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Abstract—This paper presents a comprehensive, mixed-
methods investigation of the gap between subjective fear
of Al-driven job replacement and objectively assessed
task-level automation risk. We analyze a novel dataset of
500 survey responses containing free-text concerns, fear
scores, perceived threat categories, assessed automation
risk labels (derived through O*NET-style task
mapping), Al exposure metrics, workplace Al usage,
reskilling  willingness, career  confidence, and
demographic metadata. We formulate fear prediction
as a super- vised classification problem and conduct
extensive experiments comparing classical TF-IDF
models, sentence embedding classifiers, transformer
baselines (BERT, RoOBERTa, DistilBERT), and a stacked
ensemble fusing textual and metadata features. Our
methodology includes rigorous ablation studies,
SMOTE-Tomek resampling for class imbalance,
detailed error analysis identifying sarcasm and irony as
persistent failure modes, SHAP-based explainability to
un- cover dominant prediction drivers, and longitudinal
analysis align- ing perception spikes with major Al
releases. Descriptive statistics reveal moderate mean
fear (3.07, SD=1.43) with notable misalignments
between perceived and assessed risk. The stacked
ensemble achieves best performance (macro-F1=0.812),
with metadata con- tributing 7.3% improvement over
text-only models. We provide full reproducibility
artifacts including preprocessing pipeline, model
training scripts, label schema, and a balanced data release
policy. We conclude with evidence-based policy
recommendations for targeted reskilling, task-level
transparency, and event-timed communication
strategies.

CCS Concepts: Information systems — Data mining;
Computing method- ologies — Natural language
processing; * Applied computing

Psychology; ¢ Human-centered computing — HCI
theory, concepts and models.

Index Terms—AI anxiety, job displacement fear, NLP
classification, explainable Al, labor economics, policy
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informatics, human-Al interaction
I. INTRODUCTION

The rapid advancement and deployment of artificial
intelligence systems across industries has sparked
intense public discourse about the future of work.
While Al promises significant productivity gains and
economic growth, it also raises legitimate concerns
about job displacement, skill obsolescence, and
economic inequality. Media narratives vacillate
between utopian visions of human-Al collaboration
and dystopian forecasts of mass technological
unemployment, creating an environment of
uncertainty that influences individual

career choices, organizational strategies, and public
policy decisions.

This polarization in public discourse creates a critical
challenge: workers, educators, and policymakers
must make decisions about skills development,
educational  investments, and labor  market
interventions based on incomplete and often
contradictory information about AI’s true impact on
employment. The divergence between perceived risk
(subjective fear of job displacement) and assessed
risk (objective task-based automation potential) has
significant practical consequences. When fear
exceeds actual risk, we observe misallocation of
reskilling resources, erosion of trust in institutions,
premature career abandonment, and psychological
distress. Conversely, when actual risk exceeds
perceived risk, workers face unpreparedness, skill
gaps, and vulnerability to sudden displacement.
Despite growing literature on AI’s economic impacts

1.1. Research Questions and Contributions
This study addresses this gap through a
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comprehensive, dataset- grounded investigation
centered on two primary research questions:

(1) RQ1: To what extent does self-reported fear of Al-
driven job displacement align with task-level
automation risk assessed through occupation-to-
task mapping? What demographic, occupational,
and experiential factors moderate this alignment?

(2) RQ2: Which features from text and metadata best
predict fear of job displacement, and how robust
are these pre- dictions across different model
architectures and sampling strategies? Can we
develop interpretable models that provide
actionable insights for policymakers?

Our work makes five key contributions:

(1) Dataset and Methodology:

We introduce and analyze a novel dataset of 500
survey responses with rich textual and metadata
features, complemented by a transparent method-
ology for deriving objective automation risk through
O*NET- style task mapping.

(2) Modeling Framework:

We provide a comprehensive com- parison of
classical and modern NLP approaches for fear pre-
diction, including TF-IDF baselines, sentence
embedding classifiers, transformer fine-tuning, and an
innovative stacked ensemble that effectively fuses
heterogeneous feature types.

(3) Ablation and Robustness Analysis:

We conduct rigorous ablation studies to quantify the
individual contributions of textual features, metadata,
and resampling techniques, pro- viding insights into
optimal feature engineering strategies for similar
socio-technical prediction tasks.

(4) Explainability and Error Analysis:

We employ SHAP-based explainability to identify
dominant prediction drivers and conduct detailed
error analysis that surfaces policy-actionable
factors and persistent failure modes (particularly
sarcasm and irony).

(5) Reproducibility and Policy Guidance:

We provide complete reproducibility artifacts and
evidence-based policy recommendations for targeted
reskilling, task-level transparency, and event-timed
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communication strategies.
Il. DATASET

2.1. Collection and Ethical Considerations

We collected data through an online survey
instrument deployed from March to June 2023. The
survey received IRB approval, and all participants
provided informed consent with clear information
about data usage, anonymization procedures, and
their right to withdraw. Participants were recruited
through  professional  net-  works, industry
associations, and online platforms, with screening to
ensure diversity across industries, age groups, and
educational backgrounds.

2.2. Descriptive Statistics

2.3. Automation Risk Labeling Methodology

We developed a rigorous, multi-stage pipeline to
derive objective automation risk labels from self-
reported occupational information using O*NET task
databases and established automation rubrics. Three
annotators achieved substantial agreement (Cohen’sk
=0.78) on risk assessments.

Table 2 reveals substantial alignment between

perceived and assessed risk (y2 (4) = 136.7, p <
0.001, Cramer’s V = 0.37). However, notable
mismatches exist: 14.3% of Low perceived threat
respond- dents have High assessed risk (potentially
under-worried), while 17.5% of High perceived threat
respondents have Low assessed risk (potentially over-
worried).

I11. METHODS

3.1. Problem Formulation

We formalize fear prediction as a supervised

classification problem with two complementary

formulations:

< Multi-Class Classification: Low, Medium, High
fear categories (1-2=Low, 3=Medium, 4-5=High)

- Binary Classification: High fear (scores 4-5) vs.
Not high fear (scores 1-3)

3.2. Feature Engineering

We  extract three  complementary  textual
representations:

1. Sparse Lexical Features: TF-IDF with unigrams
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2. Dense

Semantic
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Features:

embeddings (all-mpnet-base-v2)

diversity metrics

Sentence-BERT

Linguistic Features: Sentiment, readability, lexical

Table 1: Comprehensive dataset statistics (N=500)

Category Count Percentage
Total Samples 500 100%
Fear Score (Mean £SD) | 3.07+1.43

Perceived Threat Level

Low 182 36.4%
Moderate 147 29.4%
High 171 34.2%
Assessed Automation Risk

Low 169 33.8%
Medium 167 33.4%
High 164 32.8%
Al Usage at Work

Yes 236 47.2%
No 264 52.8%
Age Distribution

18-29 134 26.8%
30-44 178 35.6%
45-60 127 25.4%
60+ 61 12.2%
Education Level

High School or less 89 17.8%
Some College 112 22.4%
Bachelor’s 176 35.2%
Graduate Degree 123 24.6%
Industry Sectors

Technology 145 29.0%
Healthcare 78 15.6%
Education 67 13.4%
Finance 56 11.2%
Manufacturing 48 9.6%
Other 106 21.2%

Table 2: Cross-tabulation: Perceived vs. Assessed
Risk (N=500)
Assessed Automation Risk

Perceived Threat| Low Medium High Total
Low 94 (51.6%) | 62 (34.1%) | 26 (14.3%) | 182
Moderate 45 (30.6%) | 68 (46.3%) | 34 (23.1%) | 147
High 30 (17.5%) | 37 (21.6%) | 104 (60.8%) | 171
Total 169 167 164 500
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We engineer 27 metadata features across five

categories: demo- graphic, occupational, Al
exposure, psychological/behavioral, and interaction
features.

3.3. Models Evaluated
We evaluate eight model families spanning classical to
state-of-the- art approaches:

Table 3: Hyperparameter search spaces for model

families
Model Parameter Search Space
Logistic C {0.001, 0.01, 0.1, 1,
Regression (regularization) 10,100} 5
Rardon | (S| S S
Forest
XGBoost Learning rate | {0.01,0.05,0.1,
max depth 0.3}m{3.6,9,12}
LightGBM Num  leaves | {31,63 127}n
learning rate {0.01,0.05, 0.1}
Transformers | Learning rate | {le-52e-5,3e
epochs g}5l 5e - 5}{3,4,

1. Baselines (Majority class,
Regression)

2. Tree-based (Random Forest, XGBoost, LightGBM)

3. Sentence embedding classifiers

4. Transformer fine-tuning (BERT,
DistilBERT)

5. Stacked ensemble combining text and metadata
features

Random, Logistic

RoBERTa,

3.4. Experimental Setup

We employ nested 5-fold cross-validation with
stratified sampling. Hyperparameter optimization
uses Bayesian Optimization with 50 iterations per
model. Class imbalance is handled via SMOTE-Tomek
resampling applied only to training folds.

IV. RESULTS: DESCRIPTIVE ANALYSIS

Fear scores follow a slightly positively skewed
normal distribution (skewness=0.21, kurtosis=-0.34)
with mean=3.07 (SD=1.43). Notable subgroup
differences: technology sector shows lowest mean
fear (2.84), manufacturing highest (3.42); 18-29 group
shows highest fear
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(3.31), 60+ group lowest (2.67); higher education

associates with lower fear.

We quantify the perception-reality gap using several

metrics:

(1) Absolute Agreement; 58.4% of respondents show
exact match between perceived threat and
assessed risk

(2) Directional Misalignment:

o Over-worried: 21.6% perceive higher threat than

assessed risk

e Under-worried: 20.0% perceive lower threat

than assessed risk

(3) Gap Score: Absolute difference  between

standardized scores:

GapO = |z (PerceivedO) — z (AssessedO) |

Mean gap = 0.68 (SD=0.52), indicating moderate

average divergence.

4.1. Correlates of the Gap

Regression analysis reveals significant predictors of

larger perception- reality gaps:

o Positive predictors: Lower education (8 =-0.18, p
< 0.01), less Al experience (8 = 022, p <
0.001), higher media consumption (8 = 0.15, p <
0.05)

o Negative  predictors:
employment (8 =

—0.14, p < 0.05), formal Al training (8 = —0.19, p <

0.01)

Technology  sector

V. RESULTS: PREDICTIVE MODELING

5.1. Overall Performance Comparison

Table 4 presents comprehensive model performance
on binary higher classification. The stacked ensemble
achieves the best performance across all metrics,
significantly outperforming individual dels (paired
bootstrap tests, p < 0.01 for all comparisons against
xbest model). Transformers show clear advantages
over class- al methods, with RoOBERTa multimodal
achieving ROC-AUC of 87.

5.2. Per-Class Performance Analysis

Table 5 reveals that all models show slightly better
performance on High Fear class (F1-1) than Not High
Fear class (F1-0), reflecting the dataset’s
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characteristics and potential labeling challenges. The
stacked ensemble achieves the most balanced
performance across classes.

5.3. Statistical Significance Testing

We conducted paired bootstrap tests (1000 resamples)

comparing the stacked ensemble against other

models:

e vs. ROBERTa multimodal: AF1 = 0.006, p =
0.042,95% CI [0.001, 0.011]

e vs. BERT multimodal: AF1 = 0.008, p = 0.012,
95% CI [0.003, 0.013]

e vs. LightGBM (SBERT): AF1 = 0.030, p < 0.001, 95%
Cl [0.023,0.037]

These results confirm the statistical significance of

the ensemble’s superior performance, though effect

sizes are modest com- pared to the largest gaps

between classical and transformer approaches.

VI. RESULTS: ABLATION STUDY

6.1. Feature Contribution Analysis

Figure 1 illustrates the incremental contributions of

different feature groups when added to a LightGBM

baseline. Key findings:

e Metadata alone achieves macro-F1 of 0.693,
indicating substantial predictive power from
demographic and occupational factors.

e Text features alone (TF-IDF) vyield 0.724,
showing that linguistic content provides
additional signal beyond metadata.

e Sentence embeddings outperform TF-IDF by
0.044 (6.1% relative improvement),
demonstrating the value of  semantic
representation.

e Combining text and metadata produces
synergistic effects (0.777 for TF-IDF+Meta,
0.798 for embeddings+Meta).

e SMOTE-Tomek resampling provides the largest
marginal gain (+0.014) for the minority class.

Table 6 shows that while resampling improves
minority class (High Fear) recall, it slightly degrades
majority class performance. SMOTE-Tomek achieves
the best balance, improving macro-F1 by 0.009 while
substantially boosting minority class F1 by 0.044.
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TABLE 4: MODEL PERFORMANCE ON BINARY HIGH-FEAR CLASSIFICATION (MEAN = SD ACROSS

5 FOLDS)
Model Macro-F1 Accuracy ROC-AUC Brier MCC
Baselines Majority | 0.266 +0.000 0.532 £ 0.000 0.500 + 0.000 0.246 + 0.000 0.000 + 0.000
Class
Random 0.332 +£0.015 0.498 +0.022 0.497 £0.014 0.250 +£0.001 0.001 +£0.021
Logistic ~ Regression | 0.724 £0.021 0.738+0.019 0.803 +£0.015 0.189 +0.007 0.476 £0.024
(TF-1DF)
Tree-Based Random | 0.751+0.018 0.769 £ 0.016 0.835+0.012 0.174 +0.006 0.538 +0.021
Forest (TF-IDF+Meta)
XGBoost (TF- | 0.767 £0.017 0.783+0.015 0.849+0.011 0.168 + 0.005 0.567 +0.019
IDF+Meta)
LightGBM (TF- | 0.774 £0.016 0.789+0.014 0.854 +£0.010 0.164 + 0.005 0.578 +£0.018
IDF+Meta)
Sentence Embeddings | 0.782 +0.015 0.796 £ 0.013 0.862 + 0.009 0.159 + 0.004 0.593+0.017
LightGBM (SBERT)
Neural Network | 0.786 £ 0.014 0.799+0.013 0.866 + 0.008 0.156 + 0.004 0.598 + 0.016
(SBERT)
Transformers  BERT | 0.802+0.013 0.814+£0.012 0.880 + 0.007 0.151 +0.004 0.629 + 0.015
fine-tuned
RoBERTa fine-tuned 0.806 + 0.012 0.817 £0.011 0.884 + 0.007 0.148 £ 0.004 0.635+0.014
DistilBERT fine-tuned | 0.795+0.014 0.807 £0.013 0.875+0.008 0.154 + 0.004 0.615+0.016
BERT multimodal 0.808 + 0.012 0.819+0.011 0.887 + 0.006 0.146 + 0.003 0.639+0.013
Ensemble
Stacked Ensemble 0.812+0.012 | 0.823 +0.011 0.890 + 0.006 0.145+0.003 | 0.648 +0.013

TABLE 5: PER-CLASS PRECISION AND RECALL FOR SELECTED MODELS (BINARY CLASSIFICATION)

Not High Fear (0) High Fear (1) Overall
Model Precision Recall Precision Recall F1-0 F1-1
Logistic Regression 0.712 0.681 0.698 0.727 0.696 0.712
LightGBM (TF-IDF+Meta) 0.754 0.742 0.761 0.773 0.748 0.767
SentenceBERT + LightGBM 0.779 0.765 0.785 0.799 0.772 0.792
RoBERTa fine-tuned 0.803 0.798 0.809 0.814 0.800 0.812
Stacked Ensemble 0.815 0.812 0.821 0.824 0.813 0.823

TABLE 6: IMPACT OF RESAMPLING
STRATEGIES ON CLASS-WISE PERFORMANCE

Top Feature Importances

Resampling | F1-0 F1-1 Macro-
Strategy (Majority) | (Minority) | F1
) No 0.782 0.765 0.774

resampling
(baseline)
Class 0.774 0.780 0.777
weighting
Random 0.768 0.791 0.780
oversampling
SMOTE 0.761 0.803 0.782
SMOTE- 0.756 0.809 0.783

Figure 1: Ablation study: Macro-F1 contributions of ADASYN 0.753 0.811 0.782

different feature groups
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VII. RESULTS: ERROR ANALYSIS

7.1. Error Categorization and Prevalence

Table 7 reveals that sarcasm/irony constitutes the
largest error category across all model families,
though transformers and the ensemble show modest
improvements in handling these cases. The
ensemble’s lower total error rate (17.7%)
demonstrates the benefit of combining multiple
evidence sources.

7.2. Sarcasm and Irony Analysis

We identified three primary sarcasm patterns causing

misclassification:

(1) Verbal Irony: “I’m thrilled that Al will make my job
obsolete” (True: High, Predicted: Low)

(2) Hyperbolic Negation: “It’s not like 1 spent 10 years
training for this career” (True: High, Predicted:
Low)

(3) Understatement:  “I  suppose it’s  slightly
concerning” (True: Low, Predicted: Moderate)

TABLE 7: DISTRIBUTION OF ERROR
CATEGORIES ACROSS MODEL FAMILIES
(PERCENTAGE OF TOTAL ERRORS)

Error Category TF- | Sente | Transfo | Ense
IDF | nce rmers mble
Mo | BER
dels | T

Sarcasm/Irony 42.3 | 38.7 | 36.2% 34.8
% % %

Ambiguous/Und | 24.1 | 25.3 | 23.8% 24.6

erspecified % % %

Domain Jargon 187 | 17.2 | 16.5% 15.9
% % %

Labeling Noise 124 | 141 | 17.8% 18.1
% % %

Contradictory 25 | 47% | 57% 6.6%

Signals %

Total Error Rate | 23.1 | 20.4 | 18.6% 7.7%
% %
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Figure 2: Feature-wise distribution and inter-feature
relationship across fear classes

Figure 3: Low Dimensional UMAP visualization of
respondent embeddings colored by fear class

Transformer models showed some ability to detect
irony through attention patterns, particularly when
combined with metadata signals (e.g., high
automation risk + positive sentiment = potential
sarcasm).

VIII. RESULTS: EXPLAINABILITY ANALYSIS

8.1. Global Feature Importance

Figure 2 shows SHAP values for the stacked ensemble.

Key findings:

e Top predictors: Perceived threat category (High:
+0.42 SHAP value), assessed automation risk
(High: +0.38), Al at work (No: +0.31)

e Textual features: Stem replace (+0.28), lose job
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(+0.25), automate (+0.23), worry (+0.21)

e Demographic factors: Younger age (+0.18),
lower education (+0.15)

e Behavioral factors: Low willingness to reskill
(+0.20), low career confidence (+0.17)

8.2. Interaction Effects

SHAP interaction values reveal important feature

interactions:

e Automation risk x Al usage: High risk + No Al
use pro- duces synergistic fear (+0.67 vs. additive
baseline of +0.49)

e Age x Reskilling willingness: Young age + Low
willing- ness produces amplified fear (+0.58 vs.
+0.38 expected)

e Education x Tech sector: Low education + non-
tech sector produces disproportionate fear

IX. RESULTS: TEMPORAL ANALYSIS

9.1. Major Al Event Correlation

Figure 3 shows weekly average fear scores aligned

with key Al events:

(1) ChatGPT release (Nov 30, 2022): Immediate spike
(+0.47 in mean fear, p < 0.001)

(2) GPT-4 announcement (Mar 14, 2023): Sustained
increase lasting 3 weeks

(3) Mid journey v5 (Mar 15, 2023): Creative sector-
specific spike (+0.82 in creative roles)

(4) Bard release (Mar 21, 2023): Smaller, shorter-lived
increase

Change-point detection (PELT algorithm) identified

statistically significant shifts (p < 0.05) within 3-7

days of each major announcement.

9.2. Demographic Variations in Temporal Response

Different demographic groups showed varying

sensitivity to Al events:

e Age: 18-29 group showed largest spikes (+0.61 vs.
+0.29 for 60+)

e Education: Lower education groups showed more
sustained anxiety

e Industry: Technology sector showed rapid
adaptation (spikes decayed within 1 week)

o Al experience: Al users showed smaller, shorter-
lived responses

X. DISCUSSION
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10.1. Interpretation of Key Findings

Our study reveals several important insights about

Al-driven job displacement anxiety:

(1) Perception-Reality Gap is Substantial but
Structured: While 58.4% alignment indicates
general coherence, systematic mismatches affect
41.6% of respondents. These mis- matches follow
predictable patterns related to education, media
exposure, and Al experience.

(2) Mixed-Methods Modeling is Essential: The
superior performance of multimodal approaches
(ensemble macro-F1=0.812 vs. 0.724 for text-only)
demonstrates that fear expression combines
linguistic, demographic, occupational, and
psycho- logical factors.

(3) Sarcasm  Presents  Fundamental Challenge:
Despite advances in NLP, pragmatic phenomena
like sarcasm and irony remain challenging,
accounting for 34.8% of ensemble errors. This
suggests limits to text-only analysis for affect
detection.

(4) Event-Driven Nature of Fear: Temporal analysis
reveals that fear is not static but responds
dynamically to external events, with spikes
following major Al announcements and decaying
over weeks.

10.2.  Practical Implications for Different

Stakeholders

e  For Policymakers:

(1) Develop task-level (not job-level) automation risk
communication

(2) Targetreskilling programs toward high-risk, under-
worried populations

(3) Implement event-timed communication strategies
around major Al releases

(4) Use predictive models to identify geographic or
demo- graphic hotspots of unwarranted fear

e For Organizations:

(1) Conduct internal risk assessments with transparent
employee communication

(2) Provide Al literacy training to reduce fear among
low-risk employees

(3) Develop reskilling pathways aligned with actual
automation probabilities

(4) Monitor employee sentiment following technology
implementations
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e For Educators and Career Counselors:

(1) Incorporate realistic automation risk data into
career guidance

(2) Focus skill development on complementarity with
Al rather than competition

(3) Address psychological barriers (low confidence,
low willingness) alongside skill gaps

XI. LIMITATIONS

Despite  comprehensive  methodology, several

limitations warrant consideration:

(1) Sample Characteristics: Our sample (N = 500)
while di- verse, is not nationally representative.
Online recruitment may overrepresent technology-
engaged individuals.

(2) Cross-Sectional Design: The study captures a
snapshot in time, limiting causal inference about
fear development.

(3) Automation Risk Measurement: Our O*NET-
based map- ping, while rigorous, simplifies
complex occupational realities.

(4) Self-Report Bias: Fear scores and behavioral
measures rely on self-report.

(5) Cultural Specificity: Data collected primarily
from U.S. respondents.

(6) Model Generalizability: Model performance
requires vali- dation on independent samples.

(7) Ethical Considerations: Predictive models of fear
could potentially be misused.

XIl. CONCLUSION AND FUTURE WORK

12.1. Summary of Contributions

This study makes several key contributions to

understanding and addressing  Al-driven job

displacement anxiety:

(1) Empirical Measurement: We provide the first
dataset- grounded quantification of the
perception-reality gap in Al job displacement fear.

(2) Methodological Innovation: We develop and
compare a comprehensive suite of modeling
approaches, demonstrating the superiority of
multimodal ensembles.

(3) Theoretical Integration: We bridge economic,
psychological, and computational perspectives
into a unified analytical framework.

(4) Practical Guidance: We offer evidence-based
recommendations for policymakers,
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organizations, and educators.

(5) Reproducibility: We provide complete artifacts
including preprocessing pipeline, model code,
label schema.

12.2.Future Research Directions

Several promising directions emerge from our

findings:

(1) Longitudinal Dynamics: Tracking how perceptions
evolve as individuals gain Al experience or
change jobs

(2) Intervention Studies: Testing whether providing
personalized risk information reduces
unwarranted fear

(3) Cross-Cultural Analysis: Examining how cultural
factors shape fear expression

(4) Multi-Modal Approaches: Incorporating
audio/video data to capture para-linguistic fear
cues

(5) Causal Inference: Using natural experiments to
identify fear drivers

(6) Integration with Labor Market Data: Connecting
fear perceptions to actual employment outcomes

(7) Advanced NLP for Pragmatics: Developing
specialized models for sarcasm and irony in fear
expression

XIIl. DATA AVAILABILITY

De-identified data, code, and supplementary materials
are available at: https://github.com/ai-fear-study/2024
and archived at Zenodo:
https://doi.org/10.5281/zenodo.10000000.
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