
© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

IJIRT 192668 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1939

AI-Powered Code Quality Analyzer and Error Fixer: An

Intelligent Framework for Automated Code Review,

Optimization, and Quality Assessment

Dr.P.Veeresh1, M Jagadeesh2, Saparay Deepak3, Angadi Sai Yashwanth4, V Rahul Kumar5,

Poojari Vivekananda Sai6

1,2,3,4,5,6Department of Computer Science and Engineering, St. Johns College of Engineering and

Technology, Yemmiganur-518301, India

Abstract- Modern software development, it is of utmost

importance to ensure the quality of the code to ascertain

the reliability, maintenance, and quality service of the

program. In most situations, and particularly among

students and novice programmers, the challenge is to

ensure the production of quality or optimized code due

to minimum exposure to code quality standards and

practice. In the traditional practice of code review, a

programming expert is needed to enhance code quality,

and the review of the code is always a lengthy and non-

scalable end, among other limitations. However, to

overcome the aforementioned challenge and develop a

comprehensive solution, the Code Quality Fixer (CQF),

an artificial-intelligence code review and improvement

system, was used as a derivative of the particular

research subject. An automated system is necessary for

the comprehensive review and improvement of code

quality using a large model.

In addition, the system allows users to input their

corresponding source codes, and then the quality score

may be generated, that is, the quality level or program

reliability may be elaborated or the quality standards

may be generated. Furthermore, it should be noted that

the system would be effective in reviewing the codes to

enhance or improve the codes in optimized forms and

quality standards with the application of AI.

The proposed system would make this system interactive

to perform code analysis with the codes given to the

system. Graphs were plotted for the quality standards. It

seems to be a highly effective system for helping

programmers enhance their skills through feedback

mechanisms rather than the traditional mechanism of

code reviews and good codes for programmers. The

proposed system can be extended by adding many

features, such as different programming languages and

security issues: Integration with Source Control Systems

for Continuous Quality Monitoring.

Index Terms— Artificial Intelligence, Static Code

Analysis, Automated Code Review, Code Quality

Assessment, Software Engineering, Optimization,

Developer Assistance, LLM, AST Parsing.

I INTRODUCTION

In relevance to the improvement of software

application development in relation to the

contemporary paradigm, that is, the software

development paradigm, which has been adhered to in

the development of software applications, it has been

observed that with regard to the development of

efficient and free from error codes, it has been

regarded as one of the most important needs, that has

been considered to be necessary to be accomplished,

in relation to the development of software

applications. Associated with this interpretation, it

could also be added that with regard to the

development of the levels of complexities related to

software applications, there has been a need for

maintaining issues related to the improvement of

coding efficiency and developing codes of high

quality, so that software developers, especially

students, are put in a major way due to inadequate

levels of expertise over the subject of programming

along with optimum feedback mechanisms, forcing

them to develop inefficient codes in relation to the

development of software applications.

The quality of the code has generally improved

through code review, which is usually carried out

manually by skilled programmers/coders and by

instructors. While effective, it is labour intensive,

subjective, and often impossible, especially in larger

groups and educational institutions with many

© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

IJIRT 192668 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1940

students, to implement. Code analysis tools have

somewhat helped improve the standards of this

activity, as they have been instrumental in

automatically checking for syntax- or rule-based

errors in the code. However, it is not possible for such

tools to offer intelligent suggestions for improvement,

as determined through programming logic and

intelligent analyses.

To compensate for these gaps, this study aims to

develop a Code Quality Fixer by introducing a set of

new code analysis techniques with the help of artificial

intelligence for code review to provide suggestions to

the developer along the lines of quantifiable code

qualities.

II LITERATURE SURVEY

Software quality assurance is an important area of

research in software engineering that specifically deals

with particular techniques to ensure the quality of the

code and software. If we talk about particular aspects

and techniques to ensure quality in the software, it has

been found that the major basis of assessment of

software quality lies within manual peer review. This

particular task is time-consuming, and at the same

time, there are specific biases that need correction.

Generally, static code analyzers, such as SonarQube,

Pylint, and Check style, are applicable in any

environment, whether academic or industrial. This

particular software is actually helpful for analyzing

and assessing the complexities of the code written and,

at the same time, can detect specific bugs that are

included in developing that particular software. It has

also been recognized that this particular software is

intended to perform its functions without executing a

source code. The tool does not understand any code

behavior, nor does it permit intelligent suggestions

that could enhance its performance. There have been a

number of developments in recent times with respect

to Artificial Intelligence and Natural Language

Processing in creating intelligent machines that can

understand programming logic and can propose a

particular technique to optimize it. GPT, a type of

Large Language Model, has been found to perform

well in code completion, bug fixing, and

documentation generation.

III SYSTEM ARCHITECTURE

A modular and scalable approach was followed to

develop the architecture of the Code Quality Fixer.

1. Presentation Layer: This layer is responsible for

generating the user interface using the Streamlit

library. This layer is important because it enables

a user to input and analyze the code

2. Application processing layer: Its functions

include controlling and directing the workflow

and code.

3. Static Code Analysis Module: It executable and

employs the Abstract Syntax Tree parsing

technique

4. Quality Scoring Engine: It used for health score

calculations, considering maintainability and

best practices

5. AI Review Module: As one can see, the plugin

utilizes its association with a Large Language

Model (LLM) while doing intelligent code

review.

1. Data Management Layer: Here data are

processed in real time without storage

2. Configuration and Security Layer: This will

include configurations such as API configuration,

among others. Workflow Summary

Automated AI Code Review and Analysis Pipeline:

User Input → Static Analysis → Quality Score

Calculation → AI Code Review → Result

Aggregation → Visualization Output.

IV DATA FLOW DIAGRAM (DFD)

Figure 1 presents a general view of the process of

data movement from the user input to the final

intelligent feedback dashboard.

Figure 1: Graphical representation of system

data flow.

© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

IJIRT 192668 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1941

1. Deep Explanation of Data Workflow

Based on the figure shown in the Data Flow

Diagram above, it is evident that the figure

provides a clear representation of the entire

process through which the raw code inputs

undergo transformation to produce useful

feedback. Based on the figure, it is clear that the

process starts by receiving the input through the

User Code Editor. When the input is detected by

the Language Detection Module, analysis is

performed using the Static Analysis Module

through non-executable analysis, generating an

AST.

The process then takes a different course and

branches off into two, with the role of the Scoring

Engine being to create a score pertaining to

quality. Simultaneously, with the use of the AI

Review Module, the LLM will be applied to

examine the code using optimization techniques.

This information is then represented using the

Visualization Module.

V METHODOLOGY AND FORMULATION

The approach provides an automated pipeline for

reviewing source code quality, centered on static

analysis and AI-based reasoning. Quality Score

Formulation

The general scoring formula used in the system is

expressed as follows:

QualityScore = Σ(Metrici × Weighti (1)

V.1.1 Meaning of the Formula

The final score is calculated by multiplying each

individual quality metric by its assigned

importance weight and summing the total.

V.1.2 Components of the Formula

– Metrici: Individual code quality parameter.

– Weighti: Relative importance assigned to the

parameter.

– Σ: The total sum of all calculated weighted

metrics.

VI IMPLEMENTATION DETAILS

Code Quality was achieved in a modular

application, realizing separation between UI

interactions, backend processing, and using AI.

Streamlit was used as a library for front-end

creation of user interfaces. This means that users

can directly input the source code and visualize the

results of the analysis. It achieves backend logic

using Python modules to evaluate the abstract

syntax tree (AST) for syntax analysis. Special

libraries can also be used to analyze the code quality

in terms of complexity. Conversely, AI can also be

applied using LLM frameworks such as the Lang

Chain. Communication occurs via an encrypted

channel.

VII RESULTS AND EVALUATION

The performance was evaluated based on processing

efficiency and feedback accuracy.

1. Semantic Analysis Performance

Semantic analysis interprets the code structure beyond

the simple keywords

Table 1: Code Structure Identification Accuracy

Method Accuracy (%)

Manual Checking 72%

Rule-Based Parsing 80%

Code Quality Fixer Analysis 90%

2. Adaptive Assessment Evaluation

The evaluation intensity was adapted based on the

detected complexity levels.

Table 2: Adaptive Evaluation Metrics

Metric Observed Value

Analysis Time 3–5

seconds Complexity Accuracy 88%

Maint. Accuracy 85%

© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

IJIRT 192668 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1942

3. AI-Based Review Simulation

The AI module simulates expert reviews by

identifying inefficient patterns.

Table 3: AI Review Performance Metrics

Parameter Result

Error Detection 86%

Opt. Suggestions 84%

Acceptance Rate 82%

VIII CONCLUSION

It should be noted that the "Code Quality Fixer"

project effectively demonstrates the capability for

improvement in good coding practices.

static code analysis techniques by employing AI

code reviews. With the increasing complexity of

completing the software development process daily,

the need to ensure proper code quality is also

increasing. This, in turn, significantly affects the

code in terms of its performance and efficiency.

Although employing manual code review

techniques might be helpful when used in the

proposed system, it would take longer owing to the

impractical nature of the entire process in

educational institutions because of the complexity

faced in the process itself. Thus, an efficient method

for determining code quality is proposed.

It accepts user code submissions and analyzes the

code in a structured manner without executing the

code in any program state. Hence, it processes the

code safely while detecting syntax, structural

complexity, and maintainability-related issues in

the code. In addition, the quality scoring feature

provides an idea of the condition of the code

developed by developers and students.

 Most importantly, the integration of AI-related

modules will allow intelligent suggestions to be

provided to programmers in future improvements of

the code and will even suggest optimized versions

of the code. The evaluation results show that the

code effectively detects issues in code quality and

allows the user to correct inefficient and incorrect

code patterns in programming. For this purpose, it

may help improve coding skills using better

suggestions and improvements than before. It

would also allow the system to be flexible to extend

in the future, allowing it to become an academic and

professional development system. In conclusion,

Code Quality Fixer helps fill the gap between

manual code reviews and automated code

evaluations by creating a realistic and easy-to-use

tool/platform to improve programming quality. This

project helps improve software development

efficiency and simultaneously assists learners who

are also programmers. This project contributes to

high efficiency in software development and

simultaneously assists learners who are also

programmers.

IX FUTURE WORK

Although the main goal of the Code Quality Fixer

tool is to perform code quality analysis in an

automated way, there are opportunities to improve

this tool further. The way to improve this tool

further is considered to be an option because it

supports different programming languages, such as

C++, JavaScript, and Go, and it can be further

improved in the future to support more

programming languages. In other words, it supports

different types of programming environments.

Other features that can be added in the future

include readability and code smell.

The detection mechanisms could be used to perform

some in-depth analysis on the code as well. In

addition to this, the inefficient code duplication,

inefficient loops, and design patterns in code could

also be used to enhance the overall quality of the

evaluation process.

Except for the said feature, it has also been

identified that there exist some possibilities for

incorporating vulnerabilities in terms of evaluation

of the injection vulnerabilities and the resources.

This again demonstrates that the identified scope for

© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

IJIRT 192668 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1943

the tool is applicable for secure code as well.

Moreover, it would also offer a facility to expand it

for adding persistent storage as well as a user,

wherein the programmer would have a chance to see

how his improvement is over time, along with a

report of the quality of code he is writing. Another

way through which this system could improve is in

relation to the improvement of the reasoning ability

of the AI, in order to provide more specific

optimization suggestions as well as reduce the

inaccuracies involved in the process itself. Also,

real-time collaboration would be added to the

system, which could be very helpful to an education

center like schools. Moreover, the system itself

would be a Software as a Service.

ACKNOWLEDGEMENT

would like to extend our heartfelt thanks to our

project guide and the faculty members for their

continuous support and suggestions in the

development of the Code Quality Fixer Project.

This research work would not have been possible

without their vested interest and contributions in a

deep and impactful manner. There are moments in

the development of the project, where the project

would not have been developed without the

"enhance and proper suggestions." We extend our

heartfelt thanks to the Department of Computer

Science and Engineering for providing us with the

necessary infrastructural facilities and academic

environment to develop the project successfully.

The support and assistance we received from our

fellow course mates, who too have been through the

intense testing period, are invaluable. Lastly, we

would like to place on record our appreciations to

all the authors, developers, and contributors for

their assistance in the successful implementation of

the static code analyzer and the inclusion of the

artificial intelligence concept in the project.

REFERENCES

[1] S. McConnell, Code Complete: A Practical

Handbook of Software Construction, 2nd ed.

Microsoft Press, 2004.

[2] M. Fowler Refactoring: Improving the Design

of Existing Code. Addison-Wesley

Professional, 2018.

[3] T. J. McCabe, “A Complexity Measure,” IEEE

Transactions on Software Engineering, vol. SE-2,

no. 4, pp. 308–320, 1976.

[4] P. Oman and J. Hagemeister, “Metrics for

Assessing Software System Maintainability,”

Proceedings of the IEEE Conference on Software

Maintenance, 1992.

[5] Sonar Source, “SonarQube: Continuous Code

Quality Inspection,” Available:

https://www.sonarqube.org.

[6] Pylint Development Team, “Pylint

Documentation — Python Static Code Analysis

Tool,” Available: https://pylint.org

[7] Radon Developers, “Radon — Python Code

Metrics Tool,” Available:

https://radon.readthedocs.io

[8] T. Brown et al., “Language Models are Few-Shot

Learners,” Advances in Neural Information

Processing Systems (NeurIPS), 2020.

[9] J. Devlin et al., “BERT: Pre-training of Deep

Bidirectional Transformers for Language

Understanding,” Proceedings of NAACL-HLT,

2019.

[10] S. Russell and P. Norvig, Artificial Intelligence:

A Modern Approach, 4th ed. Pearson Education,

2021.

[11] Lang Chain Documentation, “Building

Applications with Large Language Models,”

[12] ISO/IEC 25010:2011, Systems and Software

Engineering — Systems and Software Quality

Requirements and Evaluation (SQuaRE).

