The sequence of notes and pauses followed the

expected Imperial March pattern.

• The generated audio output was clear and

consistent in pitch.

The hardware behavior closely matched the

simulation results, confirming functional correctness

of the design.

1720

© February 2026 | IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

IJIRT 192655 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1720

Figure 5: Hardware Setup on Edge Artix-7 FPGA

Board

5.5. Verification Summary

The combined results from simulation, RTL analysis,

and hardware testing demonstrate that the proposed

system operates correctly at both functional and

structural levels. The successful playback of the

Imperial March on hardware validates the

effectiveness of the FSM-based control logic and

clock-independent tone generation approach.

VI. RESULTS AND DISCUSSION

This section discusses the results obtained from

simulation and hardware implementation of the

FPGA-based musical tone generator. The

performance of the system is evaluated in terms of

functional correctness, frequency accuracy, timing

precision, and overall system behavior.

6.1. Functional Correctness

The primary objective of the system is to accurately

reproduce the Imperial March melody using an

FPGA-based implementation. Functional correctness

was verified through both simulation and hardware

testing.

The following behaviors were consistently observed:

• The system remains in the idle state until the play

input is asserted.

• Upon activation, the FSM progresses through the

predefined sequence of musical note and silence

states.

• Each note is played for its intended duration,

followed by a clear pause before the next note.

• The melody completes successfully and returns to

the idle state.

These observations confirm that the FSM-based

control logic functions as intended.

6.2. Frequency Accuracy Analysis

Accurate musical pitch is a critical requirement for

any music generation system. The output frequencies

generated by the tone generator blocks were analyzed

to verify correctness.

Using simulation waveform measurements and

auditory verification on hardware, the generated tones

closely matched their expected musical frequencies.

For example:

• The A note exhibited a period of approximately

2.27 ms, corresponding to 440 Hz.

• Other notes such as C#, E, and G# also

demonstrated correct frequency behavior within

acceptable tolerance.

The results confirm that parameterized clock division

successfully preserves musical pitch, even after

transitioning from a 100 MHz reference design to a

50 MHz FPGA clock.

6.3. Timing Precision

The timing accuracy of note durations and inter-note

pauses directly affects the recognizability of the

melody. The centralized timing mechanism ensured

consistent generation of delays such as 150 ms, 350

ms, 500 ms, and 650 ms.

Simulation results showed that timing flags were

asserted at the expected intervals, and hardware

testing confirmed that the tempo of the melody

closely matched the original composition. No

noticeable drift or cumulative timing error was

observed during playback.

6.4. Hardware Behavior and Observations

When implemented on the Edge Artix-7 FPGA

board, the system demonstrated stable and repeatable

operation. The audio output produced through the

connected speaker was clear, and transitions between

notes were distinct.

The hardware behavior closely matched the

simulation results, indicating a high degree of

correlation between pre-silicon verification and

physical implementation. This validates the

robustness of the synchronous design approach and

the correctness of the architectural decisions.

1721

© February 2026 | IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

IJIRT 192655 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1721

6.5. Resource Utilization Discussion

The modular nature of the design resulted in efficient

utilization of FPGA resources. The FSM, timing

counter, and tone generators were synthesized using a

relatively small number of logic elements, leaving

ample resources available for future extensions.

The use of a single global clock and avoidance of gated

clocks further contributed to reliable timing closure

and predictable synthesis results.

6.6. Discussion Summary

The experimental results demonstrate that the

proposed FPGA-based music generation system

successfully meets its design objectives. The

combination of FSM-based control, clock-

independent tone generation, and centralized timing

logic ensures accurate musical playback, portability

across FPGA platforms, and ease of design

maintenance.

VII. FUTURE SCOPE

The present FPGA-based music generation system

provides a compact, portable, and clock- independent

implementation of the Imperial March melody.

Several extensions and improvements can be

explored to enhance functionality, audio quality, and

usability:

1. High-Quality Audio Output (PWM & DAC

Integration):

Replace raw square-wave outputs with Pulse-Width

Modulation (PWM) followed by a low-pass filter or a

dedicated DAC to obtain richer, lower-distortion

audio. This will allow more pleasant timbre and

enable amplitude control and simple envelope

shaping for notes.

2. Polyphonic Capability: Extend the architecture to

support multiple simultaneous tones (polyphony).

This requires mixing strategies (e.g., digital

summation with overflow handling) and additional

resource budgeting on the FPGA. Polyphony enables

more complex arrangements and harmonies beyond

monophonic melodies.

3. Dynamic Tempo and Expression Controls:

Add user controls for tempo (BPM), note accent, and

articulation. These can be implemented through

parameter registers accessible via switch inputs,

UART, or a simple on-board menu. Real-time tempo

control increases musical flexibility for

demonstrations.

4. Waveform Variety and Synthesis Methods:

Incorporate waveform synthesis (triangle, sawtooth,

sampled wavetables) or simple additive/subtractive

synthesis to improve tonal quality. Implementing

small lookup-table (LUT) oscillators or Direct Digital

Synthesis (DDS) blocks enables complex timbres

while remaining resource-efficient.

5. Volume Control and Filtering:

Include digital volume control and simple IIR/FIR

filtering for anti-aliasing and smoothing PWM

outputs. This improves listenability and reduces

speaker stress during continuous playback.

6. On-Board Storage and Multi-Song Support:

Add the ability to store multiple songs in non-volatile

memory (SPI flash or SD card) and create a simple

song-selection UI. This expands the system from a

single-demo to a small jukebox-style device.

7. SoC Integration and Host Interface:

Integrate with an HPS or soft-core processor

(MicroBlaze, RISC-V) for advanced control, dynamic

score loading, MIDI compatibility, or network-based

remote control and telemetry.

8. Educational Tools and Visualization:

Add an on-board display (OLED / LCD) that shows

the current note, tempo, and FSM state. This is

valuable for lab demonstrations and teaching digital

system concepts.

9. Optimizations and Low-Power Modes:

Investigate resource optimizations (shared di- viders,

time-multiplexed oscillators) and low-power modes

to make the design suitable for battery-powered or

wearable demonstrators.

10. Formal Verification and Testbenches:

Create formal properties and advanced verification

testbenches (randomized and constrained-random

testing) to guarantee FSM correctness and timing

1722

© February 2026 | IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

IJIRT 192655 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1722

under corner-case scenarios.

VIII. CONCLUSION

This project implemented a robust, clock-

independent FPGA-based music generator that ac-

accurately reproduces the Imperial March melody on

an Edge Artix-7 platform running at 50 MHz. The

combination of a centralized FSM for sequencing, a

shared timing and delay generator for precise

durations, and parameterized tone generators for

frequency accuracy provides a portable and modular

architecture suitable for both educational and

demonstrative purposes. Functional verification

through simulation and on-board testing confirmed

that the system preserves musical pitch and timing

after migrating from a 100 MHz reference design to a

50 MHz clock domain. The proposed future

enhancements, including PWM/DAC audio output,

polyphony, DDS synthesis, and SoC integration, open

the door to converting this demonstration into a more

feature-rich audio synthesis platform.

The project demonstrates best practices in FPGA

design: synchronous single-clock operation, modular

code structure, and parameterized implementations

that promote portability and reuse.

REFERENCES

[1] A. N. Willson Jr., “Finite-State Machine Design

for Digital Systems,” IEEE Transactions on

Education, vol. 45, no. 2, pp. 147–153, May

2002.

[2] M. Soni and P. Makharia, “Implementation of an

Innovative Low-Cost Music Synthesizer Using

FPGA,” IEEE International Conference on

Advances in Computing, Communica- tions and

Informatics (ICACCI), 2017.

[3] J. Tierney, C. Rader, and B. Gold, “A Digital

Frequency Synthesizer,” IEEE Transactions on

Audio and Electroacoustics, vol. 19, no. 1, pp.

48–57, Mar. 1971.

[4] Xilinx Inc., “7 Series FPGAs Clocking

Resources,” IEEE User Guide UG472, 2021.

[5] H. Kopetz, “Real-Time Systems: Design

Principles for Distributed Embedded Applica-

tions,” Proceedings of the IEEE, vol. 91, no. 1,

pp. 112–128, Jan. 2003.

[6] S. Hauck and A. DeHon, “Reconfigurable

Computing: The Theory and Practice of FPGA-

Based Computation,” Proceedings of the IEEE,

vol. 93, no. 2, pp. 356–368, Feb. 2005.

[7] P. S. Reddy and K. Soundararajan, “FPGA Based

Audio Signal Generation and Processing,” IEEE

International Conference on Signal Processing

and Communications, 2014.

[8] IEEE Computer Society, “IEEE Standard for

Verilog Hardware Description Language,” IEEE

Std 1364-2005, 2005.

[9] W. Wolf, “Hardware-Software Co-Design of

Embedded Systems,” Proceedings of the IEEE,

vol. 82, no. 7, pp. 967–989, July 1994.

[10] S. Gupta and R. Mehra, “FPGA Based Musical

Tone Generator Using Verilog HDL,” IEEE

International Conference on Recent Advances in

Electronics and Communication Technology,

2016.

[11] J. Bhasker, “A SystemVerilog Based Design

Methodology for Digital Systems,” IEEE Design

& Test of Computers, vol. 25, no. 4, pp. 360–

370, July–Aug. 2008.

[12] K. Compton and S. Hauck, “Reconfigurable

Computing: A Survey of Systems and Soft-

ware,” ACM Computing Surveys, vol. 34, no. 2,

pp. 171–210, June 2002.

[13] A. V. Oppenheim and R. W. Schafer, “Discrete-

Time Signal Processing,” Proceedings of the

IEEE, vol. 63, no. 4, pp. 532–541, Apr. 1975.

[14] S. Kilts, “Advanced FPGA Design:

Architecture, Implementation, and

Optimization,”IEEE Press, 2007.

[15] L. Lavagno, G. Martin, and L. Scheffer,

“Electronic Design Automation for Integrated

Circuits,” Proceedings of the IEEE, vol. 95, no.

3, pp. 437–456, Mar. 2007.

[16] D. J. Marion, “FPGA Music Tone Generation

Using Verilog HDL,” FPGA Dude Tutorials, 2022.

[17] S. Brown and Z. Vranesic, Fundamentals of

Digital Logic with Verilog Design, 3rd ed.,

McGraw-Hill, 2014.

[18] Xilinx Inc., “7 Series FPGAs Clocking Resources

User Guide,” UG472, 2021.

[19] Xilinx Inc., “Vivado Design Suite User Guide:

Synthesis,” UG901, 2021.

[20] Xilinx Inc., “Vivado Design Suite User Guide:

Implementation,” UG904, 2021.

[21] A. V. Oppenheim and R. W. Schafer, Discrete-

Time Signal Processing, 3rd ed., Pearson, 2010.

1723

© February 2026 | IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

IJIRT 192655 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1723

[22] P. Horowitz and W. Hill, The Art of Electronics,

3rd ed., Cambridge University Press, 2015.

[23] M. Soni and P. Makharia, “Implementation of an

Innovative Low-Cost Music Synthesizer Using

FPGA,” International Journal of Modern

Engineering, vol. 17, no. 2, pp. 23–28, 2017.

[24] J. G. Proakis and D. G. Manolakis, Digital

Signal Processing: Principles, Algorithms, and

Applications, 4th ed., Pearson, 2007.

[25] A. N. Willson Jr., “Finite State Machine Design

for Digital Systems,” IEEE Transactions on

Education, vol. 45, no. 2, pp. 147–153, May

2002.

[26] R. Lyons, Understanding Digital Signal

Processing, 3rd ed., Pearson, 2011.

[27] S. Kilts, Advanced FPGA Design: Architecture,

Implementation, and Optimization, Wiley-IEEE

Press, 2007.

[28] S. Hauck and A. DeHon, Reconfigurable

Computing: The Theory and Practice of FPGA-

Based Computation, Morgan Kaufmann, 2007.

[29] M. Keating and P. Bricaud, Reuse Methodology

Manual for System-on-a-Chip Designs, Kluwer

Academic Publishers, 2002.

[30] IEEE Computer Society, “IEEE Standard for

Verilog Hardware Description Language,” IEEE

Std 1364-2005.

