
© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

IJIRT 192780 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1970

The Impact of AI on Code and Productivity: A Case

Study of GitHub Copilot Adoption in a Large Enterprise

Kajin Karunakaran1, Chandni K Nair2
1,2Scrum Master, Siemens Technology and Services Pvt Ltd, Bengaluru, India

Abstract: Artificial Intelligence (AI) tools are

increasingly integrated into software development

workflows, promising significant productivity gains and

reshaping organizational practices. This article presents

our practical experiences with GitHub Copilot (GHCP)

in a large-scale enterprise environment. We highlight

measurable improvements in development speed,

collaboration across developer and non-developer roles,

and innovations in code review and tool development,

which we have experienced within our organization. At

the same time, we discuss challenges encountered when

applying AI-assisted coding to large-scale legacy systems.

We also demonstrate how GenAI catalyzed internal

innovation— supporting POCs, legacy modernization,

domain specific copilots, and full-fledged AI assistants.

These insights provide empirical evidence that AI not

only accelerates coding but also redefines roles,

workflows, and organizational learning.

Index Terms: Generative AI, GitHub Copilot, Impact of

AI, Productivity, Software Development.

I. INTRODUCTION

The integration of AI into software engineering has

transformed how developers approach coding,

debugging, and documentation. GitHub Copilot,

powered by advanced language models, offers real-

time code suggestions and contextual completions.

While its benefits are widely acknowledged, empirical

evidence from organizational adoption remains

limited. This article aims to provide insights from our

collective experience of deploying GHCP across

diverse roles within our company, including

developers, scrum masters, product owners, and

architects. By documenting both successes and

challenges, we contribute a case study that illustrates

the broader impact of AI on productivity and code

quality.

II. PRODUCTIVITY GAINS ACROSS ROLES

A. Developers

1) Accelerated Development: Developers within our

organization reported a 25-40% reduction in time

spent on routine coding tasks. Boilerplate code,

repetitive patterns, and standard API integrations

were completed significantly faster.

2) Improved Code Quality: AI-assisted suggestions

encouraged adherence to best practices and

reduced syntactic errors, leading to cleaner

commits and fewer defects.

3) Increased Test Coverage: The introduction of AI

assistance led to a substantial improvement in unit

test coverage, with several teams reaching as high

as 97% line coverage

What worked best:

Scaffolding tasks including controllers, adapters,

serializers, test templates, and repetitive integration

code, proved highly effective for AI‑assisted

generation, and refactoring small‑to‑medium modules

also worked well when the relevant context fit within

the IDE window and architectural boundaries were

clear.

What didn’t work:

Large, domain-heavy legacy modules where the

relevant context spans multiple repositories or

architectural layers.

B. Scrum Masters

1) Workflow Automation: Several scrum masters

leveraged GHCP to develop tools that automated

manual workflows, for which they earlier used to

depend on Developers. Examples include

dashboards pulling sprint data from JIRA and

TFS for multiple scrum teams, reducing reporting

overhead.

© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

IJIRT 192780 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1971

2) AI-based Planning Poker: One scrum master, with

only basic Python knowledge, built an AI-based

planning poker tool using organizational LLM

APIs. This tool allowed teams to estimate backlog

items collaboratively, with the AI agent providing

historical context from JIRA and GitLab

repositories. This improved the quality of

estimation during the team backlog refinements

and also reduced the overall refinement time by

around 10%.

Why this matters:

This is not just productivity gain — it is capability

expansion. GHCP enabled non developers to create

internal tools on their own, reducing dependency on

developers and allowing teams closest to the problems

to automate their own workflows.

C. Product Owners

1) Backlog Grooming: Product owners used GHCP

to script queries for backlog analysis, enabling

faster prioritization and data-driven decision-

making.

2) Cross-role Collaboration: AI lowered barriers for

non-developers to contribute technical artifacts,

fostering stronger collaboration between product

and engineering teams.

3) Quick UI Mockups: Product owners used GHCP

to rapidly generate low fidelity UI screens from

natural language prompts, enabling faster

requirement clarification and earlier stakeholder

feedback without waiting for design or

engineering support.

4) Epic and US Templatized Content Generation:

Product owners used GHCP to generate epics and

user stories in organization approved templates,

accelerating requirement authoring while

ensuring consistency and compliance with

defined standards. This resulted in reduction in

writing time of Epic and Stories from around

30mins to around 10mins, per item.

Why this matters:

These examples illustrate how AI shifts product

ownership from being primarily coordination-focused

to being increasingly execution-capable. By lowering

the technical barrier to data analysis, workflow

automation, and artifact generation, GHCP enables

product owners to move faster from insight to action.

III. CODE REVIEW INNOVATIONS

A. Architect-defined Standards

Team architects codified project-specific guidelines in

.md files within repositories. Developers then used

GHCP to self-review code against these rules,

reducing dependency on manual oversight. This

reduced the need for architects to review every change

and helped developers understand the reasons behind

the standards in their everyday work.

B. Automated Review Tooling

A team member developed a GHCP MCP server-

based tool that reviewed differential code changes

directly within VS Code before merge requests. This

innovation streamlined review cycles and improved

consistency.

Practical takeaway:

Treat AI as a pre-review assistant that enforces

standards and catches routine issues, not as the final

arbiter of architectural correctness.

IV. NOVEL TOOL DEVELOPMENT BY NON-

EXPERTS

Democratization of AI Tooling: Non-developers,

including scrum masters and product owners,

successfully built tools with GHCP despite limited

programming backgrounds.

Case Study – Multi Source Project Dashboard Web

Application

A scrum master developed a web-based project

dashboard application that aggregated data from

multiple enterprise tools, including Jira, SonarQube,

GitLab, and an Open-Source Software (OSS) clearing

platform. Using GHCP as a development accelerator,

the scrum master integrated APIs from these systems

to provide a unified, near real time view of delivery,

quality, and compliance metrics.

The dashboard exposed role specific insights for

diverse stakeholders—developers, product owners,

quality leads, architects, and management—

distributed across multiple geographical locations.

Metrics included sprint progress, defect trends, code

quality indicators, pipeline health, OSS compliance

© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

IJIRT 192780 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1972

status, and release readiness signals, significantly

reducing reliance on manual status reports and

spreadsheets.

Why this matters:

This example highlights practical organizational

leverage, not just coding speed. GHCP enabled a non-

developer role to quickly translate recurring reporting

pain points into a scalable, shared artifact that

improved transparency, alignment, and decision

making across distributed teams—without adding load

to core engineering backlogs.

V. THE HARD PART: LEGACY CODE AND

CONTEXT LIMITS

Our biggest friction points appeared when applying

GHCP to large legacy systems. In our environment,

many business‑critical projects are written in C++ and

have evolved over ~20 years, accumulating

architectural drift, partial refactors, and mixed idioms

(STL, custom allocators, legacy frameworks). In these

codebases, developers consistently reported lower

accuracy and higher variance in GitHub Copilot

(GHCP) suggestions compared to modern, modular

repositories. The root causes clustered around context

fragmentation, implicit domain knowledge, and

pattern inconsistencies.

1) Contextual limitations: GHCP struggled with

complex, domain-specific systems when relevant

code and requirements exceeded the manageable

scope of what the model could “see”.

2) Inconsistent suggestions: Completions

occasionally conflicted with established

architectural patterns, requiring careful developer

validation.

3) Maintenance overhead: Integrating AI

suggestions into legacy systems sometimes

increased short-term effort due to refactoring and

validation needs.

GHCP adoption in legacy environments revealed

structural and skill-level constraints, as developers

accustomed to monolithic systems struggled to apply

AI assistance effectively without clearer boundaries,

documentation, and modernization practices.

Interpretation:

AI cannot remove the complexity in legacy systems —

it only makes it visible sooner. Productivity still

depends on clear system boundaries, good

documentation, and careful human review.

VI. ACCELERATED LEARNING AND PROOF-

OF-CONCEPTS

A. Rapid Prototyping

We noticed that developers have successfully utilized

GHCP to bootstrap projects in unfamiliar

technologies, including cloud-native frameworks and

AI/ML libraries. This capability has enabled faster

project initiation across diverse tech stacks, regardless

of prior team expertise.

B. Reduced Learning Curve

GHCP's contextual code suggestions have directly

accelerated experimentation and skill development.

The time required for our developers to gain working

proficiency in new domains has been measurably

reduced, transforming the traditional learning curve

into a more streamlined experience.

C. Innovation Velocity

Proof-of-concepts (POCs) development timelines

have shown significant improvement with GHCP

integration. Same old teams can now validate ideas

and evaluate emerging technologies with substantially

less upfront time investment, enabling more agile

decision-making around technology adoption and

innovation strategies.

VII. HOW TO MAKE AI SAFER AND MORE

RELIABLE

A. Human Oversight is Critical

We found that GHCP works best when teams

operationalize the principle: “AI suggests; humans

decide.” This includes checking architectural fit,

validating edge cases, and running security-relevant

reviews as usual.

B. Incremental Adoption

GHCP proved most effective when introduced

gradually, starting with modular components rather

than monolithic legacy systems.

© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

IJIRT 192780 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1973

C. Training and Guidelines

Establishing internal best practices for AI-assisted

coding improved consistency and reduced misuse.

D. Cross-role Empowerment

AI tools democratized coding across roles, but

governance and oversight remained essential to

prevent misuse.

VIII. PRACTICAL ADOPTION PLAYBOOK (FOR

PRACTITIONERS)

Below is the compact playbook we recommend to

teams adopting AI-assisted coding tools.

A. Start where AI is Strongest

Begin with boilerplate-heavy work.

Add automation scripts for workflows close to the

role’s pain points (dashboards, reporting, backlog

analytics).

B. Codify “how we write code here”

Capture architectural and coding standards in repo

markdown.

Encourage “AI-assisted self-review” against these

rules before merge request creation.

C. Use AI to reduce review load, not to remove review

Apply AI to differential pre-review (IDE-integrated

checks), then keep humans for final correctness and

architectural alignment.

D. Don’t ignore legacy, reframe it

For legacy systems, treat AI as a navigation and

refactoring assistant for small slices, and invest in

better documentation to improve context.

IX. FUTURE DIRECTIONS

Our experience suggests that AI tools like GHCP are

best positioned as accelerators rather than

replacements for human expertise. Future research

should explore:

1) Contextual Awareness: Techniques for enhancing

AI contextual understanding in legacy systems.

2) Productivity Metrics: Long-term metrics for

quantifying productivity gains beyond initial

adoption.

3) Ethical Considerations: Ownership of AI-

generated code, bias in suggestions, and

organizational implications of widespread AI

integration.

4) Expanding AI Literacy: Building AI literacy

across non-developer roles to maximize

organizational impact.

X. CONCLUSION

This case study demonstrates that AI-assisted coding

tools, when introduced thoughtfully, can generate

meaningful productivity and capability gains across a

wide range of roles within a large enterprise. GitHub

Copilot proved most effective as an accelerator for

routine and boilerplate-heavy development, rapid

prototyping, and cross-role collaboration, enabling

developers to reduce time spent on repetitive tasks

while improving code consistency and adherence to

best practices. Beyond traditional software

engineering roles, scrum masters and product owners

successfully leveraged AI assistance to automate

workflows, build internal tools, and generate technical

artifacts—illustrating a shift from role-specific

productivity improvements toward broader

organizational capability expansion.

However, this study also highlights clear limitations.

AI assistance struggled in large, domain-heavy legacy

systems where architectural complexity, weak

documentation, and fragmented context constrained

model effectiveness. In these environments, AI did not

eliminate complexity but instead surfaced it earlier,

reinforcing the importance of modular design, clear

system boundaries, and human judgment. Without

strong governance, documentation, and incremental

adoption strategies, AI-generated suggestions risk

inconsistency and short-term integration overhead.

Overall, our experience reinforces that AI tools such

as GitHub Copilot are most valuable when positioned

as collaborators rather than autonomous agents—

augmenting human expertise instead of replacing it.

ACKNOWLEDGMENT

We thank the employees of Discrete Automation

Systems & Software department at Siemens

Technology & Services Pvt. Ltd. (Bangalore) for

their enthusiastic adoption of Artificial Intelligence

tools such as GitHub Copilot in their daily

workflows.

We also extend our gratitude to GitHub Copilot for

its assistance in refining the content of this article.

