© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

The Impact of Al on Code and Productivity: A Case
Study of GitHub Copilot Adoption in a Large Enterprise

Kajin Karunakaran', Chandni K Nair?
L2Scrum Master, Siemens T. echnology and Services Pvt Ltd, Bengaluru, India

Abstract: Artificial Intelligence (AI) tools are
increasingly integrated into software development
workflows, promising significant productivity gains and
reshaping organizational practices. This article presents
our practical experiences with GitHub Copilot (GHCP)
in a large-scale enterprise environment. We highlight
measurable improvements in development speed,
collaboration across developer and non-developer roles,
and innovations in code review and tool development,
which we have experienced within our organization. At
the same time, we discuss challenges encountered when
applying Al-assisted coding to large-scale legacy systems.
We also demonstrate how GenAl catalyzed internal
innovation— supporting POCs, legacy modernization,
domain specific copilots, and full-fledged Al assistants.
These insights provide empirical evidence that Al not
only accelerates coding but also redefines roles,
workflows, and organizational learning.

Index Terms: Generative Al, GitHub Copilot, Impact of
Al Productivity, Software Development.

I. INTRODUCTION

The integration of Al into software engineering has
transformed how developers approach coding,
debugging, and documentation. GitHub Copilot,
powered by advanced language models, offers real-
time code suggestions and contextual completions.
While its benefits are widely acknowledged, empirical
evidence from organizational adoption remains
limited. This article aims to provide insights from our
collective experience of deploying GHCP across
diverse roles within our company, including
developers, scrum masters, product owners, and
architects. By documenting both successes and
challenges, we contribute a case study that illustrates
the broader impact of Al on productivity and code
quality.

IJIRT 192780

II. PRODUCTIVITY GAINS ACROSS ROLES

A. Developers

1) Accelerated Development: Developers within our
organization reported a 25-40% reduction in time
spent on routine coding tasks. Boilerplate code,
repetitive patterns, and standard API integrations
were completed significantly faster.

2) Improved Code Quality: Al-assisted suggestions
encouraged adherence to best practices and
reduced syntactic errors, leading to cleaner
commits and fewer defects.

3) Increased Test Coverage: The introduction of Al
assistance led to a substantial improvement in unit
test coverage, with several teams reaching as high
as 97% line coverage

What worked best:

Scaffolding tasks including controllers, adapters,
serializers, test templates, and repetitive integration
code, proved highly effective for Al-assisted
generation, and refactoring small-to-medium modules
also worked well when the relevant context fit within
the IDE window and architectural boundaries were
clear.

What didn’t work:
Large, domain-heavy legacy modules where the
relevant context spans multiple repositories or
architectural layers.

B. Scrum Masters

1) Workflow Automation: Several scrum masters
leveraged GHCP to develop tools that automated
manual workflows, for which they earlier used to
depend on Developers. Examples include
dashboards pulling sprint data from JIRA and
TFS for multiple scrum teams, reducing reporting
overhead.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1970

© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

2) Al-based Planning Poker: One scrum master, with
only basic Python knowledge, built an Al-based
planning poker tool using organizational LLM
APIs. This tool allowed teams to estimate backlog
items collaboratively, with the Al agent providing
historical context from JIRA and GitLab
repositories. This improved the quality of
estimation during the team backlog refinements
and also reduced the overall refinement time by
around 10%.

Why this matters:

This is not just productivity gain — it is capability
expansion. GHCP enabled non developers to create
internal tools on their own, reducing dependency on
developers and allowing teams closest to the problems
to automate their own workflows.

C. Product Owners

1) Backlog Grooming: Product owners used GHCP
to script queries for backlog analysis, enabling
faster prioritization and data-driven decision-
making.

2) Cross-role Collaboration: Al lowered barriers for
non-developers to contribute technical artifacts,
fostering stronger collaboration between product
and engineering teams.

3) Quick UI Mockups: Product owners used GHCP
to rapidly generate low fidelity UI screens from
natural language prompts, enabling faster
requirement clarification and earlier stakeholder
feedback without waiting for design or
engineering support.

4) Epic and US Templatized Content Generation:
Product owners used GHCP to generate epics and
user stories in organization approved templates,
accelerating requirement authoring while
ensuring consistency and compliance with
defined standards. This resulted in reduction in
writing time of Epic and Stories from around
30mins to around 10mins, per item.

Why this matters:

These examples illustrate how Al shifts product
ownership from being primarily coordination-focused
to being increasingly execution-capable. By lowering
the technical barrier to data analysis, workflow
automation, and artifact generation, GHCP enables
product owners to move faster from insight to action.

IJIRT 192780

III. CODE REVIEW INNOVATIONS

A. Architect-defined Standards

Team architects codified project-specific guidelines in
.md files within repositories. Developers then used
GHCP to self-review code against these rules,
reducing dependency on manual oversight. This
reduced the need for architects to review every change
and helped developers understand the reasons behind
the standards in their everyday work.

B. Automated Review Tooling

A team member developed a GHCP MCP server-
based tool that reviewed differential code changes
directly within VS Code before merge requests. This
innovation streamlined review cycles and improved
consistency.

Practical takeaway:

Treat Al as a pre-review assistant that enforces
standards and catches routine issues, not as the final
arbiter of architectural correctness.

IV.NOVEL TOOL DEVELOPMENT BY NON-
EXPERTS

Democratization of Al Tooling: Non-developers,
including scrum masters and product owners,
successfully built tools with GHCP despite limited
programming backgrounds.

Case Study — Multi Source Project Dashboard Web
Application

A scrum master developed a web-based project
dashboard application that aggregated data from
multiple enterprise tools, including Jira, SonarQube,
GitLab, and an Open-Source Software (OSS) clearing
platform. Using GHCP as a development accelerator,
the scrum master integrated APIs from these systems
to provide a unified, near real time view of delivery,
quality, and compliance metrics.

The dashboard exposed role specific insights for
diverse stakeholders—developers, product owners,
quality leads, architects, and management—
distributed across multiple geographical locations.
Metrics included sprint progress, defect trends, code
quality indicators, pipeline health, OSS compliance

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1971

© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

status, and release readiness signals, significantly
reducing reliance on manual status reports and
spreadsheets.

Why this matters:

This example highlights practical organizational
leverage, not just coding speed. GHCP enabled a non-
developer role to quickly translate recurring reporting
pain points into a scalable, shared artifact that
improved transparency, alignment, and decision
making across distributed teams—without adding load
to core engineering backlogs.

V. THE HARD PART: LEGACY CODE AND
CONTEXT LIMITS

Our biggest friction points appeared when applying
GHCP to large legacy systems. In our environment,
many business-critical projects are written in C++ and
have evolved over ~20 years, accumulating
architectural drift, partial refactors, and mixed idioms
(STL, custom allocators, legacy frameworks). In these
codebases, developers consistently reported lower
accuracy and higher variance in GitHub Copilot
(GHCP) suggestions compared to modern, modular
repositories. The root causes clustered around context
fragmentation, implicit domain knowledge, and
pattern inconsistencies.

1) Contextual limitations: GHCP struggled with
complex, domain-specific systems when relevant
code and requirements exceeded the manageable
scope of what the model could “see”.

2) Inconsistent suggestions: Completions

occasionally conflicted with established

architectural patterns, requiring careful developer
validation.

3) Maintenance overhead: Integrating Al
suggestions into legacy systems sometimes
increased short-term effort due to refactoring and

validation needs.

GHCP adoption in legacy environments revealed
structural and skill-level constraints, as developers
accustomed to monolithic systems struggled to apply
Al assistance effectively without clearer boundaries,
documentation, and modernization practices.

IJIRT 192780

Interpretation:

Al cannot remove the complexity in legacy systems —
it only makes it visible sooner. Productivity still
depends on clear system boundaries, good
documentation, and careful human review.

VI. ACCELERATED LEARNING AND PROOF-
OF-CONCEPTS

A. Rapid Prototyping

We noticed that developers have successfully utilized
GHCP to bootstrap projects in unfamiliar
technologies, including cloud-native frameworks and
AI/ML libraries. This capability has enabled faster
project initiation across diverse tech stacks, regardless
of prior team expertise.

B. Reduced Learning Curve

GHCP's contextual code suggestions have directly
accelerated experimentation and skill development.
The time required for our developers to gain working
proficiency in new domains has been measurably
reduced, transforming the traditional learning curve
into a more streamlined experience.

C. Innovation Velocity

Proof-of-concepts (POCs) development timelines
have shown significant improvement with GHCP
integration. Same old teams can now validate ideas
and evaluate emerging technologies with substantially
less upfront time investment, enabling more agile
decision-making around technology adoption and
innovation strategies.

VII. HOW TO MAKE AI SAFER AND MORE
RELIABLE

A. Human Oversight is Critical

We found that GHCP works best when teams
operationalize the principle: “Al suggests; humans
decide.” This includes checking architectural fit,
validating edge cases, and running security-relevant
reviews as usual.

B. Incremental Adoption

GHCP proved most effective when introduced
gradually, starting with modular components rather
than monolithic legacy systems.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1972

© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

C. Training and Guidelines
Establishing internal best practices for Al-assisted
coding improved consistency and reduced misuse.

D. Cross-role Empowerment

Al tools democratized coding across roles, but
governance and oversight remained essential to
prevent misuse.

VIII. PRACTICAL ADOPTION PLAYBOOK (FOR
PRACTITIONERS)

Below is the compact playbook we recommend to
teams adopting Al-assisted coding tools.

A. Start where Al is Strongest

Begin with boilerplate-heavy work.

Add automation scripts for workflows close to the
role’s pain points (dashboards, reporting, backlog
analytics).

B. Codify “how we write code here”

Capture architectural and coding standards in repo
markdown.

Encourage “Al-assisted self-review” against these
rules before merge request creation.

C. Use Al to reduce review load, not to remove review
Apply Al to differential pre-review (IDE-integrated
checks), then keep humans for final correctness and
architectural alignment.

D. Don't ignore legacy, reframe it

For legacy systems, treat Al as a navigation and
refactoring assistant for small slices, and invest in
better documentation to improve context.

IX. FUTURE DIRECTIONS

Our experience suggests that Al tools like GHCP are

best positioned as accelerators rather than

replacements for human expertise. Future research

should explore:

1) Contextual Awareness: Techniques for enhancing
Al contextual understanding in legacy systems.

2) Productivity Metrics: Long-term metrics for
quantifying productivity gains beyond initial
adoption.

3) Ethical Considerations: Ownership of Al-
generated code, bias in suggestions, and

IJIRT 192780

organizational implications of widespread Al
integration.

4) Expanding Al Literacy: Building Al literacy
across non-developer roles to maximize
organizational impact.

X. CONCLUSION

This case study demonstrates that Al-assisted coding
tools, when introduced thoughtfully, can generate
meaningful productivity and capability gains across a
wide range of roles within a large enterprise. GitHub
Copilot proved most effective as an accelerator for
routine and boilerplate-heavy development, rapid
prototyping, and cross-role collaboration, enabling
developers to reduce time spent on repetitive tasks
while improving code consistency and adherence to
best practices. Beyond traditional software
engineering roles, scrum masters and product owners
successfully leveraged Al assistance to automate
workflows, build internal tools, and generate technical
artifacts—illustrating a shift from role-specific
productivity ~ improvements toward broader
organizational capability expansion.

However, this study also highlights clear limitations.
Al assistance struggled in large, domain-heavy legacy
systems where architectural complexity, weak
documentation, and fragmented context constrained
model effectiveness. In these environments, Al did not
eliminate complexity but instead surfaced it earlier,
reinforcing the importance of modular design, clear
system boundaries, and human judgment. Without
strong governance, documentation, and incremental
adoption strategies, Al-generated suggestions risk
inconsistency and short-term integration overhead.
Overall, our experience reinforces that Al tools such
as GitHub Copilot are most valuable when positioned
as collaborators rather than autonomous agents—
augmenting human expertise instead of replacing it.

ACKNOWLEDGMENT

We thank the employees of Discrete Automation
Systems & Software department at Siemens
Technology & Services Pvt. Ltd. (Bangalore) for
their enthusiastic adoption of Artificial Intelligence
tools such as GitHub Copilot in their daily
workflows.

We also extend our gratitude to GitHub Copilot for
its assistance in refining the content of this article.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1973

