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Abstract: In an era of volatile global markets, the accurate
assessment of economic health is paramount for
policymakers and investors. Traditional econometric
models, while foundational, often struggle to capture the
non-linear complexities inherent in global economic
interactions. This paper presents a machine learning
framework utilizing the Random Forest classifier to
categorize national economic health based on Gross
Domestic  Product (GDP) growth. Utilizing a
comprehensive dataset of over 200 countries (2010-2025),
we engineer features from key fiscal and monetary
indicators—including inflation, public debt, and
unemployment—to predict discrete growth categories
(High, Moderate, Low). Our tuned Random Forest model
achieves an accuracy of 0.6561, distinguishing itself from
baseline models and validating the potential of ensemble
learning methods to provide robust, scalable risk analysis
tools for the global economy.
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[. INTRODUCTION

The global economy is a dynamic system influenced
by a myriad of interconnected factors, from fiscal
policy and public debt to inflation and labor market
dynamics. Traditionally, forecasting GDP growth has
relied heavily on linear regression models and time-
series econometrics (ARIMA, VAR). While effective
in stable environments, these models often fail to
account for the stochastic and non-linear nature of
modern economic shocks [1]. The emergence of
Machine Learning (ML) and Data Mining offers a
paradigm shift. By processing high dimensional
datasets and identifying complex patterns without
rigid distributional assumptions, ML models provide a
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more nuanced lens for economic forecasting [2].
Recent literature suggests that techniques such as
Random Forest and Granger Causality tests can
significantly outperform standard autoregressive
models in identifying turning points in economic
cycles [3]. This study leverages these advancements to
build a classification system that simplifies complex
continuous GDP data into actionable "economic
health" categories.

II. LITERATURE REVIEW & RELATED WORK

The application of non-parametric algorithms to
economic data has gained significant traction.
Research indicates that ML approaches, particularly
ensemble methods, frequently outperform traditional
models in

2.1 Machine Learning in Macroeconomics

Recent studies highlight the efficacy of algorithms like
Support Vector Machines (SVM) and Neural
Networks in capturing non-linear economic
relationships. For instance, forecasting models
integrating global trade networks and social media
sentiment have shown superior predictive capability
over standard linear benchmarks [4]. The ability of
these models to handle "big data"—incorporating
diverse indicators from varying sources—allows for a
more holistic view of economic vitality.

2.2 Comparative Analysis of Classifiers

A critical area of research is the comparison between
interpretable models like Logistic Regression and
"black-box" ensembles. Comparisons in fiscal stress
prediction have found that while Logistic Regression
offers parameter interpretability, Random Forest
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consistently yields higher accuracy (up to 80% in
some stress events) by effectively modeling high-
order interactions between variables [5]. Similar
findings in credit scoring and bank churn prediction
corroborate that Random Forest is more robust to
noise and multicollinearity, common issues in
macroeconomic datasets [6][7].

III. METHODOLOGY

The proposed system follows a rigorous data mining
pipeline designed to transform raw economic data into
predictive insights.

3.1 System Architecture

The following diagram illustrates the high-
level data flow, from raw global indices to the final
classification of economic health.

graph LR
A[Raw Economic Data<br/>(26@+ Countries)] --> B(Preprocessing &
<br/>Imputation)
B --> C{Feature Engineering}
-->|Debt/Revenue| D[Fiscal Metrics]
-->|Inflation*Unemployment| E[Monetary Metrics]
--> F[Random Forest<br/>Classifier]
== [3
--> G((Economic Health<br/>Prediction))
--> H[High / Mederate / Low]

@ m m o 0o o0

3.2 Data Acquisition and Preprocessing
We constructed a dataset spanning 16 years (2010—
2025) across 200+ countries. Key attributes include:

Monetary: Inflation (CPI & Deflator) [12], Real
Interest Rates.

Fiscal: Government Revenue/Expense, Tax Revenue,
Public Debt (% of GDP).

Labor/Production: Unemployment Rate, GDP per
Capita.

Preprocessing addressed real-world data challenges:
Imputation: Missing values were handled via country-
specific median imputation to preserve local economic
characteristics.

Outlier Management: The Interquartile Range (IQR)

method capped extreme anomalies to prevent model
skew [13].
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Normalization: Log-transformations (log(1+x)) were
applied to highly skewed variables (e.g., Inflation) to
stabilize variance.

3.3 Feature Engineering and Selection

To capture interaction effects, we engineered specific
domain-relevant features. The "inflation
unemployment" interaction serves as a proxy for the
misery index, while the "debt-to-revenue" ratio
provides a more direct measure of fiscal sustainability
than raw debt figures. Feature selection was performed
using Chi-Squared and ANOVA F-tests to retain only
the most predictive variables, ensuring model
parsimony.

We framed the problem as a multi-class classification
task with three target labels:

High Growth (> 4%)

Moderate Growth (2% - 4%)

Low Growth (< 2%)

IV. RESULTS AND DISCUSSION
The tuned Random Forest model yielded a

classification accuracy of 0.6561, significantly
outperforming baseline models.

Model Accuracy | Precision | Recal F1-
Score

Decision 0.5827 0.6061 - -

Tree

k-Nearest 0.5482 0.5603 - -

Neighbors

Random 0.6561 0.6743 | 0.6561 | 0.6575

Forest

(Tuned)

The superior performance of Random Forest (F1-
Score: 0.6575) confirms its ability to disentangle the
noisy relationships in macroeconomic data. Unlike
single Decision Trees which are prone to overfitting,
the ensemble approach generalizes better to unseen
data [14]. The precision score of 0.6743 suggests that
when the model predicts a specific health category, it
is correct markedly often, a critical trait for risk
management applications.

V. CONCLUSION

This study demonstrates that utilizing machine
learning—specifically Random Forest—enables a
scalable, data-driven approach to categorizing global
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economic health. By effectively integrating diverse
fiscal and monetary indicators, the model offers a
viable alternative to traditional forecasting methods.
The inclusion of engineered features like debt
sustainability ratios proved crucial, aligning with
recent findings on the importance of non-linear fiscal
comparisons [15]. Future work should focus on
integrating temporal dynamics via LSTM networks
and enhancing explainability using SHAP values.
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