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Abstract: Artificial Intelligence (AI) tools are 

increasingly integrated into software development 

workflows, promising significant productivity gains and 

reshaping organizational practices. This article presents 

our practical experiences with GitHub Copilot (GHCP) 

in a large-scale enterprise environment. We highlight 

measurable improvements in development speed, 

collaboration across developer and non-developer roles, 

and innovations in code review and tool development, 

which we have experienced within our organization. At 

the same time, we discuss challenges encountered when 

applying AI-assisted coding to large-scale legacy systems. 

We also demonstrate how GenAI catalyzed internal 

innovation— supporting POCs, legacy modernization, 

domain specific copilots, and full-fledged AI assistants. 

These insights provide empirical evidence that AI not 

only accelerates coding but also redefines roles, 

workflows, and organizational learning. 

Index Terms: Generative AI, GitHub Copilot, Impact of 

AI, Productivity, Software Development. 

 

I. INTRODUCTION 

The integration of AI into software engineering has 

transformed how developers approach coding, 

debugging, and documentation. GitHub Copilot, 

powered by advanced language models, offers real-

time code suggestions and contextual completions. 

While its benefits are widely acknowledged, empirical 

evidence from organizational adoption remains 

limited. This article aims to provide insights from our 

collective experience of deploying GHCP across 

diverse roles within our company, including 

developers, scrum masters, product owners, and 

architects. By documenting both successes and 

challenges, we contribute a case study that illustrates 

the broader impact of AI on productivity and code 

quality. 

 

 

II. PRODUCTIVITY GAINS ACROSS ROLES 

A. Developers 

1) Accelerated Development: Developers within our 

organization reported a 25-40% reduction in time 

spent on routine coding tasks. Boilerplate code, 

repetitive patterns, and standard API integrations 

were completed significantly faster. 

2) Improved Code Quality: AI-assisted suggestions 

encouraged adherence to best practices and 

reduced syntactic errors, leading to cleaner 

commits and fewer defects. 

3) Increased Test Coverage: The introduction of AI 

assistance led to a substantial improvement in unit 

test coverage, with several teams reaching as high 

as 97% line coverage 

 

What worked best: 

Scaffolding tasks including controllers, adapters, 

serializers, test templates, and repetitive integration 

code, proved highly effective for AI‑assisted 

generation, and refactoring small‑to‑medium modules 

also worked well when the relevant context fit within 

the IDE window and architectural boundaries were 

clear. 

 

What didn’t work: 

Large, domain-heavy legacy modules where the 

relevant context spans multiple repositories or 

architectural layers. 

 

B. Scrum Masters 

1) Workflow Automation: Several scrum masters 

leveraged GHCP to develop tools that automated 

manual workflows, for which they earlier used to 

depend on Developers. Examples include 

dashboards pulling sprint data from JIRA and 

TFS for multiple scrum teams, reducing reporting 

overhead.  
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2) AI-based Planning Poker: One scrum master, with 

only basic Python knowledge, built an AI-based 

planning poker tool using organizational LLM 

APIs. This tool allowed teams to estimate backlog 

items collaboratively, with the AI agent providing 

historical context from JIRA and GitLab 

repositories. This improved the quality of 

estimation during the team backlog refinements 

and also reduced the overall refinement time by 

around 10%. 

 

Why this matters: 

This is not just productivity gain — it is capability 

expansion. GHCP enabled non developers to create 

internal tools on their own, reducing dependency on 

developers and allowing teams closest to the problems 

to automate their own workflows. 

 

C. Product Owners 

1) Backlog Grooming: Product owners used GHCP 

to script queries for backlog analysis, enabling 

faster prioritization and data-driven decision-

making. 

2) Cross-role Collaboration: AI lowered barriers for 

non-developers to contribute technical artifacts, 

fostering stronger collaboration between product 

and engineering teams. 

3) Quick UI Mockups: Product owners used GHCP 

to rapidly generate low fidelity UI screens from 

natural language prompts, enabling faster 

requirement clarification and earlier stakeholder 

feedback without waiting for design or 

engineering support. 

4) Epic and US Templatized Content Generation: 

Product owners used GHCP to generate epics and 

user stories in organization approved templates, 

accelerating requirement authoring while 

ensuring consistency and compliance with 

defined standards. This resulted in reduction in 

writing time of Epic and Stories from around 

30mins to around 10mins, per item. 

 

Why this matters: 

These examples illustrate how AI shifts product 

ownership from being primarily coordination-focused 

to being increasingly execution-capable. By lowering 

the technical barrier to data analysis, workflow 

automation, and artifact generation, GHCP enables 

product owners to move faster from insight to action. 

III. CODE REVIEW INNOVATIONS 

A. Architect-defined Standards 

Team architects codified project-specific guidelines in 

.md files within repositories. Developers then used 

GHCP to self-review code against these rules, 

reducing dependency on manual oversight. This 

reduced the need for architects to review every change 

and helped developers understand the reasons behind 

the standards in their everyday work. 

 

B. Automated Review Tooling 

A team member developed a GHCP MCP server-

based tool that reviewed differential code changes 

directly within VS Code before merge requests. This 

innovation streamlined review cycles and improved 

consistency. 

 

Practical takeaway: 

Treat AI as a pre-review assistant that enforces 

standards and catches routine issues, not as the final 

arbiter of architectural correctness. 

 

IV. NOVEL TOOL DEVELOPMENT BY NON-

EXPERTS 

Democratization of AI Tooling: Non-developers, 

including scrum masters and product owners, 

successfully built tools with GHCP despite limited 

programming backgrounds.  

 

Case Study – Multi Source Project Dashboard Web 

Application 

 

A scrum master developed a web-based project 

dashboard application that aggregated data from 

multiple enterprise tools, including Jira, SonarQube, 

GitLab, and an Open-Source Software (OSS) clearing 

platform. Using GHCP as a development accelerator, 

the scrum master integrated APIs from these systems 

to provide a unified, near real time view of delivery, 

quality, and compliance metrics. 

 

The dashboard exposed role specific insights for 

diverse stakeholders—developers, product owners, 

quality leads, architects, and management—

distributed across multiple geographical locations. 

Metrics included sprint progress, defect trends, code 

quality indicators, pipeline health, OSS compliance 
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status, and release readiness signals, significantly 

reducing reliance on manual status reports and 

spreadsheets. 

 

Why this matters: 

This example highlights practical organizational 

leverage, not just coding speed. GHCP enabled a non-

developer role to quickly translate recurring reporting 

pain points into a scalable, shared artifact that 

improved transparency, alignment, and decision 

making across distributed teams—without adding load 

to core engineering backlogs. 

 

V.  THE HARD PART: LEGACY CODE AND 

CONTEXT LIMITS 

Our biggest friction points appeared when applying 

GHCP to large legacy systems. In our environment, 

many business‑critical projects are written in C++ and 

have evolved over ~20 years, accumulating 

architectural drift, partial refactors, and mixed idioms 

(STL, custom allocators, legacy frameworks). In these 

codebases, developers consistently reported lower 

accuracy and higher variance in GitHub Copilot 

(GHCP) suggestions compared to modern, modular 

repositories. The root causes clustered around context 

fragmentation, implicit domain knowledge, and 

pattern inconsistencies. 

 

1) Contextual limitations: GHCP struggled with 

complex, domain-specific systems when relevant 

code and requirements exceeded the manageable 

scope of what the model could “see”. 

2) Inconsistent suggestions: Completions 

occasionally conflicted with established 

architectural patterns, requiring careful developer 

validation. 

3) Maintenance overhead: Integrating AI 

suggestions into legacy systems sometimes 

increased short-term effort due to refactoring and 

validation needs. 

 

GHCP adoption in legacy environments revealed 

structural and skill-level constraints, as developers 

accustomed to monolithic systems struggled to apply 

AI assistance effectively without clearer boundaries, 

documentation, and modernization practices. 

 

 

Interpretation: 

AI cannot remove the complexity in legacy systems — 

it only makes it visible sooner. Productivity still 

depends on clear system boundaries, good 

documentation, and careful human review. 

 

VI. ACCELERATED LEARNING AND PROOF-

OF-CONCEPTS 

A. Rapid Prototyping 

We noticed that developers have successfully utilized 

GHCP to bootstrap projects in unfamiliar 

technologies, including cloud-native frameworks and 

AI/ML libraries. This capability has enabled faster 

project initiation across diverse tech stacks, regardless 

of prior team expertise. 

 

B. Reduced Learning Curve 

GHCP's contextual code suggestions have directly 

accelerated experimentation and skill development. 

The time required for our developers to gain working 

proficiency in new domains has been measurably 

reduced, transforming the traditional learning curve 

into a more streamlined experience. 

 

C. Innovation Velocity 

Proof-of-concepts (POCs) development timelines 

have shown significant improvement with GHCP 

integration. Same old teams can now validate ideas 

and evaluate emerging technologies with substantially 

less upfront time investment, enabling more agile 

decision-making around technology adoption and 

innovation strategies. 

 

VII. HOW TO MAKE AI SAFER AND MORE 

RELIABLE 

A. Human Oversight is Critical 

We found that GHCP works best when teams 

operationalize the principle: “AI suggests; humans 

decide.” This includes checking architectural fit, 

validating edge cases, and running security-relevant 

reviews as usual. 

 

B. Incremental Adoption 

GHCP proved most effective when introduced 

gradually, starting with modular components rather 

than monolithic legacy systems. 
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C. Training and Guidelines 

Establishing internal best practices for AI-assisted 

coding improved consistency and reduced misuse. 

 

D. Cross-role Empowerment 

AI tools democratized coding across roles, but 

governance and oversight remained essential to 

prevent misuse. 

 

VIII. PRACTICAL ADOPTION PLAYBOOK (FOR 

PRACTITIONERS) 

Below is the compact playbook we recommend to 

teams adopting AI-assisted coding tools. 

 

A. Start where AI is Strongest 

Begin with boilerplate-heavy work. 

Add automation scripts for workflows close to the 

role’s pain points (dashboards, reporting, backlog 

analytics). 

 

B. Codify “how we write code here” 

Capture architectural and coding standards in repo 

markdown. 

Encourage “AI-assisted self-review” against these 

rules before merge request creation. 

 

C. Use AI to reduce review load, not to remove review 

Apply AI to differential pre-review (IDE-integrated 

checks), then keep humans for final correctness and 

architectural alignment. 

 

D. Don’t ignore legacy, reframe it 

For legacy systems, treat AI as a navigation and 

refactoring assistant for small slices, and invest in 

better documentation to improve context. 

IX. FUTURE DIRECTIONS 

Our experience suggests that AI tools like GHCP are 

best positioned as accelerators rather than 

replacements for human expertise.  Future research 

should explore: 

1) Contextual Awareness: Techniques for enhancing 

AI contextual understanding in legacy systems. 

2) Productivity Metrics: Long-term metrics for 

quantifying productivity gains beyond initial 

adoption. 

3) Ethical Considerations: Ownership of AI-

generated code, bias in suggestions, and 

organizational implications of widespread AI 

integration. 

4) Expanding AI Literacy: Building AI literacy 

across non-developer roles to maximize 

organizational impact. 

X. CONCLUSION 

This case study demonstrates that AI-assisted coding 

tools, when introduced thoughtfully, can generate 

meaningful productivity and capability gains across a 

wide range of roles within a large enterprise. GitHub 

Copilot proved most effective as an accelerator for 

routine and boilerplate-heavy development, rapid 

prototyping, and cross-role collaboration, enabling 

developers to reduce time spent on repetitive tasks 

while improving code consistency and adherence to 

best practices. Beyond traditional software 

engineering roles, scrum masters and product owners 

successfully leveraged AI assistance to automate 

workflows, build internal tools, and generate technical 

artifacts—illustrating a shift from role-specific 

productivity improvements toward broader 

organizational capability expansion. 

However, this study also highlights clear limitations. 

AI assistance struggled in large, domain-heavy legacy 

systems where architectural complexity, weak 

documentation, and fragmented context constrained 

model effectiveness. In these environments, AI did not 

eliminate complexity but instead surfaced it earlier, 

reinforcing the importance of modular design, clear 

system boundaries, and human judgment. Without 

strong governance, documentation, and incremental 

adoption strategies, AI-generated suggestions risk 

inconsistency and short-term integration overhead. 

Overall, our experience reinforces that AI tools such 

as GitHub Copilot are most valuable when positioned 

as collaborators rather than autonomous agents— 

augmenting human expertise instead of replacing it. 
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