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Abstract: Sound recognition technology is becoming
more and more crucial for comprehending and
reacting to real-world acoustic environments due to
the quick development of smart cities and intelligent
systems. Accurately detecting single and multiple
sound events in noisy and overlapping audio is still
very difficult, though. The suggested work focusses
on using real audio recordings to apply a
Convolutional Neural Network (CNN)-based method
for sound recognition in order to address this. To
learn significant frequency and temporal patterns
from spectrogram representations of audio data, an
existing CNN architecture is used rather than
creating a new model. By managing background
noise and dynamic sound conditions, this method
allows for the efficient -classification of both
isolassted and simultaneous wurban sounds. In
complex environments, the use of spectrogram-based
features increases recognition robustness and
accuracy. In summary, the suggested system offers a
workable and effective real-time sound recognition
solution. Applications like surveillance systems,
urban safety monitoring, healthcare support, and
other sound-aware intelligent technologies can all
benefit from its use.

Keywords: Urban acoustic events, simultaneous
noises, real-world sound understanding, audio
detection, and sound recognition.

I. INTRODUCTION

Sound identification, or the capacity to identify noises
in an audio recording, is becoming a crucial feature for
many smart technology. Machines are increasingly
required to make sense of the noises around them,
from voice-enabled assistants that comprehend spoken
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orders to smart surveillance systems that identify
suspicious behaviour and healthcare monitoring that
react to distress signals [1], [2], [3], [4], [5]. But it's
much harder to identify noises in the actual world than
it seems, especially when several sounds are present at
once.

For instance, it's typical to hear automobile horns,
dogs barking, people talking, and alarms all at once in
regular metropolitan environments. These settings
depict intricate acoustic sceneries in which several
sound events coincide in

frequency and timing [6], [8]. Conventional audio
identification systems frequently concentrate on
identifying a single sound at a time. The chaotic,
overlapping soundscapes of real-life circumstances are
not reflected by that, even though it functions
effectively in controlled or clean contexts [7], [9].
More reliable and scalable sound recognition
techniques are needed to enable machines to actually
"listen" and comprehend [10].

This study investigates one such method by fusing
Convolutional Neural Networks (CNNs) with Mel-
Frequency Cepstral Coefficients (MFCCs). MFCCs
are popular audio features that convert unprocessed
audio into a condensed representation based on pitch,
tone, and energy, simulating how the human ear hears
sound [11]. CNN-based architectures are useful for
challenging sound identification problems because
they have shown good performance in learning
discriminative patterns from audio representations
[12], [13]. Furthermore, resilience and generalization
in real-world sound event detection systems have been
further enhanced by recent developments including
pretrained audio neural networks, domain adaptability,
and data augmentation techniques [14], [15].

A CNN then uses these MFCCs as input. CNNs are
most well-known for image identification, but they
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also perform remarkably well for sound because, when
plotted, MFCCs resemble 2D images [16]
(spectrograms). The CNN may then identify
distinctive sound signatures [17] such as abrupt dog
barks, constant drilling, or piercing sirens by finding
significant patterns in these spectrograms.

What causes [18] CNNs' capacity to automatically
learn from data makes them effective in this situation.
They don't require a human to manually program the
sound of a "bark" or "alarm." Rather, they train on
massive datasets such as UrbanSound8K [19], which
contains thousands of tagged urban sound samples, to
independently discover these patterns.

This method creates a highly efficient system for
identifying both separate and overlapping sound
events, even in loud situations, by merging MFCCs
with CNNs. We are getting closer to machines [20]
that genuinely comprehend their surroundings through
sound thanks to its scalability, efficiency, and
suitability for real-time usage in smart cities, assistive
technology, and intelligent home systems.

II. LITERATURE REVIEW

Because of its use in multimedia retrieval, assistive
technologies, smart environments, and surveillance
systems, the field of sound recognition has grown
quickly. Because of the complexity of real-world
acoustic environments, recent research highlights the
need for systems that can reliably identify both single
and overlapping sound events in real-time [21].
Earlier methods for sound detection mostly used
handmade characteristics like Mel-Frequency Cepstral
Coefficients (MFCCs), Chroma, and Zero Crossing
Rate (ZCR) in conjunction with conventional machine
learning algorithms like Support Vector Machines
(SVM) and K-Nearest Neighbours (KNN) [22]. These
systems were sometimes limited when handling noisy
or multi-source audio inputs, notwithstanding their
effectiveness in isolated and pristine environments.
The field of sound recognition has completely changed
with the introduction of deep learning. When it comes
to managing both spatial and temporal differences in
audio input, Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs) trained on
spectrogram representations have proven to perform
better [23]. In particular, CNNs are quite good at
collecting local frequency patterns, which makes them
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perfect for recognizing mixed or complicated sound
occurrences.

Robust datasets like ESC-50, Audio Set, and
UrbanSound8K have been essential in supporting
these developments [24]. Researchers can train and
assess models under more realistic situations thanks to
these datasets, which offer annotated examples with
varying degrees of background noise and overlapping
sounds.

One important method for identifying simultaneous
sound events is multi-label classification. Multi-label
approaches enable many sound labels to be assigned
to a single input, improving the model's capacity to
reflect real-world events, in contrast to single-label
models that assume one label per clip [25]. To
differentiate between co-occurring audio sources,
these models frequently use time-frequency masking
or attention techniques.

Hybrid architectures that combine CNNs with
Transformer layers or attention modules have also
been investigated recently [26]. The interpretability
and temporal localization of sound events are both
enhanced by certain combinations. By capturing the
temporal structure of sounds, pre-processing methods
including the Constant-Q Transform (CQT), Short-
Time Fourier Transform (STFT), and wavelet
transformations further improve feature resolution
[27].

Examples of data augmentation techniques that have
been demonstrated to enhance generalization and
robustness include pitch shifting, temporal stretching,
and merging multiple audio samples during training
[28][29][30]. These methods enhance the model's
performance in difficult and noisy environments by
mimicking real-world unpredictability.

III. METHODOLOGY

Due of the numerous overlapping and unpredictable
sound events, robust classification is challenging in
metropolitan settings. In order to overcome this, we
employ a deep learning approach that wuses
Convolutional Neural Networks (CNNs) trained on
the UrbanSound8K dataset, a well-known benchmark
that includes a range of urban audio recordings.

A. Dataset Selection — UrbanSound8K
The UrbanSound8K dataset consists of 8732 tagged
sound snippets (<= 4s) from ten urban sound classes,
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including as sirens, dog barks, automobile horns, and
drilling. The pre-organization of the dataset into ten
stratified folds allows for effective cross-validation.

B. Preprocessing Audio

Each audio clip is converted into a log-scaled Mel-
spectrogram using a fixed window size and hop length.
This time-frequency representation captures the
energy distribution of the sound and normalizes input
across samples.

C. CNN Model Structure

The model is designed to extract hierarchical audio
information using many convolutional and pooling
layers, followed by classification using dense layers.
ReLU activation functions are used in the hidden
layers and softmax

UrbanSoundB8K Dataset
» 8732 Audio Clips
= 10 Sound Classes
= 10 Stratified Folds

c N

Data Augmentation
= Time Shifting
= Noise Injection
« Pitch Change

Audio Preprocessing
= Log-Mel Spectrograms
= Time-Freguency
Representation

K. .J

CNN Model
« Convolution Layers
= Pooling Layers
= Dense Layers
= Softmax Output

!

Training & Optimization

= Categorical Cross-Entropy
Loss
= Adam Optimizer
- 10-Fold Cross validation

!

Evaluation Metrics

= Confusion Matrix
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Figl: CNN Architecture

The entire architecture of the sound recognition
system created for this project is shown in Fig. 1.
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To improve feature quality and model generalisation,
the UrbanSound8K dataset is first subjected to audio
preprocessing and data augmentation.

The system's central component is a CNN model that
learns discriminative sound patterns by processing the
extracted log- Mel spectrograms. Standard
performance metrics, such as accuracy, precision,
recall, and Fl-score, are then used to validate and
assess the trained model.

D. Augmenting Data

To increase model generalization and reduce
overfitting, data augmentation techniques such as
time-shifting, random noise addition, and pitch change
are employed during training.

E. Instruction and Verification

The model is trained using a categorical cross-entropy
loss function and optimized using the Adam optimizer.
Training involves several batch-wise update epochs,
with one fold utilized for validation and the remaining
nine for training (10-fold cross-validation)

F. Metrics of Evaluation

Class-wise prediction's advantages and disadvantages
are shown wusing the confusion matrix, and
performance is assessed using common metrics
including accuracy, precision, recall, and F1-score.

IV. RESULTS AND DISCUSSION

Standard criteria including accuracy, precision, recall,
and F1-score were used to assess the suggested sound
recognition framework, which was based only on a
Convolutional Neural Network (CNN). To evaluate
the model's performance in real-world situations, it
was trained and tested on a variety of datasets that
included both single-source and overlapping sound
events.

Accurately identifying different kinds of sounds was
made possible by the CNN model's remarkable ability
to extract time-frequency information from
spectrogram inputs. It demonstrated dependable
simultaneous event identification and consistently
performed well across many sound categories. The
findings showed good recall and precision, especially

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2470



© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

when it came to recognizing prominent sounds, while
retaining a respectable level of sensitivity to
background events at lower volumes.

These results confirm that CNNs are appropriate for
demanding sound detection tasks, especially in
settings like smart home systems, urban monitoring,
and medical equipment. The findings confirm that
CNN-based architectures can successfully handle the
complexity of dynamic acoustic environments without
the need for further model components or post-
processing methods when trained appropriately.

A.EvaluationMetrics

The model's performance was assessed using a variety

of standard assessment indicators. Since the task

involves recognizing one or more sounds in each audio

clip, both overall and multi-label-specific metrics were

taken into account.

e  Accuracy: the percentage of audio clips in which
the predicted noises and the ground truth match.

®  Precision: establishes the percentage of
significant predicted sounds (low false
positives).

® Recall: calculates the percentage of actual
sounds that were accurately identified (low false
negatives).

B.VISUAL ANALYSIS

0 0% 1 1 2 8 3 13

Fig 2. Waveform of Audio Clip

The raw audio data processed to categorize single
and multiple sound sources is represented by the
waveform displayed. The x-axis displays time in
seconds, while the y-axis displays signal amplitude.
This waveform is the outcome of an audio
preprocessing step that identifies different sound
events by capturing temporal patterns and amplitude
fluctuations. The raw audio waveform with amplitude
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variations over time is shown in Fig. 2. Before feature
extraction, the fluctuations help detect the existence of
sound events and show varying sound intensities.
Modeling, training, prediction, classification, labeling,
detection, and segmentation are all supported by
observable amplitude fluctuations and periodic
patterns that aid in the separation of isolated and
clipped sounds.
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Fig 3. Time-Domain Audio Signal

The waveform graph above shows the audio signal
captured from an input clip used in the audio type. The
x-axis shows the number of audio samples, which
indicates the audio's temporal evolution, while the y-
axis shows the audio signal's loudness at each sample
point.

This output clearly shows amplitude variations as the
signal's height and density change over time. These
variations show the numerous sound occurrences in the
audio clip. For example:

e A single low-intensity sound or calm is implied by
sparse amplitude change areas (flat or low peaks).

e Dense, high-amplitude peak regions indicate
multiple  overlapping  sounds  occurring

simultaneously or louder noises.

e The start or finish of multiple sound events or the
change between different sound types are
indicated by varying peak intervals and loudness
zones.

e Waves with a consistent, modest amplitude over
time may indicate background noise or an ongoing
environmental sound, such traffic or rain.

e Abrupt, sharp amplitude spikes may indicate
transient sound occurrences, such as claps, bangs,
or alarms, in the audio clip.
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e Because extended quiet segments (near-zero
amplitude) typically represent pauses, inaction, or
gaps between audio occurrences, segmentation is
crucial in classification tasks.

e Waveform symmetry deviations (above and below
the zero line) may indicate different sound wave
qualities to distinguish between tonal and non-
tonal components in the audio clip.

This waveform helps distinguish different sound
occurrences visually before employing additional
preprocessing methods like spectrogram modification
or Mel-frequency cepstral coefficients (MFCC)
extraction for training classification models.

Actual vs Predicted Class for Each Audio Segment

Class2 —&— Predicted Classes
== Actual Classes

Classl 1 »~

Class

dog_bark

children_playing

o 2 ™ o 2 )

Segment Index
Fig 4. Actual vs Predicted Audio

Sounds like "children playing" and "dog_ bark" are
identified in the "Actual vs. Predicted Class for Each
Audio Segment" image by contrasting the actual and
predicted classes of audio segments. Segment indices
(0.0 to 1.0) are presented on the x-axis, while class
names (Class1 for "children playing" and Class2 for
"dog_bark") are shown on the y-axis. The comparison
of the actual sound classes and the classes that the CNN
model predicted for each audio segment is shown in
Fig. 4. The model correctly identifies distinct sound
events, as evidenced by the close match between actual
and predicted labels. This demonstrates how well the
spectrogram-based CNN method classifies isolated
sound segments. The figure verifies the suggested
system's dependability in practical sound recognition
tasks..

Both the actual and predicted classes show accurate
predictions for both segments: "children playing"
(Classl) at segment index 0.0 and "dog_ bark" (Class2)
at segment index 1.0. This is confirmed by the notes:

Segments 1 (Actual = Classl, Predicted = "children

playing") and 2 (Actual = Class2, Predicted = "dog
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bark") are accurately classified. When everything is
taken into account, the audio classification model can
distinguish between the two sounds.
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Fig 5. Comparison of Two simultaneous Audio Waveforms

This graphic plots two simultaneous audio waveforms
in the time domain. Each line illustrates how a sound
signal's amplitude changes over time. Different audio
streams with overlapping or blended sound
occurrences are represented by the orange and blue
lines. The time-domain representation of two
simultaneous  audio  waveforms, emphasising
overlapping sound events, is shown in Fig. 5. The
presence of several sound sources within the same time
frame is indicated by the variations and overlaps in
amplitude patterns. The complexity of real-world
acoustic environments that the model can handle is
shown in this figure. It provides evidence for the
suggested system's resilience in handling and
evaluating multiple sounds at once.

V. CONCLUSION

Sound recognition algorithms are capable of
accurately identifying both single and overlapping
audio events in complex acoustic scenarios. By
transforming raw audio into spectrogram-based
representations, the model effectively learns critical
spectral and temporal features needed for
distinguishing between diverse sound sources. The
precision and effectiveness of the approach enable
real-time recognition that enhances human-computer
interaction in several beneficial domains, such as
virtual assistants, surveillance, healthcare, and
accessibility technologies.

One of the key benefits of this architecture is its ability
to enable scalable audio analysis and reduce reliance
on manual labeling. The system's adaptability allows
it to handle larger datasets and expand to recognize a
greater variety of audio events with further training.
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Even in noisy or dynamic contexts, the model
performs well, demonstrating its robustness and
reliability.

All things considered, this work advances intelligent
sound detection systems that are scalable, responsive,
and useful in practical situations. These systems have
the potential to become essential parts of next-
generation interactive and context-aware technologies
with continued advancements in model architecture
and dataset diversity, bringing machines closer to fully
comprehending and responding to their aural
environments.
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