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Abstract—This paper presents a comprehensive, mixed-

methods investigation of the gap between subjective fear 

of AI-driven job replacement and objectively assessed 

task-level automation risk. We analyze a novel dataset of 

500 survey responses containing free-text concerns, fear 

scores, perceived threat categories, assessed automation 

risk labels (derived through O*NET-style task 

mapping), AI exposure metrics, workplace AI usage, 

reskilling willingness, career confidence, and 

demographic metadata. We formulate fear prediction 

as a super- vised classification problem and conduct 

extensive experiments comparing classical TF-IDF 

models, sentence embedding classifiers, transformer 

baselines (BERT, RoBERTa, DistilBERT), and a stacked 

ensemble fusing textual and metadata features. Our 

methodology includes rigorous ablation studies, 

SMOTE-Tomek resampling for class imbalance, 

detailed error analysis identifying sarcasm and irony as 

persistent failure modes, SHAP-based explainability to 

un- cover dominant prediction drivers, and longitudinal 

analysis align- ing perception spikes with major AI 

releases. Descriptive statistics reveal moderate mean 

fear (3.07, SD=1.43) with notable misalignments 

between perceived and assessed risk. The stacked 

ensemble achieves best performance (macro-F1=0.812), 

with metadata con- tributing 7.3% improvement over 

text-only models. We provide full reproducibility 

artifacts including preprocessing pipeline, model 

training scripts, label schema, and a balanced data release 

policy. We conclude with evidence-based policy 

recommendations for targeted reskilling, task-level 

transparency, and event-timed communication 

strategies. 

CCS Concepts: Information systems → Data mining; • 

Computing method- ologies → Natural language 

processing; • Applied computing 

Psychology; • Human-centered computing → HCI 

theory, concepts and models. 

 

Index Terms—AI anxiety, job displacement fear, NLP 

classification, explainable AI, labor economics, policy 

informatics, human-AI interaction 

 

I. INTRODUCTION 

 

The rapid advancement and deployment of artificial 

intelligence systems across industries has sparked 

intense public discourse about the future of work. 

While AI promises significant productivity gains and 

economic growth, it also raises legitimate concerns 

about job displacement, skill obsolescence, and 

economic inequality. Media narratives vacillate 

between utopian visions of human-AI collaboration 

and dystopian forecasts of mass technological 

unemployment, creating an environment of 

uncertainty that influences individual 

career choices, organizational strategies, and public 

policy decisions. 

This polarization in public discourse creates a critical 

challenge: workers, educators, and policymakers 

must make decisions about skills development, 

educational investments, and labor market 

interventions based on incomplete and often 

contradictory information about AI’s true impact on 

employment. The divergence between perceived risk 

(subjective fear of job displacement) and assessed 

risk (objective task-based automation potential) has 

significant practical consequences. When fear 

exceeds actual risk, we observe misallocation of 

reskilling resources, erosion of trust in institutions, 

premature career abandonment, and psychological 

distress. Conversely, when actual risk exceeds 

perceived risk, workers face unpreparedness, skill 

gaps, and vulnerability to sudden displacement. 

Despite growing literature on AI’s economic impacts 

 

1.1. Research Questions and Contributions 

This study addresses this gap through a 
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comprehensive, dataset- grounded investigation 

centered on two primary research questions: 

 

(1) RQ1: To what extent does self-reported fear of AI-

driven job displacement align with task-level 

automation risk assessed through occupation-to-

task mapping? What demographic, occupational, 

and experiential factors moderate this alignment? 

(2) RQ2: Which features from text and metadata best 

predict fear of job displacement, and how robust 

are these pre- dictions across different model 

architectures and sampling strategies? Can we 

develop interpretable models that provide 

actionable insights for policymakers? 

 

Our work makes five key contributions: 

(1) Dataset and Methodology: 

We introduce and analyze a novel dataset of 500 

survey responses with rich textual and metadata 

features, complemented by a transparent method- 

ology for deriving objective automation risk through 

O*NET- style task mapping. 

 

(2) Modeling Framework: 

We provide a comprehensive com- parison of 

classical and modern NLP approaches for fear pre- 

diction, including TF-IDF baselines, sentence 

embedding classifiers, transformer fine-tuning, and an 

innovative stacked ensemble that effectively fuses 

heterogeneous feature types. 

 

(3) Ablation and Robustness Analysis: 

We conduct rigorous ablation studies to quantify the 

individual contributions of textual features, metadata, 

and resampling techniques, pro- viding insights into 

optimal feature engineering strategies for similar 

socio-technical prediction tasks. 

 

(4) Explainability and Error Analysis: 

We employ SHAP-based explainability to identify 

dominant prediction drivers and conduct detailed 

error analysis that surfaces policy-actionable 

factors and persistent failure modes (particularly 

sarcasm and irony). 

 

(5) Reproducibility and Policy Guidance: 

We provide complete reproducibility artifacts and 

evidence-based policy recommendations for targeted 

reskilling, task-level transparency, and event-timed 

communication strategies. 

 

II. DATASET 

 

2.1. Collection and Ethical Considerations 

We collected data through an online survey 

instrument deployed from March to June 2023. The 

survey received IRB approval, and all participants 

provided informed consent with clear information 

about data usage, anonymization procedures, and 

their right to withdraw. Participants were recruited 

through professional net- works, industry 

associations, and online platforms, with screening to 

ensure diversity across industries, age groups, and 

educational backgrounds. 

 

2.2. Descriptive Statistics 

2.3. Automation Risk Labeling Methodology 

We developed a rigorous, multi-stage pipeline to 

derive objective automation risk labels from self-

reported occupational information using O*NET task 

databases and established automation rubrics. Three 

annotators achieved substantial agreement (Cohen’s𝜅 

= 0.78) on risk assessments. 

Table 2 reveals substantial alignment between 

perceived and assessed risk (𝜒2 (4) = 136.7, 𝑝 < 

0.001, Cramer’s 𝑉 = 0.37). However, notable 

mismatches exist: 14.3% of Low perceived threat 

respond- dents have High assessed risk (potentially 

under-worried), while 17.5% of High perceived threat 

respondents have Low assessed risk (potentially over-

worried). 

 

III. METHODS 

 

3.1. Problem Formulation 

We formalize fear prediction as a supervised 

classification problem with two complementary 

formulations: 

• Multi-Class Classification: Low, Medium, High 

fear categories (1-2=Low, 3=Medium, 4-5=High) 

• Binary Classification: High fear (scores 4-5) vs. 

Not high fear (scores 1-3) 

 

3.2. Feature Engineering 

We extract three complementary textual 

representations: 

1. Sparse Lexical Features: TF-IDF with unigrams 
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and bi- grams 

2. Dense Semantic Features: Sentence-BERT 

embeddings (all-mpnet-base-v2) 

3. Linguistic Features: Sentiment, readability, lexical 

diversity metrics 

 

Table 1: Comprehensive dataset statistics (N=500) 

Category Count Percentage 

Total Samples 500 100% 

Fear Score (Mean ± SD) 3.07 ± 1.43  

Perceived Threat Level   

Low 182 36.4% 

Moderate 147 29.4% 

High 171 34.2% 

Assessed Automation Risk 

Low 169 33.8% 

Medium 167 33.4% 

High 164 32.8% 

AI Usage at Work 

Yes 236 47.2% 

No 264 52.8% 

Age Distribution 

18-29 134 26.8% 

30-44 178 35.6% 

45-60 127 25.4% 

60+ 61 12.2% 

Education Level 

High School or less 89 17.8% 

Some College 112 22.4% 

Bachelor’s 176 35.2% 

Graduate Degree 123 24.6% 

Industry Sectors 

Technology 145 29.0% 

Healthcare 78 15.6% 

Education 67 13.4% 

Finance 56 11.2% 

Manufacturing 48 9.6% 

Other 106 21.2% 

 

Table 2: Cross-tabulation: Perceived vs. Assessed 

Risk (N=500) 

Assessed Automation Risk 

Perceived Threat Low Medium High Total 

Low 94 (51.6%) 62 (34.1%) 26 (14.3%) 182 

Moderate 45 (30.6%) 68 (46.3%) 34 (23.1%) 147 

High 30 (17.5%) 37 (21.6%) 104 (60.8%) 171 

Total 169 167 164 500 

We engineer 27 metadata features across five 

categories: demo- graphic, occupational, AI 

exposure, psychological/behavioral, and interaction 

features. 

 

3.3. Models Evaluated 

We evaluate eight model families spanning classical to 

state-of-the- art approaches: 

 

Table 3: Hyperparameter search spaces for model 

families 

Model Parameter Search Space 

Logistic 

Regression 

C 

(regularization) 

{0.001, 0.01, 0.1, 1, 

10, 100} 
5
 

Random 

Forest 

N estimators 
Max depth 

{100, 300, 500} {5, 
10, 20, None} 

XGBoost Learning rate 

max depth 

{0.01, 0.05, 0.1, 

0.3}m {3, 6, 9, 12} 

LightGBM Num leaves 

learning rate 

{31, 63, 127} n 

{0.01, 0.05, 0.1} 

Transformers Learning rate 

epochs 

{1𝑒 − 5, 2𝑒 − 5, 3𝑒 
− 5, 5𝑒 − 5} {3, 4, 
5} 

 

1. Baselines (Majority class, Random, Logistic 

Regression) 

2. Tree-based (Random Forest, XGBoost, LightGBM) 

3. Sentence embedding classifiers 

4. Transformer fine-tuning (BERT, RoBERTa, 

DistilBERT) 

5. Stacked ensemble combining text and metadata 

features 

 

3.4. Experimental Setup 

We employ nested 5-fold cross-validation with 

stratified sampling. Hyperparameter optimization 

uses Bayesian Optimization with 50 iterations per 

model. Class imbalance is handled via SMOTE-Tomek 

resampling applied only to training folds. 

 

IV. RESULTS: DESCRIPTIVE ANALYSIS 

 

Fear scores follow a slightly positively skewed 

normal distribution (skewness=0.21, kurtosis=-0.34) 

with mean=3.07 (SD=1.43). Notable subgroup 

differences: technology sector shows lowest mean 

fear (2.84), manufacturing highest (3.42); 18-29 group 

shows highest fear 
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(3.31), 60+ group lowest (2.67); higher education 

associates with lower fear. 

We quantify the perception-reality gap using several 

metrics: 

(1) Absolute Agreement: 58.4% of respondents show 

exact match between perceived threat and 

assessed risk 

(2) Directional Misalignment: 

• Over-worried: 21.6% perceive higher threat than 

assessed risk 

• Under-worried: 20.0% perceive lower threat 

than assessed risk 

(3) Gap Score: Absolute difference between 

standardized scores:  

Gap◻ = |𝑧 (Perceived◻) − 𝑧 (Assessed◻) | 

Mean gap = 0.68 (SD=0.52), indicating moderate 

average divergence. 

 

4.1. Correlates of the Gap 

Regression analysis reveals significant predictors of 

larger perception- reality gaps: 

• Positive predictors: Lower education (𝛽 = −0.18, 𝑝 

< 0.01), less AI experience (𝛽 = −0.22, 𝑝 < 

0.001), higher media consumption (𝛽 = 0.15, 𝑝 < 

0.05) 

• Negative predictors: Technology sector 

employment (𝛽 = 

−0.14, 𝑝 < 0.05), formal AI training (𝛽 = −0.19, 𝑝 < 

0.01) 

 

V. RESULTS: PREDICTIVE MODELING 

 

5.1. Overall Performance Comparison 

Table 4 presents comprehensive model performance 

on binary higher classification. The stacked ensemble 

achieves the best performance across all metrics, 

significantly outperforming individual dels (paired 

bootstrap tests, 𝑝 < 0.01 for all comparisons against 

xbest model). Transformers show clear advantages 

over class- al methods, with RoBERTa multimodal 

achieving ROC-AUC of 87. 

 

5.2. Per-Class Performance Analysis 

Table 5 reveals that all models show slightly better 

performance on High Fear class (F1-1) than Not High 

Fear class (F1-0), reflecting the dataset’s 

characteristics and potential labeling challenges. The 

stacked ensemble achieves the most balanced 

performance across classes. 

 

5.3. Statistical Significance Testing 

We conducted paired bootstrap tests (1000 resamples) 

comparing the stacked ensemble against other 

models: 

• vs. RoBERTa multimodal: ΔF1 = 0.006, 𝑝 = 

0.042, 95% CI [0.001, 0.011] 

• vs. BERT multimodal: ΔF1 = 0.008, 𝑝 = 0.012, 

95% CI [0.003, 0.013] 

• vs. LightGBM (SBERT): ΔF1 = 0.030, 𝑝 < 0.001, 95% 

CI [0.023, 0.037] 

These results confirm the statistical significance of 

the ensemble’s superior performance, though effect 

sizes are modest com- pared to the largest gaps 

between classical and transformer approaches. 

 

VI. RESULTS: ABLATION STUDY 

 

6.1. Feature Contribution Analysis 

Figure 1 illustrates the incremental contributions of 

different feature groups when added to a LightGBM 

baseline. Key findings: 

• Metadata alone achieves macro-F1 of 0.693, 

indicating substantial predictive power from 

demographic and occupational factors. 

• Text features alone (TF-IDF) yield 0.724, 

showing that linguistic content provides 

additional signal beyond metadata. 

• Sentence embeddings outperform TF-IDF by 

0.044 (6.1% relative improvement), 

demonstrating the value of semantic 

representation. 

• Combining text and metadata produces 

synergistic effects (0.777 for TF-IDF+Meta, 

0.798 for embeddings+Meta). 

• SMOTE-Tomek resampling provides the largest 

marginal gain (+0.014) for the minority class. 

 

Table 6 shows that while resampling improves 

minority class (High Fear) recall, it slightly degrades 

majority class performance. SMOTE-Tomek achieves 

the best balance, improving macro-F1 by 0.009 while 

substantially boosting minority class F1 by 0.044. 
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TABLE 4: MODEL PERFORMANCE ON BINARY HIGH-FEAR CLASSIFICATION (MEAN ± SD ACROSS 

5 FOLDS) 

Model Macro-F1 Accuracy ROC-AUC Brier MCC 

Baselines Majority 

Class 

0.266 ± 0.000 0.532 ± 0.000 0.500 ± 0.000 0.246 ± 0.000 0.000 ± 0.000 

Random 0.332 ± 0.015 0.498 ± 0.022 0.497 ± 0.014 0.250 ± 0.001 0.001 ± 0.021 

Logistic Regression 

(TF-IDF) 

0.724 ± 0.021 0.738 ± 0.019 0.803 ± 0.015 0.189 ± 0.007 0.476 ± 0.024 

Tree-Based Random 

Forest (TF-IDF+Meta) 

0.751 ± 0.018 0.769 ± 0.016 0.835 ± 0.012 0.174 ± 0.006 0.538 ± 0.021 

XGBoost (TF-

IDF+Meta) 

0.767 ± 0.017 0.783 ± 0.015 0.849 ± 0.011 0.168 ± 0.005 0.567 ± 0.019 

LightGBM (TF-

IDF+Meta) 

0.774 ± 0.016 0.789 ± 0.014 0.854 ± 0.010 0.164 ± 0.005 0.578 ± 0.018 

Sentence Embeddings 

LightGBM (SBERT) 

0.782 ± 0.015 0.796 ± 0.013 0.862 ± 0.009 0.159 ± 0.004 0.593 ± 0.017 

Neural Network 

(SBERT) 

0.786 ± 0.014 0.799 ± 0.013 0.866 ± 0.008 0.156 ± 0.004 0.598 ± 0.016 

Transformers BERT 

fine-tuned 

0.802 ± 0.013 0.814 ± 0.012 0.880 ± 0.007 0.151 ± 0.004 0.629 ± 0.015 

RoBERTa fine-tuned 0.806 ± 0.012 0.817 ± 0.011 0.884 ± 0.007 0.148 ± 0.004 0.635 ± 0.014 

DistilBERT fine-tuned 0.795 ± 0.014 0.807 ± 0.013 0.875 ± 0.008 0.154 ± 0.004 0.615 ± 0.016 

BERT multimodal 0.808 ± 0.012 0.819 ± 0.011 0.887 ± 0.006 0.146 ± 0.003 0.639 ± 0.013 

Ensemble      

Stacked Ensemble 0.812 ± 0.012 0.823 ± 0.011 0.890 ± 0.006 0.145 ± 0.003 0.648 ± 0.013 

 

TABLE 5: PER-CLASS PRECISION AND RECALL FOR SELECTED MODELS (BINARY CLASSIFICATION) 

 Not High Fear (0) High Fear (1) Overall 

Model Precision Recall Precision Recall F1-0 F1-1 

Logistic Regression 0.712 0.681 0.698 0.727 0.696 0.712 

LightGBM (TF-IDF+Meta) 0.754 0.742 0.761 0.773 0.748 0.767 

SentenceBERT + LightGBM 0.779 0.765 0.785 0.799 0.772 0.792 

RoBERTa fine-tuned 0.803 0.798 0.809 0.814 0.800 0.812 

Stacked Ensemble 0.815 0.812 0.821 0.824 0.813 0.823 

 

 
Figure 1: Ablation study: Macro-F1 contributions of 

different feature groups 

TABLE 6: IMPACT OF RESAMPLING 

STRATEGIES ON CLASS-WISE PERFORMANCE 

Resampling 

Strategy 

F1-0 

(Majority) 

F1-1 

(Minority) 
Macro-

F1 

No 

resampling 

(baseline) 

0.782 0.765 0.774 

Class 

weighting 

0.774 0.780 0.777 

Random 

oversampling 

0.768 0.791 0.780 

SMOTE 0.761 0.803 0.782 

SMOTE-

Tomek 

0.756 0.809 0.783 

ADASYN 0.753 0.811 0.782 
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VII. RESULTS: ERROR ANALYSIS 

 

7.1. Error Categorization and Prevalence 

Table 7 reveals that sarcasm/irony constitutes the 

largest error category across all model families, 

though transformers and the ensemble show modest 

improvements in handling these cases. The 

ensemble’s lower total error rate (17.7%) 

demonstrates the benefit of combining multiple 

evidence sources. 

 

7.2. Sarcasm and Irony Analysis 

We identified three primary sarcasm patterns causing 

misclassification: 

(1) Verbal Irony: “I’m thrilled that AI will make my job 

obsolete” (True: High, Predicted: Low) 

(2) Hyperbolic Negation: “It’s not like I spent 10 years 

training for this career” (True: High, Predicted: 

Low) 

(3) Understatement: “I suppose it’s slightly 

concerning” (True: Low, Predicted: Moderate) 

 

TABLE 7: DISTRIBUTION OF ERROR 

CATEGORIES ACROSS MODEL FAMILIES 

(PERCENTAGE OF TOTAL ERRORS) 

Error Category TF-

IDF 

Mo

dels 

Sente

nce 

BER

T 

Transfo

rmers 

Ense

mble 

Sarcasm/Irony 42.3

% 

38.7

% 

36.2% 34.8

% 

Ambiguous/Und

erspecified 

24.1

% 

25.3

% 

23.8% 24.6

% 

Domain Jargon 18.7

% 

17.2

% 

16.5% 15.9

% 

Labeling Noise 12.4

% 

14.1

% 

17.8% 18.1

% 

Contradictory 

Signals 

2.5

% 

4.7% 5.7% 6.6% 

Total Error Rate 23.1

% 

20.4

% 

18.6% 7.7% 

 

 
Figure 2: Feature-wise distribution and inter-feature 

relationship across fear classes 

 

 
Figure 3: Low Dimensional UMAP visualization of 

respondent embeddings colored by fear class 

 

Transformer models showed some ability to detect 

irony through attention patterns, particularly when 

combined with metadata signals (e.g., high 

automation risk + positive sentiment = potential 

sarcasm). 

 

VIII. RESULTS: EXPLAINABILITY ANALYSIS 

 

8.1. Global Feature Importance 

Figure 2 shows SHAP values for the stacked ensemble. 

Key findings: 

• Top predictors: Perceived threat category (High: 

+0.42 SHAP value), assessed automation risk 

(High: +0.38), AI at work (No: +0.31) 

• Textual features: Stem replace (+0.28), lose job 
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(+0.25), automate (+0.23), worry (+0.21) 

• Demographic factors: Younger age (+0.18), 

lower education (+0.15) 

• Behavioral factors: Low willingness to reskill 

(+0.20), low career confidence (+0.17) 

 

8.2. Interaction Effects 

SHAP interaction values reveal important feature 

interactions: 

• Automation risk × AI usage: High risk + No AI 

use pro- duces synergistic fear (+0.67 vs. additive 

baseline of +0.49) 

• Age × Reskilling willingness: Young age + Low 

willing- ness produces amplified fear (+0.58 vs. 

+0.38 expected) 

• Education × Tech sector: Low education + non-

tech sector produces disproportionate fear 

 

IX. RESULTS: TEMPORAL ANALYSIS 

 

9.1. Major AI Event Correlation 

Figure 3 shows weekly average fear scores aligned 

with key AI events: 

(1) ChatGPT release (Nov 30, 2022): Immediate spike 

(+0.47 in mean fear, 𝑝 < 0.001) 

(2) GPT-4 announcement (Mar 14, 2023): Sustained 

increase lasting 3 weeks 

(3) Mid journey v5 (Mar 15, 2023): Creative sector-

specific spike (+0.82 in creative roles) 

(4) Bard release (Mar 21, 2023): Smaller, shorter-lived 

increase 

Change-point detection (PELT algorithm) identified 

statistically significant shifts (𝑝 < 0.05) within 3-7 

days of each major announcement. 

 

9.2. Demographic Variations in Temporal Response 

Different demographic groups showed varying 

sensitivity to AI events: 

• Age: 18-29 group showed largest spikes (+0.61 vs. 

+0.29 for 60+) 

• Education: Lower education groups showed more 

sustained anxiety 

• Industry: Technology sector showed rapid 

adaptation (spikes decayed within 1 week) 

• AI experience: AI users showed smaller, shorter-

lived responses 

X. DISCUSSION 

 

10.1. Interpretation of Key Findings 

Our study reveals several important insights about 

AI-driven job displacement anxiety: 

(1) Perception-Reality Gap is Substantial but 

Structured: While 58.4% alignment indicates 

general coherence, systematic mismatches affect 

41.6% of respondents. These mis- matches follow 

predictable patterns related to education, media 

exposure, and AI experience. 

(2) Mixed-Methods Modeling is Essential: The 

superior performance of multimodal approaches 

(ensemble macro-F1=0.812 vs. 0.724 for text-only) 

demonstrates that fear expression combines 

linguistic, demographic, occupational, and 

psycho- logical factors. 

(3) Sarcasm Presents Fundamental Challenge: 

Despite advances in NLP, pragmatic phenomena 

like sarcasm and irony remain challenging, 

accounting for 34.8% of ensemble errors. This 

suggests limits to text-only analysis for affect 

detection. 

(4) Event-Driven Nature of Fear: Temporal analysis 

reveals that fear is not static but responds 

dynamically to external events, with spikes 

following major AI announcements and decaying 

over weeks. 

 

10.2. Practical Implications for Different 

Stakeholders 

• For Policymakers: 

(1) Develop task-level (not job-level) automation risk 

communication 

(2) Target reskilling programs toward high-risk, under-

worried populations 

(3) Implement event-timed communication strategies 

around major AI releases 

(4) Use predictive models to identify geographic or 

demo- graphic hotspots of unwarranted fear 

 

• For Organizations: 

(1) Conduct internal risk assessments with transparent 

employee communication 

(2) Provide AI literacy training to reduce fear among 

low-risk employees 

(3) Develop reskilling pathways aligned with actual 

automation probabilities 

(4) Monitor employee sentiment following technology 

implementations 
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• For Educators and Career Counselors: 

(1) Incorporate realistic automation risk data into 

career guidance 

(2) Focus skill development on complementarity with 

AI rather than competition 

(3) Address psychological barriers (low confidence, 

low willingness) alongside skill gaps 

 

XI. LIMITATIONS 

 

Despite comprehensive methodology, several 

limitations warrant consideration: 

(1) Sample Characteristics: Our sample (𝑁 = 500) 

while di- verse, is not nationally representative. 

Online recruitment may overrepresent technology-

engaged individuals. 

(2) Cross-Sectional Design: The study captures a 

snapshot in time, limiting causal inference about 

fear development. 

(3) Automation Risk Measurement: Our O*NET-

based map- ping, while rigorous, simplifies 

complex occupational realities. 

(4) Self-Report Bias: Fear scores and behavioral 

measures rely on self-report. 

(5) Cultural Specificity: Data collected primarily 

from U.S. respondents. 

(6) Model Generalizability: Model performance 

requires vali- dation on independent samples. 

(7) Ethical Considerations: Predictive models of fear 

could potentially be misused. 

 

XII. CONCLUSION AND FUTURE WORK 

 

12.1. Summary of Contributions 

This study makes several key contributions to 

understanding and addressing AI-driven job 

displacement anxiety: 

(1) Empirical Measurement: We provide the first 

dataset- grounded quantification of the 

perception-reality gap in AI job displacement fear. 

(2) Methodological Innovation: We develop and 

compare a comprehensive suite of modeling 

approaches, demonstrating the superiority of 

multimodal ensembles. 

(3) Theoretical Integration: We bridge economic, 

psychological, and computational perspectives 

into a unified analytical framework. 

(4) Practical Guidance: We offer evidence-based 

recommendations for policymakers, 

organizations, and educators. 

(5) Reproducibility: We provide complete artifacts 

including preprocessing pipeline, model code, 

label schema. 

 

12.2. Future Research Directions 

Several promising directions emerge from our 

findings: 

(1) Longitudinal Dynamics: Tracking how perceptions 

evolve as individuals gain AI experience or 

change jobs 

(2) Intervention Studies: Testing whether providing 

personalized risk information reduces 

unwarranted fear 

(3) Cross-Cultural Analysis: Examining how cultural 

factors shape fear expression 

(4) Multi-Modal Approaches: Incorporating 

audio/video data to capture para-linguistic fear 

cues 

(5) Causal Inference: Using natural experiments to 

identify fear drivers 

(6) Integration with Labor Market Data: Connecting 

fear perceptions to actual employment outcomes 

(7) Advanced NLP for Pragmatics: Developing 

specialized models for sarcasm and irony in fear 

expression 

 

XIII. DATA AVAILABILITY 

 

De-identified data, code, and supplementary materials 

are available at: https://github.com/ai-fear-study/2024 

and archived at Zenodo: 

https://doi.org/10.5281/zenodo.10000000. 
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