© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

SOC Copilot: An AI-Powered Security Operations
Assistant for Automated Threat Detection and Intelligent

Incident Response

Dr. C V Madhusudhan Reddy, Dr. G K V Narsimha Reddy, Karu Praneeth Kumar, Aarupalli Karthik,
Kanike Vinay, Pavadi Bharath
Dept. Of Computer Science and Engineering (Artificial Intelligence), St. Johns College of Engineering
and Technology, Yemmiganur, 518301, India

Abstract- Heavy cyber attacks have pushed security teams
into constant crisis mode. Day after day, they face endless
warnings - each needing attention, each eating up time.
Too many logs come in different shapes, too much noise
clouds judgment, false alarms pile up fast. Analysts grow
numb. That dullness slows everything down: spotting
danger takes longer now, fixing it even more so. Old tools
collect data but stick to rigid rules, unable to shift when
hackers change tactics - they just add clutter instead. Enter
SOC Copilot - a smart helper built with two types of
algorithms working together. One spots odd behavior
without knowing what’s coming; the other sorts real
threats into categories using past examples. Together, they
cut through confusion. It pulls records from various
sources like JSON, CSV, Syslog, Windows EVTX files - not
missing a beat. From those entries, it builds 78 unique
traits based on patterns, timing, actions, connections. Then
ranks urgency levels PO to P4. Every result ties back to
known attack methods via MITRE ATT&CK - and
explains why clearly, plainly. Running without internet
access, SOC Copilot puts governance at its core. Oversight
stays with analysts every step of the way. Every move gets
recorded - full traceability built in. Data never leaves local
systems, meeting strict control standards. Testing shows it
sorts threats correctly more than 99 times out of 100.
Workload drops sharply because routine sorting happens
automatically. Alerts arrive packed with context, cutting
down decision time. Guidance comes clear, pointing
straight to next steps. Speed improves across the entire
reaction cycle, Cybersecurity automation improves threat
detection with machine learning

I. INTRODUCTION
More businesses, governments, and vital systems now

live online - that means more openings for
cyberattacks than ever before. Last year, a typical data

IJIRT 192954

breach cost around 4.45 million dollars on average,
based on findings from IBM; it also took companies
nearly nine months just to spot and stop those breaches
[1]. With stealthy long-term intrusions, unknown
software flaws, constant ransom demands, and hacks
spreading through suppliers, today's risks call for
sharp, fast, and smart defenses in place.

Housed within many organizations, Security
Operations Centers act like a central hub for cyber
defense. Watched nonstop, these teams spot threats,
look into breaches, then guide how to react. Instead of
working blind, they pull data through tools known as
SIEMs - systems that gather alerts from firewalls, IDS
or IPS units, EDR software, apps, and networking
gear. Even so, today’s operations run into deep-rooted
issues that quietly slow things down.

Every day, enterprise security teams face a flood of
warnings - sometimes numbering in the tens of
thousands. Because so many turn out to be mistakes,
roughly 95 percent by some estimates, people start
tuning them out. When too much noise fills the screen,
real dangers slip through without proper attention.
Workers grow numb after hours of sorting weak
signals from messy data streams. Judgment wavers
when one shift ends and another begins, simply
because minds tire. What feels like vigilance can
quietly become routine dismissal.

Hours pass before replies come. Sorting through logs
by hand takes ages. Because one mistake hides in
many records, workers check system after system.
When clues appear, they link them using experience.
Each step drags detection further into the future.
Fixing problems starts late as a result. Intruders stay
hidden longer simply because responses crawl.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2889

© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

Most older security tools gather logs well, yet they
miss subtle clues that separate normal hiccups from
real dangers. Instead of understanding behavior, these
systems rely on fixed triggers that fail when attacks
change shape. Because of rigid logic, odd events get
ignored or wrongly flagged every day. Without
learning from surroundings, alerts often point nowhere
useful.

Because old ways of checking data by hand or using
fixed rules often fall short, researchers have turned to
artificial intelligence and machine learning to
strengthen cyber defenses. Instead of relying only on
set conditions, smart systems now sort through
mountains of logs automatically. These tools catch
quiet signs of danger that simpler methods miss. By
weighing how risky each warning is, they help decide
what needs attention first. Responses come with added
background details, making them more useful. Human
insight stays central, while the system handles heavy
lifting behind the scenes.

A fresh look at SOC Copilot begins here. Built on
artificial intelligence, it tackles current security
hurdles using a mix of machine learning methods
stitched together. Instead of relying on just one
technique, this tool uses outlier spotting without labels
- thanks to Isolation Forest - alongside labeled pattern
recognition via Random Forest for broader coverage.
Unusual behaviors get flagged even when they’ve
never been seen before. One piece feeds into another:
logs come in first, then cleaned up before deeper
inspection kicks in. Threats are analyzed by models
trained to tell types apart, not just spot differences.
Alerts show up with clear reasons why, tied directly to
real-world tactics from the MITRE framework.
Analysts respond, their input loops back to sharpen
future results. Over time, if performance slips, the
system notices shifts and adjusts. Control stays central,
designed around oversight needs from day one.

What comes next unfolds like this. Following part two
looks at earlier work on the topic. Problem definition
takes shape in section three. A new system enters the
picture within section four. Architecture appears
through section five. Method steps fill out section six.
Findings get attention in section seven. Benefits show
up first, uses follow after - sections eight and nine
handle those. What might come later gets room in
section ten. The final thoughts settle into place across
section eleven.

IJIRT 192954

II. LITERATURE REVIEW

Starting with older rule-driven methods, research into
using computer tools for spotting cyber threats covers
a wide range. Moving beyond those, newer studies
explore how complex neural networks can identify
risks too.

Older security tools like Splunk, IBM QRadar, or
ArcSight form the base layer many teams still depend
on today. Instead of scattered records, they pull logs
into one place while spotting activity links as things
happen. Because these setups run on fixed logic
patterns, though, fresh threats often slip through
without warning. Updating them means constant
human effort just to keep up with known behaviors.
When attacks unfold slowly across several steps - yet
avoid familiar traces - they rarely trigger alerts.
Research by Zuech and others confirms how weak
such rigid methods are against stealthy intrusions.
Signature-based tools like Snort and Suricata scan
network data by matching it to stored patterns of past
attacks. Because they rely on pre-existing records,
their strength lies in spotting familiar dangers. Yet, as
Roesch pointed out, they lag when facing new threats
- arriving too late to catch what has never been seen
before. Without prior examples, these methods miss
unknown vulnerabilities entirely. Zero-day breaches
slip through, just as shape-shifting viruses do. Fresh
tactics also go unnoticed, simply because no rule yet
exists to flag them. Their design waits for history to
repeat, leaving blind spots wide open.

Out in the world of digital security, spotting strange
behavior matters a lot. One way researchers tackle this
uses machines that learn patterns on their own. A
method built by Liu and team splits data points at
random until odd ones stand out fast. Instead of
needing known examples of attacks, it learns what
normal looks like first. When something moves too far
from that norm, alarms go up silently. Because of this
trick, never-before-seen threats might get caught early
anyway.

One way to sort data involves using decision trees
grouped together. These collections, known as
Random Forest models, work well when identifying
different kinds of cyber threats. Research published
under reference [7] supports this idea. When tested on
a standard set of network records called CICIDS2017,
such systems ranked high in precision. That test was

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2890

© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

detailed by Sharafaldin and team [8]. Instead of just
spotting normal behavior, they correctly flagged
harmful actions like forced access attempts, malicious
website probes, hidden intrusions, zombie device
signals. Grouped tree strategies handled these
separations better than many alternatives.

Deep learning now plays a role in cybersecurity
through tools like autoencoders, RNNs, and
transformers used to spot threats. Shone and team
presented an autoencoder system able to detect
intrusions with strong results on standard test data.
Still, these models can be hard to interpret -
problematic when experts need clear reasons behind
alerts. Because of this opacity, trust becomes difficult
even if performance looks good. Understanding model
choices matters just as much as catching threats.
Without transparency, adoption in real security
operations faces hurdles.

Here's what we miss so far. Even with progress,
current studies leave holes - ones SOC Copilot steps
into. Not many tools blend different detection
methods; instead they stick to just one path. Some skip
clear reasoning entirely, treating explanations as an
afterthought. Control features? Rare. Human guidance
built into the system? Hardly ever seen. Most
suggested setups rely on internet access, so they fail
where networks are isolated. Yet SOC Copilot works
without connection, combining multiple models, clear
reasoning steps, strong oversight design, while
running entirely on local machines.

III. PROBLEM STATEMENT

What happens when too many pressures stack up
inside today's security hubs? Detection slows.
Response weakens. The whole system stumbles under
its own weight. Alerts pile high while teams stretch
thin. One misstep leads to another. Overload becomes
routine. Speed fades just when it is needed most.

Suddenly, logs multiply nonstop. Security tools like
firewalls, intrusion detectors, and login systems cough
up endless streams every day. Cloud apps, servers, and
device monitors add their own chunks too. Picture a
single medium company - millions of entries pour in
by noon. Each one must be decoded, shaped into
standard form, then weighed against background

IJIRT 192954

clues. Patterns shift without warning. The load never
stops growing.

Most alerts from rule-driven tools aren’t real threats -
research shows over 95 percent get flagged by
mistake. Because of this, security teams waste hours
on harmless events instead of chasing down true
dangers. What slips through is the quiet buildup of
ignored warnings piling up like unread mail.

Too many alerts pile up. Triage work feels endless,
one case after another. Digging into tough threats takes
serious mental effort. That grind wears people down
over time. Right now, there are around 3.4 million
open cybersecurity jobs worldwide. Fewer hands
make each task heavier. Pressure builds when teams
run thin. Empty roles mean more load on those who
stay. Burnout creeps in quietly, then hits hard. The
shortage isn’t just numbers - it shows in tired eyes and
slower decisions. Gaps in staffing deepen stress across
shifts. Experience fades fast when people leave.
Keeping pace gets harder every month. Work stretches
further than bodies can go. Minds grow dull under
constant noise. Help does not arrive quickly enough.
Each missing person leaves a hole others must fill.
Stress stays longer than solutions do.

When alerts pop up, they often miss key details about
what is actually happening. Without clear background,
sorting out how serious an event might be gets tricky.
Pulling together info from different places becomes a
regular task. Connecting dots means using outside
threat data alongside personal experience. Making
sense of it all takes time because pieces are scattered
across systems.

Starts with an alert, then someone has to sort it out by
hand. From there, gathering proof takes time because
people do each step themselves. This slows things
down when checking how bad a problem might be.
Someone must figure out what went wrong without
help from automation. Decisions about what to do next
come later than they should. Each delay gives threats
more room to cause harm inside the company.

One way to put it: when heaps of messy security logs
come in every format imaginable, what mix of smarts
could sift through them, spot real dangers, sort by
urgency, then lay out clear reasons why - helping
human analysts choose fast without breaking rules or
losing control over where data goes or how choices get
made.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2891

© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

IV. PROPOSED SYSTEM - SOC COPILOT

A smart helper for security teams, SOC Copilot grows
step by step, fitting together like puzzle pieces. Layer
by layer it tackles challenges, shaped around real
needs. Each phase adds strength without overload.
Built to adapt, not force. Problems meet structure, one
stage at a time.

A. Log Ingestion

A fresh start comes with how logs enter the system -
ready to handle different shapes without favoring one.
One way deals with JSON or JSONL, pulling
structured entries from cloud tools and web interfaces.
Another path opens up CSV files, often saved by older
platforms in row-and-column layouts. Devices like
routers speak Syslog, a common tongue the system
decodes on arrival. Then there is Windows EVTX, a
packed binary form that holds alerts from Microsoft
environments. Every type gets its own method to pull
out what matters - time stamps show when, IPs point
where it came from and went to. Ports and protocols
slip into place beside event labels and risk levels, all
shaped into something consistent.

B. Log Parsing and Preprocessing

Logs start their journey through several steps before
becoming usable. First up, timestamps get shifted into
a single time zone - UTC - and shaped uniformly using
ISO 8601 rules. Instead of keeping different naming
styles from various sources, field names are reshaped
to fit one standard structure. When it comes to
categories like status or type, words turn into numbers
for easier handling later on. Each record then faces
checks based on predefined formats, where errors
trigger logging but keep flawed data out of results.

C. AI/ML-Based Analysis Engine

One part of the system uses Isolation Forest, which
learns what normal network activity looks like by
studying only harmless traffic, then gives each event
an oddness score between zero and one. This method
builds patterns without labels, spotting outliers
quietly. On another track, Random Forest steps in after
learning from labeled examples in the CICIDS2017
collection, where every kind of behavior gets fair
attention during training. Instead of lumping logs
together, it sorts them carefully - into seven types,
including quiet traffic, flood attacks, guessing
breaches, harmful software bursts, secret data leaks,

IJIRT 192954

stealthy scouting moves, and database probing stabs.
Each model runs its own way, yet both feed
conclusions to the main decision hub.

D. Threat Classification and Ensemble Logic

Starting with two model results, the Ensemble
Coordinator mixes them via a weighted system. A
math formula brings together scores: 0.4 times the
Anomaly Score plus 0.6 multiplied by Threat Severity
and Classification Confidence. Out comes one number
- the Combined Risk Score. That figure shapes how
alerts get ranked, from PO being most urgent down to
P4 least urgent. Levels like Critical, High, Medium, or
Low follow next based on severity. Because it uses
two signals, familiar risks and fresh ones aren’t
missed. While classifiers catch recognized dangers,
anomaly detectors spot odd patterns never seen before.
Each piece feeds into final judgments without leaning
too hard on just one source.

E. Explainability and Recommendation Engine

Sometimes it talks through why an alert happened,
showing how sure it is. What makes something seem
off gets spelled out using real behavior clues. A list
pops up with what mattered most in raising the flag. It
checks where limits were crossed and says so plainly.
Tactics hackers use appear mapped out the way
experts classify them. Next steps show up only if they
fit the type of danger found. These hints stick to
official roles like stop, check, fix, and rebuild. Every
piece connects without flashing lights or drama.

F. Dashboard Visualization

A live feed of threats shows up on screen through
PyQt6, built right into the desktop view. Moving
number displays pulse with fresh stats, catching
attention without flash. Alerts line up by urgency,
sorted high to low, changing shade based on risk level
- updated every two seconds like clockwork. Click
one, and deeper details unfold nearby, showing what
tipped the scale and why it matters. Colorful dots blink
along the bottom edge, each tracking a different part
of the workflow behind the scenes. Settings hide at the
side, ready for fine-tuning limits or adjusting oversight
rules when needed.

G. Technology Stack
Component

Core Language

ML Framework

Technology
Python 3.10+
Scikit-learn (Isolation
Forest, Random Forest)
Desktop Ul PyQt6

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2892

© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

Data Processing Pandas, NumPy
Database SQLite
Configuration YAML

Testing Pytest (208+ tests)
Packaging Pylnstaller
Version Control Git

V. SYSTEM ARCHITECTURE

Beginning at the core, SOC Copilot uses separate
levels that unfold in stages. Not just stacked, these
layers split into three working phases. Each level
connects through clear transitions instead of blending
together. Five main sections make up the structure,
each with its own role. Built this way, the system
allows changes without disruption. Compliance needs
shape how parts are arranged. Flexibility comes from
separation, not complexity.

A. Frontend Interface Layer

Out of the box comes a desktop setup built on PyQt6,
bringing together a sidebar that moves with keystrokes
leading the way. Hidden down below sits a status strip
lit by tiny LEDs whispering what's happening under
the hood. Pages pile behind one another - Dashboard
up front, then Alerts, Investigation sliding in next,
followed by Assistant and finally Settings tucked at
the back. Messages pass only one direction into this
world, guided by a bridge tied to a controller locked
from changes. Communication stays lean, watching
silently without reaching back.

B. Backend API Layer

From start to finish, the Application Controller
handles every step of log handling - taking in data,
cleaning it up, pulling out key details, running
predictions, then sending alerts. Batching pieces
together on the fly, it processes information in small
chunks, adjustable by size and timing based on
settings.

C. Al Processing Engine

When the app starts up, it pulls in trained models
through joblib, locked as read-only for inference.
From raw inputs, feature work builds 78 numbers
grouped into four kinds - no mixing allowed.
Statistical traits show up first, twenty-two strong:
things like how many packets move, data size, time a
connection lives. Then come eighteen that track timing
patterns, such as what hour traffic hits. Behavior
shapes the next set, twenty markers deep - one tracks
how often requests fire off, another watches failed

IJIRT 192954

attempts pile up. Last stretch holds network signals,
eighteen of them: oddities like irregular port usage,
count of distinct endpoints reached.
D. Database Layer
Inside SOC Copilot, data sticks around using SQLite.
Analyst decisions go into a Feedback Store - later used
to check how well models perform. A separate
Governance Database keeps every change logged,
never erasing anything added. Feature patterns get
saved over time inside Drift Monitoring, capturing
shifts quietly behind the scenes.
E. Response Generation Layer
A signal appears after analysis finishes. This output
bundles a severity tag - ranging from PO to P4 - with
links to known attack patterns under MITRE
ATT&CK. Each entry sorts risks by category while
listing key data points that shaped the outcome.
Reasons unfold in clear steps anyone can follow.
Suggestions for next moves come attached, grounded
in surrounding conditions.
F. End-to-End Data Flow
Out of order comes structure - log files start it all.
Right after, format detection kicks in without delay.
Once that finishes, parsing begins immediately
afterward. Following close behind, validation checks
every piece carefully. Then normalization adjusts
values into alignment. Feature extraction pulls exactly
78 markers right at that point. A bit later, isolation
forest scoring weighs anomalies silently. Not long
after, random forest classification labels each event
quietly. Their results meet during ensemble
coordination just once. From there, risk score
calculation adds up consequences slowly. Alerts
appear only when thresholds break unexpectedly.
Explaining each alert happens before anything else
next. The dashboard displays everything moments
later always. Analysts review what shows up
eventually. Finally, feedback gets stored for good
measure.

VI. METHODOLOGY

A. Log Data Processing

A fresh start happens when the system checks file
types by looking at endings and headers. After that
comes breaking down records, handled differently
depending on their shape. Errors fall away during
structure checks, leaving only what fits. Moments get
lined up in one global rhythm, set to midnight-based
labels from an international rulebook. Pieces shift into

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2893

© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

standard slots, guided by fixed blueprints. Categories
turn into steady codes, drawn from unchanging
wordbooks.

B. Feature Extraction

Seventy-eight numerical traits get pulled out by the
feature building part, grouped into four types.
Statistics make up twenty-two of them - things like
how many packets move through, total bytes, session
length, along with gaps between arrivals. Time-driven
ones add eighteen more, tracking rhythms across hours
plus shifts in timing between events. Behavior shows
up in twenty indicators tied to how often requests
happen, what share fail, and sudden spikes in use.
Another eighteen come from network layout,
measuring spread of ports used and which protocols
show up most. Sequence stays locked down once set,
saved right next to the model files so inputs line up
every time.

C. Al Inference Workflow (Pseudo-Algorithm)

One way to spot threats uses a mix of methods. It takes
a data table X with n rows and seventy eight columns
from logs. The result is a list A of warnings, ranked by
urgency, each with risks spelled out plus reasons why.
First step loads two ready made tools: M_IF for oddity
checks, M_RF for sorting types. Each row x_i gets
scored oddly using M_IF’s built in judge scaled
between zero and one. Then M_RF guesses what kind
it might be along with how sure it feels about that
guess. Highest certainty among those guesses becomes
its confidence level. Risk blends four tenths of
weirdness score with six tenths of severity times belief
strength. When this number crosses a line we draw
ahead of time, an alert wakes up - gets details written
down like possible harm source, attack pattern link,
next move idea - and joins group A. At the end, only
these flagged items get handed back.

D. Threat Classification Logic

Class Description Severity
Benign Normal network 0.0
activity
DDoS Distributed denial-of- 0.8
service
Brute Force Authentication attacks | 0.7
Malware Malicious software 1.0
execution

Exfiltration Unauthorized data 1.0
transfer

Reconnaissance Network 0.5
scanning/probing

SQL Injection Database exploitation | 0.9

IJIRT 192954

E. Risk Scoring

Risk level totals come from two parts. One part checks
how far actions stray from usual patterns, counting for
40 percent of the total. Instead of adding directly, it
blends with another piece that matches known threats,
making up 60 percent. When joined, their result fits
into one of four bands. If the number hits 0.8 or more,
it lands in critical. Between 0.6 and just under 0.8
means high. A value from 0.4 to below 0.6 reads as
medium. Anything beneath 0.4 shows low risk.

VII. RESULTS AND DISCUSSION

A. System Performance

A fresh look at SOC Copilot began with tests on the
CICIDS2017 data - real traffic marked by hand
through various breach attempts. While not every
condition matched live environments, patterns
emerged clearly over time. Because labels guided the
process, spotting differences became easier without
extra tools involved. Though some noise crept in,
results still lined up close with expected outcomes.
From start to finish, evaluation stuck strictly to
recorded behaviors seen during simulated break-ins.

Metric Value
RF Classification Accuracy 99.99%
IF Anomaly Separation Confirmed
Feature Extraction 78 features, consistent
Model Loading Time 1-2 seconds
Single Record Latency <10 ms
Batch (1,000 records) 2-5 seconds
Large-Scale (100K records) 2-5 minutes

B. Example Log Analysis

Out of nowhere, a strange pattern shows up in the
network data. Port activity feels off - entropy hits 0.92,
way outside normal ranges. Destinations? Forty-seven
different ones, more than expected. Timing between
packets lacks rhythm, uneven and unpredictable. The
system flags it sharply - a score of 0.85 from Isolation
Forest points to clear oddness. A second check using
Random Forest says Malware, nearly certain at 92.5%.
Weighted together, anomaly strength and
classification certainty build a risk number: 0.895.
That lands squarely in critical territory, ranked PO.
Behind the scenes, logic traces back - the label sticks
because evidence aligns so tightly. "Malware," it
concludes, "with strong backing." A spike in the
anomaly score often points to odd activity. Port

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2894

© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

entropy stands out, along with how many different
destinations appear, plus timing since last event. Look
into running processes after cutting off the device

C. Comparative Evaluation

Approach Known Novel FP Rate
Rule-Based SIEM | High None High
Isolation Forest Moderate | High Moderate
Only
Random Forest High None Low
Only
SOC Copilot High High Low
Ensemble

D. Response Time and Workload Improvement

What happens when alerts get sorted by software
instead of people? Review time drops because
machines handle the first look. Context appears fast,
cutting what used to take minutes down to just
seconds. Suggestions show up ready to apply, so there
is no waiting around to plan next steps. Attack patterns
match known behaviors quickly, thanks to embedded
framework tagging. Work gets lighter not by doing
more but by filtering out false signals -early.
Confidence grows when multiple detection models
agree on a result. Critical items stand apart from
routine ones using clear urgency labels. Thousands of
logs move through checks in groups, not one at a time.
Explanations come already written, saving effort after
detection. Mistakes teach the system how to improve -
each outcome feeds back into future judgments.
Length stays fixed, detail remains intact, nothing
added, nothing lost.

VIII. ADVANTAGES

One big plus? Less work for security teams because
alerts get sorted automatically. Quick checks happen
in less than 10 milliseconds for every entry. Smarter
conclusions come from digging into details and
linking findings to real-world attack patterns. The
system grows step by step without breaking a sweat.
Safety stays front of mind - automated actions sit
turned off until needed. Runs cut off from the internet,
keeping data under local control. Spots familiar
dangers along with brand-new unknown attacks.
Every result can be checked again later thanks to fixed
scores and unchangeable logs.

IJIRT 192954

IX. APPLICATIONS

Out here, SOC Copilot fits into many kinds of security
setups. Picture large company security teams leaning
on it to back up their analysts. Instead of reinventing
the wheel each time, service providers bundle it to
keep threat spotting consistent for every customer.
When systems stretch between clouds or mix old and
new tech, tossing different log types at it works just
fine. Some government hubs insist everything stays
inside their walls - that’s where its offline mode
becomes key. Places like power plants, hospitals,
banks operate cut off from broad networks, yet still run
tight checks using this. Even classrooms teaching
cyber defense pull it into labs for real-world practice.
Length holds steady. No extras tagged on.

X. FUTURE SCOPE

One path moves toward live data flow into tools like
Splunk, Elastic SIEM, and QRadar through stream-
based links. Instead of waiting, alerts come as events
unfold across systems. A different angle uses deep
autoencoders - already outlined in code - to spot odd
behavior machines might miss. This method learns
normal patterns then flags outliers without clear rules.
Working alongside it, automated fixes plug into
existing workflows where actions follow policy
checks. Each fix runs only when approval paths
confirm safety. For organizations serving many
groups, setups allow separate spaces with unique
settings under one roof. Tenants stay isolated while
sharing core infrastructure efficiently. Shifting to
cloud formats brings flexibility by packaging services
in containers managed by Kubernetes. Scaling
happens quietly based on load changes behind the
scenes. Another step examines event chains using
transformer models that trace complex attack
sequences over time. Patterns emerge from long
strings of logs once invisible at glance. Lastly,
searching incidents feels more natural since queries
accept plain questions thanks to large language model
support. Responses form conversation-style instead of
rigid syntax demands.

XI. CONCLUSION

This study introduced SOC Copilot, a smart helper
built to ease major pressures on today’s security teams.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2895

© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

Instead of just spotting familiar threats, it uses
Isolation Forest to flag odd behaviors never seen
before. On top of that, Random Forest steps in to sort
different kinds of attacks with precision. Together,
these methods allow consistent identification of
dangers - common ones included. The system handles
new risks while staying reliable on established
patterns.

What stands out first? A mix of machine learning
models working together, decisions balanced by
weights, hitting over 99% correct classifications. Next
up - seventy-eight carefully shaped features pulled
from stats, timing patterns, actions, and network
signals. Clarity matters here. Built-in explanations
show why choices were made, highlight what factors
mattered most, point to known threat behaviors.
Control comes before convenience. Automation stays
off unless flipped on, emergency stops exist, every
action gets logged without deletion. Running
completely disconnected isn’t an afterthought - it’s
required. Data never leaves the local environment.

A fresh approach to security tools shows promise,
blending smart automation with real human insight.
When attacks grow more complex and frequent,
helpers such as SOC Copilot start mattering more
inside company defenses. These systems support
teams by keeping pace with rising dangers, even when
there are too many alerts and too few experts to review
them.

REFERENCES

[17 IBM Security, “Cost of a Data Breach Report
2023,” IBM Corporation, Armonk, NY, USA,
2023.

[2] Ponemon Institute, “The Economics of Security
Operations Centers: What is the True Cost for
Effective Results?,” Ponemon Institute LLC,
2020.

[3] A. Chuvakin, K. Schmidt, and C. Phillips,
Logging and Log Management: The Authoritative
Guide to Understanding the Concepts
Surrounding Logging and Log Management,
Syngress, 2012.

[4] R. Zuech, T. M. Khoshgoftaar, and R. Wald,
“Intrusion detection and big heterogeneous data:
a survey,” Journal of Big Data, vol. 2, no. 1, pp.
1-41, 2015.

IJIRT 192954

[5] M. Roesch, “Snort — Lightweight intrusion
detection for networks,” in Proc. 13th LISA,
USENIX, 1999, pp. 229-238.

[6] F.T.Liu, K. M. Ting, and Z.-H. Zhou, “Isolation
forest,” in Proc. IEEE ICDM, 2008, pp. 413—422.

[7] L. Breiman, “Random forests,” Machine
Learning, vol. 45, no. 1, pp. 5-32, 2001.

[8] I. Sharafaldin, A. H. Lashkari, and A. A.
Ghorbani, “Toward generating a new intrusion
detection dataset and intrusion traffic
characterization,” in Proc. ICISSP, 2018, pp.
108-116.

[9] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A
deep learning approach to network intrusion
detection,” IEEE Trans. Emerg. Topics Comput.
Intell., vol. 2, no. 1, pp. 41-50, 2018.

[L0]M. Ferrag, O. Friha, D. Hamouda, L. Maglaras,
and H. Janicke, “Edge-IloTset: A new
comprehensive realistic cyber security dataset,”
IEEE Access, vol. 10, pp. 4028140306, 2022.

[11]M. Ahmed, A. N. Mahmood, and J. Hu, “A survey
of network anomaly detection techniques,” J.
Netw. Comput. Appl., vol. 60, pp. 19-31, 2016.

[12]1G. Apruzzese et al., “On the effectiveness of
machine and deep learning for cyber security,” in
Proc. CyCon, 2018, pp. 371-390.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2896

