© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

Al-Powered Code Quality Analyzer and Error Fixer: An
Intelligent Framework for Automated Code Review,

Optimization, and Quality Assessment

Dr.P.Veeresh!, M Jagadeesh?, Saparay Deepak?®, Angadi Sai Yashwanth*, V Rahul Kumar?,
Poojari Vivekananda Sai®
123438 Department of Computer Science and Engineering, St. Johns College of Engineering and

Technology, Yemmiganur-518301, India

Abstract- Modern software development, it is of utmost
importance to ensure the quality of the code to ascertain
the reliability, maintenance, and quality service of the
program. In most situations, and particularly among
students and novice programmers, the challenge is to
ensure the production of quality or optimized code due
to minimum exposure to code quality standards and
practice. In the traditional practice of code review, a
programming expert is needed to enhance code quality,
and the review of the code is always a lengthy and non-
scalable end, among other limitations. However, to
overcome the aforementioned challenge and develop a
comprehensive solution, the Code Quality Fixer (CQF),
an artificial-intelligence code review and improvement
system, was used as a derivative of the particular
research subject. An automated system is necessary for
the comprehensive review and improvement of code
quality using a large model.

In addition, the system allows users to input their
corresponding source codes, and then the quality score
may be generated, that is, the quality level or program
reliability may be elaborated or the quality standards
may be generated. Furthermore, it should be noted that
the system would be effective in reviewing the codes to
enhance or improve the codes in optimized forms and
quality standards with the application of Al.

The proposed system would make this system interactive
to perform code analysis with the codes given to the
system. Graphs were plotted for the quality standards. It
seems to be a highly effective system for helping
programmers enhance their skills through feedback
mechanisms rather than the traditional mechanism of
code reviews and good codes for programmers. The
proposed system can be extended by adding many
features, such as different programming languages and
security issues: Integration with Source Control Systems
for Continuous Quality Monitoring.

IJIRT 192668

Index Terms— Artificial Intelligence, Static Code
Analysis, Automated Code Review, Code Quality
Assessment, Software Engineering, Optimization,
Developer Assistance, LLM, AST Parsing.

1 INTRODUCTION

In relevance to the improvement of software
application development in relation to the
contemporary paradigm, that is, the software
development paradigm, which has been adhered to in
the development of software applications, it has been
observed that with regard to the development of
efficient and free from error codes, it has been
regarded as one of the most important needs, that has
been considered to be necessary to be accomplished,
in relation to the development of software
applications. Associated with this interpretation, it
could also be added that with regard to the
development of the levels of complexities related to
software applications, there has been a need for
maintaining issues related to the improvement of
coding efficiency and developing codes of high
quality, so that software developers, especially
students, are put in a major way due to inadequate
levels of expertise over the subject of programming
along with optimum feedback mechanisms, forcing
them to develop inefficient codes in relation to the
development of software applications.

The quality of the code has generally improved
through code review, which is usually carried out
manually by skilled programmers/coders and by
instructors. While effective, it is labour intensive,
subjective, and often impossible, especially in larger
groups and educational institutions with many

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1939



© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

students, to implement. Code analysis tools have
somewhat helped improve the standards of this
activity, as they have been instrumental in
automatically checking for syntax- or rule-based
errors in the code. However, it is not possible for such
tools to offer intelligent suggestions for improvement,
as determined through programming logic and
intelligent analyses.

To compensate for these gaps, this study aims to
develop a Code Quality Fixer by introducing a set of
new code analysis techniques with the help of artificial
intelligence for code review to provide suggestions to
the developer along the lines of quantifiable code
qualities.

II LITERATURE SURVEY

Software quality assurance is an important area of
research in software engineering that specifically deals
with particular techniques to ensure the quality of the
code and software. If we talk about particular aspects
and techniques to ensure quality in the software, it has
been found that the major basis of assessment of
software quality lies within manual peer review. This
particular task is time-consuming, and at the same
time, there are specific biases that need correction.
Generally, static code analyzers, such as SonarQube,
Pylint, and Check style, are applicable in any
environment, whether academic or industrial. This
particular software is actually helpful for analyzing
and assessing the complexities of the code written and,
at the same time, can detect specific bugs that are
included in developing that particular software. It has
also been recognized that this particular software is
intended to perform its functions without executing a
source code. The tool does not understand any code
behavior, nor does it permit intelligent suggestions
that could enhance its performance. There have been a
number of developments in recent times with respect
to Artificial Intelligence and Natural Language
Processing in creating intelligent machines that can
understand programming logic and can propose a
particular technique to optimize it. GPT, a type of
Large Language Model, has been found to perform
well in code completion, bug fixing, and
documentation generation.

IJIRT 192668

III SYSTEM ARCHITECTURE

A modular and scalable approach was followed to

develop the architecture of the Code Quality Fixer.

1. Presentation Layer: This layer is responsible for
generating the user interface using the Streamlit
library. This layer is important because it enables
a user to input and analyze the code

2. Application processing layer: Its functions
include controlling and directing the workflow
and code.

3. Static Code Analysis Module: It executable and
employs the Abstract Syntax Tree parsing
technique

4. Quality Scoring Engine: It used for health score
calculations, considering maintainability and
best practices

5. Al Review Module: As one can see, the plugin
utilizes its association with a Large Language
Model (LLM) while doing intelligent code
review.

1. Data Management Layer: Here data are
processed in real time without storage

2. Configuration and Security Layer: This will
include configurations such as API configuration,
among others. Workflow Summary

Automated Al Code Review and Analysis Pipeline:

User Input — Static Analysis — Quality Score

Calculation — Al Code Review — Result

Aggregation — Visualization Output.

IV DATA FLOW DIAGRAM (DFD)

Figure 1 presents a general view of the process of
data movement from the user input to the final
intelligent feedback dashboard.

[User Code Editor]

[Langunage Del.ectmn Module]

[Static Analysis Module]
[AST Generation & Syntax Check)
'd \
[Scoring Engine] [AI Review Module]
(Quality CHI Score) (LLM Evaluation)
Y '
[Aggregation Layer]

[Visualization & Output]

Figure 1: Graphical representation of system
data flow.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1940



© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

1. Deep Explanation of Data Workflow

Based on the figure shown in the Data Flow
Diagram above, it is evident that the figure
provides a clear representation of the entire
process through which the raw code inputs
undergo transformation to produce useful
feedback. Based on the figure, it is clear that the
process starts by receiving the input through the
User Code Editor. When the input is detected by
the Language Detection Module, analysis is
performed using the Static Analysis Module
through non-executable analysis, generating an
AST.

The process then takes a different course and
branches off into two, with the role of the Scoring
Engine being to create a score pertaining to
quality. Simultaneously, with the use of the Al
Review Module, the LLM will be applied to
examine the code using optimization techniques.
This information is then represented using the
Visualization Module.

V  METHODOLOGY AND FORMULATION
The approach provides an automated pipeline for
reviewing source code quality, centered on static
analysis and Al-based reasoning. Quality Score
Formulation
The general scoring formula used in the system is
expressed as follows:

QualityScore = X(Metric; x Weight; (1)

V.1.1 Meaning of the Formula

The final score is calculated by multiplying each
individual quality metric by its assigned
importance weight and summing the total.

V.1.2 Components of the Formula
- Metric;: Individual code quality parameter.
- Weight;: Relative importance assigned to the
parameter.
- X: The total sum of all calculated weighted
metrics.

VI IMPLEMENTATION DETAILS
Code Quality was achieved in a modular

application, realizing separation between UI
interactions, backend processing, and using Al

IJIRT 192668

Streamlit was used as a library for front-end
creation of user interfaces. This means that users
can directly input the source code and visualize the
results of the analysis. It achieves backend logic
using Python modules to evaluate the abstract
syntax tree (AST) for syntax analysis. Special
libraries can also be used to analyze the code quality
in terms of complexity. Conversely, Al can also be
applied using LLM frameworks such as the Lang
Chain. Communication occurs via an encrypted
channel.

VII RESULTS AND EVALUATION

The performance was evaluated based on processing
efficiency and feedback accuracy.

1. Semantic Analysis Performance

Semantic analysis interprets the code structure beyond
the simple keywords

Table 1: Code Structure Identification Accuracy

Method Accuracy (%)

Manual Checking 72%

Rule-Based Parsing 80%

Code Quality Fixer Analysis 90%
User Code

1
Code Parsing (AST Generation)

1
Structure Extraction

1
Metric Identification
1

2. Adaptive Assessment Evaluation

The evaluation intensity was adapted based on the
detected complexity levels.
Table 2: Adaptive Evaluation Metrics

Metric Observed Value
Analysis Time 3-5
seconds Complexity Accuracy 88%
Maint. Accuracy 85%
Code Input

Complex]'t;" Detection

[Simple — Basic / CE'mplex — Advanced]

Final Sa:ore.Geueration

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1941



© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

3. Al-Based Review Simulation

The Al module simulates expert reviews by
identifying inefficient patterns.

Table 3: Al Review Performance Metrics

Parameter Result
Error Detection 86%
Opt. Suggestions 84%
Acceptance Rate 82%
Code Submission
Al Model i’roc,essmg
Logic L'ndlerstanding
Imprm—'emenlt Suggestions
Corrected éode Output
VIII CONCLUSION

It should be noted that the "Code Quality Fixer"
project effectively demonstrates the capability for
improvement in good coding practices.

static code analysis techniques by employing Al
code reviews. With the increasing complexity of
completing the software development process daily,
the need to ensure proper code quality is also
increasing. This, in turn, significantly affects the
code in terms of its performance and efficiency.
Although employing manual code review
techniques might be helpful when used in the
proposed system, it would take longer owing to the
impractical nature of the entire process in
educational institutions because of the complexity
faced in the process itself. Thus, an efficient method
for determining code quality is proposed.

It accepts user code submissions and analyzes the
code in a structured manner without executing the
code in any program state. Hence, it processes the
code safely while detecting syntax, structural
complexity, and maintainability-related issues in
the code. In addition, the quality scoring feature
provides an idea of the condition of the code
developed by developers and students.

Most importantly, the integration of Al-related

IJIRT 192668

modules will allow intelligent suggestions to be
provided to programmers in future improvements of
the code and will even suggest optimized versions
of the code. The evaluation results show that the
code effectively detects issues in code quality and
allows the user to correct inefficient and incorrect
code patterns in programming. For this purpose, it
may help improve coding skills using better
suggestions and improvements than before. It
would also allow the system to be flexible to extend
in the future, allowing it to become an academic and
professional development system. In conclusion,
Code Quality Fixer helps fill the gap between
manual code reviews and automated code
evaluations by creating a realistic and easy-to-use
tool/platform to improve programming quality. This
project helps improve software development
efficiency and simultaneously assists learners who
are also programmers. This project contributes to
high efficiency in software development and
simultaneously assists learners who are also
programmers.

IX FUTURE WORK

Although the main goal of the Code Quality Fixer
tool is to perform code quality analysis in an
automated way, there are opportunities to improve
this tool further. The way to improve this tool
further is considered to be an option because it
supports different programming languages, such as
C++, JavaScript, and Go, and it can be further
improved in the future to support more
programming languages. In other words, it supports
different types of programming environments.
Other features that can be added in the future
include readability and code smell.

The detection mechanisms could be used to perform
some in-depth analysis on the code as well. In
addition to this, the inefficient code duplication,
inefficient loops, and design patterns in code could
also be used to enhance the overall quality of the
evaluation process.

Except for the said feature, it has also been
identified that there exist some possibilities for
incorporating vulnerabilities in terms of evaluation
of the injection vulnerabilities and the resources.
This again demonstrates that the identified scope for

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1942



© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

the tool is applicable for secure code as well.
Moreover, it would also offer a facility to expand it
for adding persistent storage as well as a user,
wherein the programmer would have a chance to see
how his improvement is over time, along with a
report of the quality of code he is writing. Another
way through which this system could improve is in
relation to the improvement of the reasoning ability
of the AI, in order to provide more specific
optimization suggestions as well as reduce the
inaccuracies involved in the process itself. Also,
real-time collaboration would be added to the
system, which could be very helpful to an education
center like schools. Moreover, the system itself
would be a Software as a Service.

ACKNOWLEDGEMENT

would like to extend our heartfelt thanks to our
project guide and the faculty members for their
continuous support and suggestions in the
development of the Code Quality Fixer Project.
This research work would not have been possible
without their vested interest and contributions in a
deep and impactful manner. There are moments in
the development of the project, where the project
would not have been developed without the
"enhance and proper suggestions." We extend our
heartfelt thanks to the Department of Computer
Science and Engineering for providing us with the
necessary infrastructural facilities and academic
environment to develop the project successfully.
The support and assistance we received from our
fellow course mates, who too have been through the
intense testing period, are invaluable. Lastly, we
would like to place on record our appreciations to
all the authors, developers, and contributors for
their assistance in the successful implementation of
the static code analyzer and the inclusion of the
artificial intelligence concept in the project.

REFERENCES

[11 S. McConnell, Code Complete: A Practical
Handbook of Software Construction, 2nd ed.
Microsoft Press, 2004.

[2] M. Fowler Refactoring: Improving the Design
of  Existing Code. Addison-Wesley

IJIRT 192668

Professional, 2018.

[3] T. J. McCabe, “A Complexity Measure,” [EEE
Transactions on Software Engineering, vol. SE-2,
no. 4, pp. 308-320, 1976.

[4] P. Oman and J. Hagemeister, “Metrics for
Assessing Software System Maintainability,”
Proceedings of the IEEE Conference on Software
Maintenance, 1992.

[5] Sonar Source, “SonarQube: Continuous Code

Quality Inspection,” Available:
https://www.sonarqube.org.
[6] Pylint Development Team, “Pylint

Documentation — Python Static Code Analysis
Tool,” Available: https://pylint.org

[71 Radon Developers, “Radon — Python Code
Metrics Tool,” Available:
https://radon.readthedocs.io

[8] T. Brown et al., “Language Models are Few-Shot
Learners,” Advances in Neural Information
Processing Systems (NeurIPS), 2020.

[9] J. Devlin et al., “BERT: Pre-training of Deep
Bidirectional Transformers for Language
Understanding,” Proceedings of NAACL-HLT,
2019.

[10] S. Russell and P. Norvig, Artificial Intelligence:
A Modern Approach, 4th ed. Pearson Education,
2021.

[11] Lang Chain Documentation, “Building
Applications with Large Language Models,”

[12] ISO/IEC 25010:2011, Systems and Software
Engineering — Systems and Software Quality
Requirements and Evaluation (SQuaRE).

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1943



