© February 2026 | IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

Real-Time Melody Playback on FPGA Using FSM-
Driven Audio Synthesis

Dr. Tammisetti Ashok® Chennamsetti Likhitha> Chintala Akanksha® Kalavakollu Srinu® Datti Varun Teja>
Gandham Saritha®
Associate Professor, ECE, NRI Institute of Technology
23458Final Year B.Tech (ECE), NRI Institute of Technology

Abstract—This paper presents a real-time melody
playback system implemented on an FPGA us- infinite
state machine (FSM)-driven audio synthesis. The
proposed architecture employs Verilog HDL to design
dedicated frequency generator modules for musical
notes, each producing square waves at precisely
calculated intervals. These modules are sequenced
through a robust FSM that controls note transitions
and timing delays, enabling accurate and synchronized
melody generation.

The system operates using a single push-button input,
stabilized by a hardware de- bounce circuit based on a
multi-stage shift register. Cycle-accurate counters
generate control flags to regulate note durations and
rest intervals, providing fine-grained timing resolution
without relying on software processing.

The design has been successfully implemented on the
Basys 3 FPGA development board with minimal
hardware resource utilization. Each FSM state
corresponds to a specific musical note or pause, and
output signals are selected using a multiplexer-based
routing structure to drive the speaker interface.
Simulation and experimental hardware results validate
the reliability of the proposed system, demonstrating
clear tonal output and precise rhythmic spacing. The
modular and scalable architecture enables easy
reconfiguration and reuse for various embedded audio
applications.

By implementing melody generation entirely in
hardware, this work highlights the efficiency and
determinism of FPGA-based audio systems and
provides a foundation for future enhancements such as
multi-channel synthesis, tempo control, and MIDI
interface integration.

Index Terms—FPGA, Verilog HDL, Melody Playback,

Finite State Machine, Audio Synthesis, Frequency
Generation, Real-Time Systems, Embedded Audio

IJIRT 192655

I. INTRODUCTION

1.1. Background

Music generation using digital hardware platforms has
gained significant attention in both aca- demic and
industrial domains due to its ability to demonstrate
core digital design principles such as clock division,
counters, and finite state machines (FSMs). Field
Programmable Gate Arrays (FPGAS) are particularly
well suited for such applications because they offer
precise timing control, parallel execution, and
deterministic behavior, which are essential for
accurate audio signal generation.

Unlike software-based implementations running on
microcontrollers or processors, FPGA- based music
generation does not rely on instruction execution speed
or operating system scheduling. Instead, musical tones
are produced directly through hardware logic,
resulting in consistent frequency generation and
predictable timing behavior.

1.2. Motivation

Most introductory FPGA-based music projects are
designed for a fixed system clock and use hard-coded
divider values for tone generation. While this
approach may work for a specific board, it leads to
incorrect musical pitch and timing when the design is
migrated to a different FPGA platform with a
different clock frequency.

In practical engineering environments, designs are
often reused across multiple hardware platforms.
Therefore, developing a clock-independent and
portable music generation system becomes essential.
This project is motivated by the need to eliminate
clock dependency while preserving accurate musical
pitch and note duration.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1714

© February 2026 | IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

1.3. Selection of the Imperial March

The Imperial March was selected as the target
musical piece due to its globally recognizable melody
and well-defined rhythmic structure. The composition
contains a combination of short and long notes, as
well as deliberate pauses, making it ideal for
validating both timing control and frequency
accuracy in a digital system.

Additionally, the melody uses a limited yet distinct
set of musical notes, allowing efficient
implementation using a small number of tone
generator modules while still demonstrating a
complete and non-trivial musical sequence.

1.4. Role of Finite State Machine

A Finite State Machine (FSM) is employed as the
core control mechanism for sequencing musical notes
and managing their durations. Each state of the FSM
corresponds either to a musical note or to a silence
interval between notes. Transitions between states
occur based on timing flags generated by a shared
delay counter.

The use of an FSM provides a structured and scalable
approach to song control, allowing easy modification
of the musical sequence without altering the
underlying timing or tone generation logic. This
design choice also aligns with industry-recommended
practices for control- dominated digital systems.

1.5. Clock Independence Challenge

A critical challenge addressed in this project is
maintaining accurate musical pitch when the FPGA
system clock frequency changes. The original
reference designs often assume a 100 MHz clock,
whereas the target Edge Artix-7 FPGA operates at 50
MHz.

If divider values are not recalculated, the output
musical frequencies become incorrect, resulting in
pitch distortion. To address this issue, all timing delays
and tone generator modules in this project are
parameterized with respect to the system clock
frequency. This ensures that musical pitch and note
duration remain unchanged regardless of the
operating clock.

1.6. Industry Relevance

The techniques demonstrated in this project reflect
real-world digital design practices used in audio

IJIRT 192655

processing, embedded systems, and FPGA-based
signal generation. Parameterized design, modular
architecture, and clock-independent operation are
fundamental requirements in professional FPGA
development.

As a result, this project not only serves as an
educational demonstration but also provides practical
insight into designing portable and reusable hardware
logic suitable for deployment across multiple FPGA
platforms.

Il. SYSTEM ARCHITECTURE

This section describes the overall architecture of the
FPGA-based musical tone generation system. The
design is organized into well-defined functional
blocks, each responsible for a specific task in the
generation and playback of the Imperial March. The
architecture follows a modular and synchronous
design approach, ensuring clarity, scalability, and
reliable operation.

2.1. Overall Architectural Overview

The system operates on a single global clock
provided by the FPGA board and is activated through
a user input signal. Once initiated, the system
progresses through a predefined sequence of musical
notes and pauses, producing corresponding audio
signals at the output speaker.

The architecture is divided into the following major
functional blocks:

* Input Synchronization Block

* Finite State Machine (FSM) Controller
* Timing and Delay Generation Block

* Musical Tone Generation Block

* Output Selection and Speaker Interface

Each block communicates with others through well-
defined control and data signals, ensuring
deterministic and predictable system behavior.

2.2. Comparison of Existing and Proposed Methods
The existing method for FPGA-based music
generation uses a simple clock divider and sequential
control logic to generate musical tones. In this
approach, note duration is usually controlled using
delay-based logic, and the same frequency generator
is reused for all notes. As a result, the system is

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1715

© February 2026 | IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

highly dependent on the clock frequency, and any
change in clock affects both pitch and timing. This
method does not fully utilize the parallel processing
capability of FPGA and offers limited scalability.

In contrast, the proposed method uses a Finite State
Machine (FSM) based architecture with centralized
timing control and parallel frequency generator
modules. Each musical tone is generated
independently, and the FSM selects the required note
and duration deterministically. All timing operations
are driven by hardware counters synchronized to a
global clock, ensuring real-time and predictable
behavior. This design is modular, scalable, and better
suited for real- time audio applications.

2.3. Comparison of Existing and Proposed Block
Diagrams
COMPARISON OF MUSIC GENERATION ARCHITECTURES

OLD REFERENCE PROJECT METHOD
(FIXED CLOCK DEPENDENCY)

OUR PROPOSED PROJECT METHOD
(CLOCK-INDEPENDENT FSM)

Hard-coded
Clock Divider &
Tone Logic

% Clock Independent,

Modular & Portable

Figure 1: Comparison of Existing Method and

Proposed FSM-Based FPGA Music Generation
Acrchitecture

Clock Dependent,
Not Portable

2.4. Input Synchronization Block

The input synchronization block ensures that the
user-generated play signal is safely captured within
the FPGA clock domain. Mechanical button inputs are
asynchronous by nature and may introduce
metastability if sampled directly. This block aligns
the input signal with the system clock, enabling
reliable detection of the play command.

2.5. Finite State Machine Controller

The Finite State Machine (FSM) serves as the central
control unit of the system. It governs the sequence of
musical notes and silence intervals required to
reproduce the Imperial March melody. Each state
corresponds to either a musical note or a pause, and
state transitions occur based on timing conditions.
The FSM provides clear separation between control
logic and signal generation, making the design easier

IJIRT 192655

to understand, debug, and extend.

2.6. Timing and Delay Generation Block

The timing and delay generation block produces
precise time intervals required for musical note
durations and inter-note pauses. Rather than using
multiple independent counters, a centralized timing
mechanism is employed to generate various delay
indicators. These timing indicators are monitored by
the FSM to determine when transitions between
states should occur.

This approach improves timing consistency and
reduces hardware resource usage.

2.7. Musical Tone Generation Block

The musical tone generation block is responsible for
producing audio signals corresponding to specific
musical notes used in the Imperial March. Each tone
is generated independently, and only one tone is
active at any given time based on the current FSM
state.

The block is designed to be modular, allowing
additional notes or musical patterns to be
incorporated with minimal architectural changes.

2.8. Output Selection and Speaker Interface

The output selection block routes the appropriate
musical tone to the speaker based on the current FSM
state. During silence states, the speaker output is
disabled to create clear and distinct note separations.
This ensures clean audio output and prevents
unintended mixing of tones.

2.9. System Flow Chart

The operational flow of the system is illustrated in
Figure 2. The flow chart highlights the sequential
nature of the musical playback process controlled by
the FSM.

2.10. Architectural Advantages
The proposed architecture offers several advantages:

* Clear separation between control and signal
generation

* Clock-synchronous operation across all blocks
* Modular and scalable system design

* Ease of portability to other FPGA platforms
This architectural structure ensures robust system
operation and aligns with industry-standard FPGA

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1716

© February 2026 | IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

design methodologies.

Idle State\Waiting for Play Button
Play Pressed

Activate Note State

Wait for Note Duration

e More Notes gndofisonie
g Time

Insert Note Break

Advance to Next State

Figure 2: Flow Chart of FSM-Controlled Imperial
March Playback

I11. MUSICAL TONE GENERATION THEORY
AND CALCULATIONS

This section explains the theoretical background
behind musical tone generation on FPGA plat- forms,
along with the mathematical calculations used to
derive accurate musical frequencies. The explanation
focuses on principles rather than implementation-
specific code.

3.1. Digital Audio Tone Generation

In digital systems, musical tones are generated by
producing periodic waveforms at specific
frequencies. In FPGA-based designs, square waves
are commonly used due to their simplicity and ease of
generation using clock division techniques.

A square wave alternates between logic high and
logic low states at regular intervals. The rate of this
alternation determines the audible frequency
perceived by the human ear.

3.2. Clock Division Principle
The FPGA operates at a high-frequency system clock,
which is significantly higher than audible audio
frequencies. To generate a musical tone, the system
clock is divided down to the desired frequency.

If a signal toggles its state every N clock cycles, the
resulting output frequency is given by:

_ fn:n'k

fEIL.IE 2 x N
where:
* fou is the generated musical frequency
* fok is the system clock frequency
* N is the clock divider count
The factor of 2 arises because a complete square-

IJIRT 192655

wave cycle consists of one high and one low
transition.

3.3. Imperial March Frequency Calculations

The Imperial March melody uses a defined set of
musical notes. Each note corresponds to a standard
musical frequency. Using a system clock of 50 MHz,
the divider values for each note are calculated as
follows:

fcn’k
T 2 X fre
Note Frequency (Hz)| Divider Value (N)
A 440 56,818
C# 523 47,799
E 659 37,935
F# 698 35,817
F 349 71,633
G# 415 60,241

These divider values ensure accurate pitch
reproduction when driven by a 50 MHz system clock.

3.4. Clock Independence Concept

If the system clock frequency changes, the divider
values must be recalculated to preserve the same
output frequency. By parameterizing the clock
frequency in the design, divider values are computed
automatically, ensuring clock-independent operation.
This approach enables portability across FPGA
platforms without altering the functional behavior of
the system.

IV. FSM TIMING CONTROL AND CODE BLOCK
EXPLANATION

This section explains the logical organization of the
main functional blocks used in the design and how
they interact to generate the Imperial March melody.
The focus is on understanding the role of each block
rather than examining specific lines of code.

4.1. Top-Level Control Block

The top-level control block acts as the integration
point for all system components. It receives the
system clock and user input signals and coordinates
the interaction between timing logic, tone generation,
and output control.

Its primary responsibilities include:

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1717

© February 2026 | IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

* Capturing user input to initiate playback
* Maintaining the current state of the musical
sequence

* Enabling the appropriate musical tone based on the
active state

4.2. Input Synchronization Logic

User input signals such as push buttons are
asynchronous with respect to the FPGA clock. To
ensure reliable operation, the input signal is passed
through a synchronization mechanism that aligns it
with the system clock. This prevents metastability
and ensures clean state transitions in the control
logic.

4.3. Finite State Machine Control Logic

The Finite State Machine (FSM) is responsible for
sequencing the melody of the Imperial March. Each
state corresponds to either:

* A musical note with a defined duration, or

* A short silence period between notes

The FSM transitions from one state to the next based
on timing signals generated by the delay control
block. This structured approach allows complex
musical sequences to be represented in a clear and
manageable form.

4.4. Timing and Delay Control Logic

Accurate musical playback requires precise control
over note durations. The design uses a centralized
timing mechanism that generates multiple delay
indicators such as 150 ms, 350 ms, 500 ms, and 650
ms.

These delays are derived from the system clock using
the relation:

Delay Count = Desired Time x Clock Frequency

The FSM monitors these delay indicators to determine
when to transition between note and silence states.

4.5. Tone Selection and Output Control

Multiple tone generator blocks operate in parallel, each
producing a specific musical frequency. However,
only one tone is selected at a time based on the FSM
state.

During silence states, the output is disabled to create
distinct breaks between notes. This prevents

IJIRT 192655

overlapping tones and ensures clear audio output.

4.6. System-Level Operation Summary
The complete operation of the system can be
summarized as follows:

1. The system remains idle until the play input is
activated.

2. The FSM advances to the first musical note state.

3. A corresponding tone is selected and routed to the
speaker.

4. Timing logic determines the duration of the note.

5. Assilence period is inserted before transitioning to
the next note.

6. The process repeats until the melody is complete.

V. SIMULATION, RTL ANALYSIS, AND
HARDWARE IMPLEMENTATION

This section presents the verification and
implementation stages of the proposed FPGA-based
musical tone generator. It includes functional
simulation analysis, RTL structural visualization,
FPGA pin assignment for bitstream generation, and
hardware-level implementation on the Edge Artix-7
board.

5.1. Functional Simulation

Functional simulation was performed to verify the

correct behavior of the system before hard- ware

implementation. The simulation focused on validating
the sequence of FSM states, timing of note durations,
and correctness of tone selection signals.

During simulation, the following observations were

made:

* The FSM transitions correctly from the idle state to
successive musical note states upon activation of
the play input.

* Timing flags corresponding to different note
durations are asserted at the expected simulation
times.

* Only one musical tone is active at any given time,
ensuring clean audio output.

The simulation confirms that the logical
sequencing of the Imperial March is correctly
implemented.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1718

© February 2026 | IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

Figure 3: Functional Simulation Waveform Showing
FSM States and Tone Signals

5.2. RTL Schematic Analysis

After synthesis, the Register Transfer Level (RTL)
schematic was generated using the Vivado design
tool. The RTL view provides a structural
representation of the design, showing how the logical
blocks are interconnected within the FPGA fabric.

Key observations from the RTL schematic include:

* Clear hierarchical separation between the top
module and tone generator submodules.

* FSM logic, timing counters, and output selection
logic are synthesized as independent yet
interconnected blocks.

* No unintended latches or combinational loops are
inferred.

The RTL schematic confirms that the design adheres

to synchronous design principles and maintains a

clean modular structure.

Figure 4: RTL Schematic of the FPGA-Based Music
Generator

5.3. Bitstream Generation and Pin Assignment
Once synthesis and implementation were successfully

IJIRT 192655

completed, FPGA pin assignments were defined to
interface external hardware components. Proper pin
mapping ensures correct connectivity between FPGA
1/0 pins and physical peripherals.

The following signals were assigned during bitstream

generation:

* System clock input from the Edge Artix-7 onboard
oscillator

* Push button input for initiating playback

* Speaker output connected to a GPIO pin

All pins were configured using appropriate 1/0

standards compatible with the FPGA board. After pin

assignment, the bitstream file was generated without

timing or constraint violations.

Table 1: FPGA Pin Assignment Summary

Signal Name | FPGAPin Description
clk 50MHz | Assigned Pin | System Clock Input
play Assigned Pin | Push Button Input

speaker Assigned Pin | Speaker Output

5.4. Hardware Implementation

The final bitstream was programmed onto the Edge
Artix-7 FPGA board. A speaker module was
connected to the designated output pin, and a push
button was used to initiate playback of the Imperial
March.

Upon pressing the play button:

* The FSM exited the idle state and began musical
playback.

* The sequence of notes and pauses followed the
expected Imperial March pattern.

* The generated audio output was clear and
consistent in pitch.

The hardware behavior closely matched the

simulation results, confirming functional correctness

of the design.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1719

© February 2026 | IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

Figure 5: Hardware Setup on Edge Artix-7 FPGA
Board

5.5. Verification Summary

The combined results from simulation, RTL analysis,
and hardware testing demonstrate that the proposed
system operates correctly at both functional and
structural levels. The successful playback of the
Imperial March on hardware validates the
effectiveness of the FSM-based control logic and
clock-independent tone generation approach.

VI. RESULTS AND DISCUSSION

This section discusses the results obtained from
simulation and hardware implementation of the
FPGA-based musical tone generator. The
performance of the system is evaluated in terms of
functional correctness, frequency accuracy, timing
precision, and overall system behavior.

6.1. Functional Correctness

The primary objective of the system is to accurately

reproduce the Imperial March melody using an

FPGA-based implementation. Functional correctness

was verified through both simulation and hardware

testing.

The following behaviors were consistently observed:

* The system remains in the idle state until the play
input is asserted.

* Upon activation, the FSM progresses through the
predefined sequence of musical note and silence
states.

* Each note is played for its intended duration,
followed by a clear pause before the next note.

* The melody completes successfully and returns to

IJIRT 192655

the idle state.
These observations confirm that the FSM-based
control logic functions as intended.

6.2. Frequency Accuracy Analysis

Accurate musical pitch is a critical requirement for

any music generation system. The output frequencies

generated by the tone generator blocks were analyzed
to verify correctness.

Using simulation waveform measurements and

auditory verification on hardware, the generated tones

closely matched their expected musical frequencies.

For example:

* The A note exhibited a period of approximately
2.27 ms, corresponding to 440 Hz.

e Other notes such as C#, E, and G# also
demonstrated correct frequency behavior within
acceptable tolerance.

The results confirm that parameterized clock division

successfully preserves musical pitch, even after

transitioning from a 100 MHz reference design to a

50 MHz FPGA clock.

6.3. Timing Precision

The timing accuracy of note durations and inter-note
pauses directly affects the recognizability of the
melody. The centralized timing mechanism ensured
consistent generation of delays such as 150 ms, 350
ms, 500 ms, and 650 ms.

Simulation results showed that timing flags were
asserted at the expected intervals, and hardware
testing confirmed that the tempo of the melody
closely matched the original composition. No
noticeable drift or cumulative timing error was
observed during playback.

6.4. Hardware Behavior and Observations

When implemented on the Edge Artix-7 FPGA
board, the system demonstrated stable and repeatable
operation. The audio output produced through the
connected speaker was clear, and transitions between
notes were distinct.

The hardware behavior closely matched the
simulation results, indicating a high degree of
correlation between pre-silicon verification and
physical implementation. This validates the
robustness of the synchronous design approach and
the correctness of the architectural decisions.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1720

© February 2026 | IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

6.5. Resource Utilization Discussion

The modular nature of the design resulted in efficient
utilization of FPGA resources. The FSM, timing
counter, and tone generators were synthesized using a
relatively small number of logic elements, leaving
ample resources available for future extensions.

The use of a single global clock and avoidance of gated
clocks further contributed to reliable timing closure
and predictable synthesis results.

6.6. Discussion Summary

The experimental results demonstrate that the
proposed FPGA-based music generation system
successfully meets its design objectives. The
combination of FSM-based control, clock-
independent tone generation, and centralized timing
logic ensures accurate musical playback, portability
across FPGA platforms, and ease of design
maintenance.

VII. FUTURE SCOPE

The present FPGA-based music generation system
provides a compact, portable, and clock- independent
implementation of the Imperial March melody.
Several extensions and improvements can be
explored to enhance functionality, audio quality, and
usability:

1. High-Quality Audio Output (PWM & DAC
Integration):
Replace raw square-wave outputs with Pulse-Width
Modulation (PWM) followed by a low-pass filter or a
dedicated DAC to obtain richer, lower-distortion
audio. This will allow more pleasant timbre and
enable amplitude control and simple envelope
shaping for notes.

2. Polyphonic Capability: Extend the architecture to

support multiple simultaneous tones (polyphony).
This requires mixing strategies (e.g., digital
summation with overflow handling) and additional
resource budgeting on the FPGA. Polyphony enables
more complex arrangements and harmonies beyond
monophonic melodies.

3. Dynamic Tempo and Expression Controls:
Add user controls for tempo (BPM), note accent, and

IJIRT 192655

articulation. These can be implemented through
parameter registers accessible via switch inputs,
UART, or a simple on-board menu. Real-time tempo
control increases musical flexibility for
demonstrations.

4. Waveform Variety and Synthesis Methods:
Incorporate waveform synthesis (triangle, sawtooth,
sampled wavetables) or simple additive/subtractive
synthesis to improve tonal quality. Implementing
small lookup-table (LUT) oscillators or Direct Digital
Synthesis (DDS) blocks enables complex timbres
while remaining resource-efficient.

5. Volume Control and Filtering:

Include digital volume control and simple IIR/FIR
filtering for anti-aliasing and smoothing PWM
outputs. This improves listenability and reduces
speaker stress during continuous playback.

6. On-Board Storage and Multi-Song Support:

Add the ability to store multiple songs in non-volatile
memory (SPI flash or SD card) and create a simple
song-selection Ul. This expands the system from a
single-demo to a small jukebox-style device.

7. SoC Integration and Host Interface:

Integrate with an HPS or soft-core processor
(MicroBlaze, RISC-V) for advanced control, dynamic
score loading, MIDI compatibility, or network-based
remote control and telemetry.

8. Educational Tools and Visualization:

Add an on-board display (OLED / LCD) that shows
the current note, tempo, and FSM state. This is
valuable for lab demonstrations and teaching digital
system concepts.

9. Optimizations and Low-Power Modes:
Investigate resource optimizations (shared di- viders,
time-multiplexed oscillators) and low-power modes
to make the design suitable for battery-powered or
wearable demonstrators.

10. Formal Verification and Testbenches:

Create formal properties and advanced verification
testbenches (randomized and constrained-random
testing) to guarantee FSM correctness and timing

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1721

© February 2026 | IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

under corner-case scenarios.
VIIl. CONCLUSION

This project implemented a robust, clock-
independent FPGA-based music generator that ac-
accurately reproduces the Imperial March melody on
an Edge Artix-7 platform running at 50 MHz. The
combination of a centralized FSM for sequencing, a
shared timing and delay generator for precise
durations, and parameterized tone generators for
frequency accuracy provides a portable and modular
architecture suitable for both educational and
demonstrative purposes. Functional verification
through simulation and on-board testing confirmed
that the system preserves musical pitch and timing
after migrating from a 100 MHz reference design to a
50 MHz clock domain. The proposed future
enhancements, including PWM/DAC audio output,
polyphony, DDS synthesis, and SoC integration, open
the door to converting this demonstration into a more
feature-rich audio synthesis platform.

The project demonstrates best practices in FPGA
design: synchronous single-clock operation, modular
code structure, and parameterized implementations
that promote portability and reuse.

REFERENCES

[1] A. N. Willson Jr., “Finite-State Machine Design
for Digital Systems,” IEEE Transactions on
Education, vol. 45, no. 2, pp. 147-153, May
2002.

[2] M. Soni and P. Makharia, “Implementation of an
Innovative Low-Cost Music Synthesizer Using
FPGA,” IEEE International Conference on
Advances in Computing, Communica- tions and
Informatics (ICACCI), 2017.

[3] J. Tierney, C. Rader, and B. Gold, “A Digital
Frequency Synthesizer,” IEEE Transactions on
Audio and Electroacoustics, vol. 19, no. 1, pp.
48-57, Mar. 1971.

[4] Xilinx Inc., “7 Series FPGAs Clocking
Resources,” |IEEE User Guide UG472, 2021.

[5] H. Kopetz, “Real-Time Systems: Design
Principles for Distributed Embedded Applica-
tions,” Proceedings of the IEEE, vol. 91, no. 1,
pp. 112-128, Jan. 2003.

[6] S. Hauck and A. DeHon, “Reconfigurable

IJIRT 192655

Computing: The Theory and Practice of FPGA-
Based Computation,” Proceedings of the IEEE,
vol. 93, no. 2, pp. 356-368, Feb. 2005.

[7] P.S. Reddy and K. Soundararajan, “FPGA Based
Audio Signal Generation and Processing,” IEEE
International Conference on Signal Processing
and Communications, 2014.

[8] IEEE Computer Society, “IEEE Standard for
Verilog Hardware Description Language,” |IEEE
Std 1364-2005, 2005.

[91 W. Wolf, “Hardware-Software Co-Design of
Embedded Systems,” Proceedings of the IEEE,
vol. 82, no. 7, pp. 967-989, July 1994.

[10]S. Gupta and R. Mehra, “FPGA Based Musical
Tone Generator Using Verilog HDL,” IEEE
International Conference on Recent Advances in
Electronics and Communication Technology,
2016.

[11]J. Bhasker, “A SystemVerilog Based Design
Methodology for Digital Systems,” IEEE Design
& Test of Computers, vol. 25, no. 4, pp. 360—
370, July—Aug. 2008.

[12]K. Compton and S. Hauck, “Reconfigurable
Computing: A Survey of Systems and Soft-
ware,” ACM Computing Surveys, vol. 34, no. 2,
pp. 171-210, June 2002.

[13]A. V. Oppenheim and R. W. Schafer, “Discrete-
Time Signal Processing,” Proceedings of the
IEEE, vol. 63, no. 4, pp. 532-541, Apr. 1975.

[14]S. Kilts, “Advanced FPGA Design:
Acrchitecture, Implementation, and
Optimization,”|EEE Press, 2007.

[15]L. Lavagno, G. Martin, and L. Scheffer,
“Electronic Design Automation for Integrated
Circuits,” Proceedings of the IEEE, vol. 95, no.
3, pp. 437-456, Mar. 2007.

[16]D. J. Marion, “FPGA Music Tone Generation
Using Verilog HDL,” FPGA Dude Tutorials, 2022.

[17]S. Brown and Z. Vranesic, Fundamentals of
Digital Logic with Verilog Design, 3rd ed.,
McGraw-Hill, 2014.

[18] Xilinx Inc., «“7 Series FPGAs Clocking Resources
User Guide,” UG472, 2021.

[19] Xilinx Inc., “Vivado Design Suite User Guide:
Synthesis,” UG901, 2021.

[20] Xilinx Inc., “Vivado Design Suite User Guide:
Implementation,” UG904, 2021.

[21]A. V. Oppenheim and R. W. Schafer, Discrete-
Time Signal Processing, 3rd ed., Pearson, 2010.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1722

© February 2026 | IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

[22]P. Horowitz and W. Hill, The Art of Electronics,
3rd ed., Cambridge University Press, 2015.

[23] M. Soni and P. Makharia, “Implementation of an
Innovative Low-Cost Music Synthesizer Using
FPGA,” International Journal of Modern
Engineering, vol. 17, no. 2, pp. 23-28, 2017

[24]J. G. Proakis and D. G. Manolakis, Digital
Signal Processing: Principles, Algorithms, and
Applications, 4th ed., Pearson, 2007

[25]A. N. Willson Jr., “Finite State Machine Design
for Digital Systems,” IEEE Transactions on
Education, vol. 45, no. 2, pp. 147-153, May
2002.

[26]R. Lyons, Understanding Digital Signal
Processing, 3rd ed., Pearson, 2011.

[27]S. Kilts, Advanced FPGA Design: Architecture,
Implementation, and Optimization, Wiley-IEEE
Press, 2007.

[28]S. Hauck and A. DeHon, Reconfigurable
Computing: The Theory and Practice of FPGA-
Based Computation, Morgan Kaufmann, 2007.

[29]1 M. Keating and P. Bricaud, Reuse Methodology
Manual for System-on-a-Chip Designs, Kluwer
Academic Publishers, 2002.

[30]IEEE Computer Society, “IEEE Standard for
Verilog Hardware Description Language,” IEEE
Std 1364-2005.

IJIRT 192655 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY

1723

