
© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

IJIRT 192954 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2889

SOC Copilot: An AI-Powered Security Operations

Assistant for Automated Threat Detection and Intelligent

Incident Response

Dr. C V Madhusudhan Reddy, Dr. G K V Narsimha Reddy, Karu Praneeth Kumar, Aarupalli Karthik,

Kanike Vinay, Pavadi Bharath

Dept. Of Computer Science and Engineering (Artificial Intelligence), St. Johns College of Engineering

and Technology, Yemmiganur, 518301, India

Abstract- Heavy cyber attacks have pushed security teams

into constant crisis mode. Day after day, they face endless

warnings - each needing attention, each eating up time.

Too many logs come in different shapes, too much noise

clouds judgment, false alarms pile up fast. Analysts grow

numb. That dullness slows everything down: spotting

danger takes longer now, fixing it even more so. Old tools

collect data but stick to rigid rules, unable to shift when

hackers change tactics - they just add clutter instead. Enter

SOC Copilot - a smart helper built with two types of

algorithms working together. One spots odd behavior

without knowing what’s coming; the other sorts real

threats into categories using past examples. Together, they

cut through confusion. It pulls records from various

sources like JSON, CSV, Syslog, Windows EVTX files - not

missing a beat. From those entries, it builds 78 unique

traits based on patterns, timing, actions, connections. Then

ranks urgency levels P0 to P4. Every result ties back to

known attack methods via MITRE ATT&CK - and

explains why clearly, plainly. Running without internet

access, SOC Copilot puts governance at its core. Oversight

stays with analysts every step of the way. Every move gets

recorded - full traceability built in. Data never leaves local

systems, meeting strict control standards. Testing shows it

sorts threats correctly more than 99 times out of 100.

Workload drops sharply because routine sorting happens

automatically. Alerts arrive packed with context, cutting

down decision time. Guidance comes clear, pointing

straight to next steps. Speed improves across the entire

reaction cycle, Cybersecurity automation improves threat

detection with machine learning

I. INTRODUCTION

More businesses, governments, and vital systems now

live online - that means more openings for

cyberattacks than ever before. Last year, a typical data

breach cost around 4.45 million dollars on average,

based on findings from IBM; it also took companies

nearly nine months just to spot and stop those breaches

[1]. With stealthy long-term intrusions, unknown

software flaws, constant ransom demands, and hacks

spreading through suppliers, today's risks call for

sharp, fast, and smart defenses in place.

Housed within many organizations, Security

Operations Centers act like a central hub for cyber

defense. Watched nonstop, these teams spot threats,

look into breaches, then guide how to react. Instead of

working blind, they pull data through tools known as

SIEMs - systems that gather alerts from firewalls, IDS

or IPS units, EDR software, apps, and networking

gear. Even so, today’s operations run into deep-rooted

issues that quietly slow things down.

Every day, enterprise security teams face a flood of

warnings - sometimes numbering in the tens of

thousands. Because so many turn out to be mistakes,

roughly 95 percent by some estimates, people start

tuning them out. When too much noise fills the screen,

real dangers slip through without proper attention.

Workers grow numb after hours of sorting weak

signals from messy data streams. Judgment wavers

when one shift ends and another begins, simply

because minds tire. What feels like vigilance can

quietly become routine dismissal.

Hours pass before replies come. Sorting through logs

by hand takes ages. Because one mistake hides in

many records, workers check system after system.

When clues appear, they link them using experience.

Each step drags detection further into the future.

Fixing problems starts late as a result. Intruders stay

hidden longer simply because responses crawl.

© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

IJIRT 192954 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2890

Most older security tools gather logs well, yet they

miss subtle clues that separate normal hiccups from

real dangers. Instead of understanding behavior, these

systems rely on fixed triggers that fail when attacks

change shape. Because of rigid logic, odd events get

ignored or wrongly flagged every day. Without

learning from surroundings, alerts often point nowhere

useful.

Because old ways of checking data by hand or using

fixed rules often fall short, researchers have turned to

artificial intelligence and machine learning to

strengthen cyber defenses. Instead of relying only on

set conditions, smart systems now sort through

mountains of logs automatically. These tools catch

quiet signs of danger that simpler methods miss. By

weighing how risky each warning is, they help decide

what needs attention first. Responses come with added

background details, making them more useful. Human

insight stays central, while the system handles heavy

lifting behind the scenes.

A fresh look at SOC Copilot begins here. Built on

artificial intelligence, it tackles current security

hurdles using a mix of machine learning methods

stitched together. Instead of relying on just one

technique, this tool uses outlier spotting without labels

- thanks to Isolation Forest - alongside labeled pattern

recognition via Random Forest for broader coverage.

Unusual behaviors get flagged even when they’ve

never been seen before. One piece feeds into another:

logs come in first, then cleaned up before deeper

inspection kicks in. Threats are analyzed by models

trained to tell types apart, not just spot differences.

Alerts show up with clear reasons why, tied directly to

real-world tactics from the MITRE framework.

Analysts respond, their input loops back to sharpen

future results. Over time, if performance slips, the

system notices shifts and adjusts. Control stays central,

designed around oversight needs from day one.

What comes next unfolds like this. Following part two

looks at earlier work on the topic. Problem definition

takes shape in section three. A new system enters the

picture within section four. Architecture appears

through section five. Method steps fill out section six.

Findings get attention in section seven. Benefits show

up first, uses follow after - sections eight and nine

handle those. What might come later gets room in

section ten. The final thoughts settle into place across

section eleven.

II. LITERATURE REVIEW

Starting with older rule-driven methods, research into

using computer tools for spotting cyber threats covers

a wide range. Moving beyond those, newer studies

explore how complex neural networks can identify

risks too.

Older security tools like Splunk, IBM QRadar, or

ArcSight form the base layer many teams still depend

on today. Instead of scattered records, they pull logs

into one place while spotting activity links as things

happen. Because these setups run on fixed logic

patterns, though, fresh threats often slip through

without warning. Updating them means constant

human effort just to keep up with known behaviors.

When attacks unfold slowly across several steps - yet

avoid familiar traces - they rarely trigger alerts.

Research by Zuech and others confirms how weak

such rigid methods are against stealthy intrusions.

Signature-based tools like Snort and Suricata scan

network data by matching it to stored patterns of past

attacks. Because they rely on pre-existing records,

their strength lies in spotting familiar dangers. Yet, as

Roesch pointed out, they lag when facing new threats

- arriving too late to catch what has never been seen

before. Without prior examples, these methods miss

unknown vulnerabilities entirely. Zero-day breaches

slip through, just as shape-shifting viruses do. Fresh

tactics also go unnoticed, simply because no rule yet

exists to flag them. Their design waits for history to

repeat, leaving blind spots wide open.

Out in the world of digital security, spotting strange

behavior matters a lot. One way researchers tackle this

uses machines that learn patterns on their own. A

method built by Liu and team splits data points at

random until odd ones stand out fast. Instead of

needing known examples of attacks, it learns what

normal looks like first. When something moves too far

from that norm, alarms go up silently. Because of this

trick, never-before-seen threats might get caught early

anyway.

One way to sort data involves using decision trees

grouped together. These collections, known as

Random Forest models, work well when identifying

different kinds of cyber threats. Research published

under reference [7] supports this idea. When tested on

a standard set of network records called CICIDS2017,

such systems ranked high in precision. That test was

© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

IJIRT 192954 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2891

detailed by Sharafaldin and team [8]. Instead of just

spotting normal behavior, they correctly flagged

harmful actions like forced access attempts, malicious

website probes, hidden intrusions, zombie device

signals. Grouped tree strategies handled these

separations better than many alternatives.

Deep learning now plays a role in cybersecurity

through tools like autoencoders, RNNs, and

transformers used to spot threats. Shone and team

presented an autoencoder system able to detect

intrusions with strong results on standard test data.

Still, these models can be hard to interpret -

problematic when experts need clear reasons behind

alerts. Because of this opacity, trust becomes difficult

even if performance looks good. Understanding model

choices matters just as much as catching threats.

Without transparency, adoption in real security

operations faces hurdles.

Here's what we miss so far. Even with progress,

current studies leave holes - ones SOC Copilot steps

into. Not many tools blend different detection

methods; instead they stick to just one path. Some skip

clear reasoning entirely, treating explanations as an

afterthought. Control features? Rare. Human guidance

built into the system? Hardly ever seen. Most

suggested setups rely on internet access, so they fail

where networks are isolated. Yet SOC Copilot works

without connection, combining multiple models, clear

reasoning steps, strong oversight design, while

running entirely on local machines.

III. PROBLEM STATEMENT

What happens when too many pressures stack up

inside today's security hubs? Detection slows.

Response weakens. The whole system stumbles under

its own weight. Alerts pile high while teams stretch

thin. One misstep leads to another. Overload becomes

routine. Speed fades just when it is needed most.

Suddenly, logs multiply nonstop. Security tools like

firewalls, intrusion detectors, and login systems cough

up endless streams every day. Cloud apps, servers, and

device monitors add their own chunks too. Picture a

single medium company - millions of entries pour in

by noon. Each one must be decoded, shaped into

standard form, then weighed against background

clues. Patterns shift without warning. The load never

stops growing.

Most alerts from rule-driven tools aren’t real threats -

research shows over 95 percent get flagged by

mistake. Because of this, security teams waste hours

on harmless events instead of chasing down true

dangers. What slips through is the quiet buildup of

ignored warnings piling up like unread mail.

Too many alerts pile up. Triage work feels endless,

one case after another. Digging into tough threats takes

serious mental effort. That grind wears people down

over time. Right now, there are around 3.4 million

open cybersecurity jobs worldwide. Fewer hands

make each task heavier. Pressure builds when teams

run thin. Empty roles mean more load on those who

stay. Burnout creeps in quietly, then hits hard. The

shortage isn’t just numbers - it shows in tired eyes and

slower decisions. Gaps in staffing deepen stress across

shifts. Experience fades fast when people leave.

Keeping pace gets harder every month. Work stretches

further than bodies can go. Minds grow dull under

constant noise. Help does not arrive quickly enough.

Each missing person leaves a hole others must fill.

Stress stays longer than solutions do.

When alerts pop up, they often miss key details about

what is actually happening. Without clear background,

sorting out how serious an event might be gets tricky.

Pulling together info from different places becomes a

regular task. Connecting dots means using outside

threat data alongside personal experience. Making

sense of it all takes time because pieces are scattered

across systems.

Starts with an alert, then someone has to sort it out by

hand. From there, gathering proof takes time because

people do each step themselves. This slows things

down when checking how bad a problem might be.

Someone must figure out what went wrong without

help from automation. Decisions about what to do next

come later than they should. Each delay gives threats

more room to cause harm inside the company.

One way to put it: when heaps of messy security logs

come in every format imaginable, what mix of smarts

could sift through them, spot real dangers, sort by

urgency, then lay out clear reasons why - helping

human analysts choose fast without breaking rules or

losing control over where data goes or how choices get

made.

© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

IJIRT 192954 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2892

IV. PROPOSED SYSTEM - SOC COPILOT

A smart helper for security teams, SOC Copilot grows

step by step, fitting together like puzzle pieces. Layer

by layer it tackles challenges, shaped around real

needs. Each phase adds strength without overload.

Built to adapt, not force. Problems meet structure, one

stage at a time.

A. Log Ingestion

A fresh start comes with how logs enter the system -

ready to handle different shapes without favoring one.

One way deals with JSON or JSONL, pulling

structured entries from cloud tools and web interfaces.

Another path opens up CSV files, often saved by older

platforms in row-and-column layouts. Devices like

routers speak Syslog, a common tongue the system

decodes on arrival. Then there is Windows EVTX, a

packed binary form that holds alerts from Microsoft

environments. Every type gets its own method to pull

out what matters - time stamps show when, IPs point

where it came from and went to. Ports and protocols

slip into place beside event labels and risk levels, all

shaped into something consistent.

B. Log Parsing and Preprocessing

Logs start their journey through several steps before

becoming usable. First up, timestamps get shifted into

a single time zone - UTC - and shaped uniformly using

ISO 8601 rules. Instead of keeping different naming

styles from various sources, field names are reshaped

to fit one standard structure. When it comes to

categories like status or type, words turn into numbers

for easier handling later on. Each record then faces

checks based on predefined formats, where errors

trigger logging but keep flawed data out of results.

C. AI/ML-Based Analysis Engine

One part of the system uses Isolation Forest, which

learns what normal network activity looks like by

studying only harmless traffic, then gives each event

an oddness score between zero and one. This method

builds patterns without labels, spotting outliers

quietly. On another track, Random Forest steps in after

learning from labeled examples in the CICIDS2017

collection, where every kind of behavior gets fair

attention during training. Instead of lumping logs

together, it sorts them carefully - into seven types,

including quiet traffic, flood attacks, guessing

breaches, harmful software bursts, secret data leaks,

stealthy scouting moves, and database probing stabs.

Each model runs its own way, yet both feed

conclusions to the main decision hub.

D. Threat Classification and Ensemble Logic

Starting with two model results, the Ensemble

Coordinator mixes them via a weighted system. A

math formula brings together scores: 0.4 times the

Anomaly Score plus 0.6 multiplied by Threat Severity

and Classification Confidence. Out comes one number

- the Combined Risk Score. That figure shapes how

alerts get ranked, from P0 being most urgent down to

P4 least urgent. Levels like Critical, High, Medium, or

Low follow next based on severity. Because it uses

two signals, familiar risks and fresh ones aren’t

missed. While classifiers catch recognized dangers,

anomaly detectors spot odd patterns never seen before.

Each piece feeds into final judgments without leaning

too hard on just one source.

E. Explainability and Recommendation Engine

Sometimes it talks through why an alert happened,

showing how sure it is. What makes something seem

off gets spelled out using real behavior clues. A list

pops up with what mattered most in raising the flag. It

checks where limits were crossed and says so plainly.

Tactics hackers use appear mapped out the way

experts classify them. Next steps show up only if they

fit the type of danger found. These hints stick to

official roles like stop, check, fix, and rebuild. Every

piece connects without flashing lights or drama.

F. Dashboard Visualization

A live feed of threats shows up on screen through

PyQt6, built right into the desktop view. Moving

number displays pulse with fresh stats, catching

attention without flash. Alerts line up by urgency,

sorted high to low, changing shade based on risk level

- updated every two seconds like clockwork. Click

one, and deeper details unfold nearby, showing what

tipped the scale and why it matters. Colorful dots blink

along the bottom edge, each tracking a different part

of the workflow behind the scenes. Settings hide at the

side, ready for fine-tuning limits or adjusting oversight

rules when needed.

G. Technology Stack

Component Technology
Core Language Python 3.10+
ML Framework Scikit-learn (Isolation

Forest, Random Forest)
Desktop UI PyQt6

© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

IJIRT 192954 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2893

Data Processing Pandas, NumPy
Database SQLite
Configuration YAML
Testing Pytest (208+ tests)
Packaging PyInstaller
Version Control Git

V. SYSTEM ARCHITECTURE

Beginning at the core, SOC Copilot uses separate

levels that unfold in stages. Not just stacked, these

layers split into three working phases. Each level

connects through clear transitions instead of blending

together. Five main sections make up the structure,

each with its own role. Built this way, the system

allows changes without disruption. Compliance needs

shape how parts are arranged. Flexibility comes from

separation, not complexity.

A. Frontend Interface Layer

Out of the box comes a desktop setup built on PyQt6,

bringing together a sidebar that moves with keystrokes

leading the way. Hidden down below sits a status strip

lit by tiny LEDs whispering what's happening under

the hood. Pages pile behind one another - Dashboard

up front, then Alerts, Investigation sliding in next,

followed by Assistant and finally Settings tucked at

the back. Messages pass only one direction into this

world, guided by a bridge tied to a controller locked

from changes. Communication stays lean, watching

silently without reaching back.

B. Backend API Layer

From start to finish, the Application Controller

handles every step of log handling - taking in data,

cleaning it up, pulling out key details, running

predictions, then sending alerts. Batching pieces

together on the fly, it processes information in small

chunks, adjustable by size and timing based on

settings.

C. AI Processing Engine

When the app starts up, it pulls in trained models

through joblib, locked as read-only for inference.

From raw inputs, feature work builds 78 numbers

grouped into four kinds - no mixing allowed.

Statistical traits show up first, twenty-two strong:

things like how many packets move, data size, time a

connection lives. Then come eighteen that track timing

patterns, such as what hour traffic hits. Behavior

shapes the next set, twenty markers deep - one tracks

how often requests fire off, another watches failed

attempts pile up. Last stretch holds network signals,

eighteen of them: oddities like irregular port usage,

count of distinct endpoints reached.

D. Database Layer

Inside SOC Copilot, data sticks around using SQLite.

Analyst decisions go into a Feedback Store - later used

to check how well models perform. A separate

Governance Database keeps every change logged,

never erasing anything added. Feature patterns get

saved over time inside Drift Monitoring, capturing

shifts quietly behind the scenes.

E. Response Generation Layer

A signal appears after analysis finishes. This output

bundles a severity tag - ranging from P0 to P4 - with

links to known attack patterns under MITRE

ATT&CK. Each entry sorts risks by category while

listing key data points that shaped the outcome.

Reasons unfold in clear steps anyone can follow.

Suggestions for next moves come attached, grounded

in surrounding conditions.

F. End-to-End Data Flow

Out of order comes structure - log files start it all.

Right after, format detection kicks in without delay.

Once that finishes, parsing begins immediately

afterward. Following close behind, validation checks

every piece carefully. Then normalization adjusts

values into alignment. Feature extraction pulls exactly

78 markers right at that point. A bit later, isolation

forest scoring weighs anomalies silently. Not long

after, random forest classification labels each event

quietly. Their results meet during ensemble

coordination just once. From there, risk score

calculation adds up consequences slowly. Alerts

appear only when thresholds break unexpectedly.

Explaining each alert happens before anything else

next. The dashboard displays everything moments

later always. Analysts review what shows up

eventually. Finally, feedback gets stored for good

measure.

VI. METHODOLOGY

A. Log Data Processing

A fresh start happens when the system checks file

types by looking at endings and headers. After that

comes breaking down records, handled differently

depending on their shape. Errors fall away during

structure checks, leaving only what fits. Moments get

lined up in one global rhythm, set to midnight-based

labels from an international rulebook. Pieces shift into

© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

IJIRT 192954 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2894

standard slots, guided by fixed blueprints. Categories

turn into steady codes, drawn from unchanging

wordbooks.

B. Feature Extraction

Seventy-eight numerical traits get pulled out by the

feature building part, grouped into four types.

Statistics make up twenty-two of them - things like

how many packets move through, total bytes, session

length, along with gaps between arrivals. Time-driven

ones add eighteen more, tracking rhythms across hours

plus shifts in timing between events. Behavior shows

up in twenty indicators tied to how often requests

happen, what share fail, and sudden spikes in use.

Another eighteen come from network layout,

measuring spread of ports used and which protocols

show up most. Sequence stays locked down once set,

saved right next to the model files so inputs line up

every time.

C. AI Inference Workflow (Pseudo-Algorithm)

One way to spot threats uses a mix of methods. It takes

a data table X with n rows and seventy eight columns

from logs. The result is a list A of warnings, ranked by

urgency, each with risks spelled out plus reasons why.

First step loads two ready made tools: M_IF for oddity

checks, M_RF for sorting types. Each row x_i gets

scored oddly using M_IF’s built in judge scaled

between zero and one. Then M_RF guesses what kind

it might be along with how sure it feels about that

guess. Highest certainty among those guesses becomes

its confidence level. Risk blends four tenths of

weirdness score with six tenths of severity times belief

strength. When this number crosses a line we draw

ahead of time, an alert wakes up - gets details written

down like possible harm source, attack pattern link,

next move idea - and joins group A. At the end, only

these flagged items get handed back.

D. Threat Classification Logic

Class Description Severity
Benign Normal network

activity
0.0

DDoS Distributed denial-of-

service
0.8

Brute Force Authentication attacks 0.7
Malware Malicious software

execution
1.0

Exfiltration Unauthorized data

transfer
1.0

Reconnaissance Network

scanning/probing
0.5

SQL Injection Database exploitation 0.9

E. Risk Scoring

Risk level totals come from two parts. One part checks

how far actions stray from usual patterns, counting for

40 percent of the total. Instead of adding directly, it

blends with another piece that matches known threats,

making up 60 percent. When joined, their result fits

into one of four bands. If the number hits 0.8 or more,

it lands in critical. Between 0.6 and just under 0.8

means high. A value from 0.4 to below 0.6 reads as

medium. Anything beneath 0.4 shows low risk.

VII. RESULTS AND DISCUSSION

A. System Performance

A fresh look at SOC Copilot began with tests on the

CICIDS2017 data - real traffic marked by hand

through various breach attempts. While not every

condition matched live environments, patterns

emerged clearly over time. Because labels guided the

process, spotting differences became easier without

extra tools involved. Though some noise crept in,

results still lined up close with expected outcomes.

From start to finish, evaluation stuck strictly to

recorded behaviors seen during simulated break-ins.

Metric Value
RF Classification Accuracy 99.99%
IF Anomaly Separation Confirmed
Feature Extraction 78 features, consistent
Model Loading Time 1–2 seconds
Single Record Latency < 10 ms
Batch (1,000 records) 2–5 seconds
Large-Scale (100K records) 2–5 minutes

B. Example Log Analysis

Out of nowhere, a strange pattern shows up in the

network data. Port activity feels off - entropy hits 0.92,

way outside normal ranges. Destinations? Forty-seven

different ones, more than expected. Timing between

packets lacks rhythm, uneven and unpredictable. The

system flags it sharply - a score of 0.85 from Isolation

Forest points to clear oddness. A second check using

Random Forest says Malware, nearly certain at 92.5%.

Weighted together, anomaly strength and

classification certainty build a risk number: 0.895.

That lands squarely in critical territory, ranked P0.

Behind the scenes, logic traces back - the label sticks

because evidence aligns so tightly. "Malware," it

concludes, "with strong backing." A spike in the

anomaly score often points to odd activity. Port

© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

IJIRT 192954 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2895

entropy stands out, along with how many different

destinations appear, plus timing since last event. Look

into running processes after cutting off the device

C. Comparative Evaluation

Approach Known Novel FP Rate
Rule-Based SIEM High None High
Isolation Forest

Only
Moderate High Moderate

Random Forest

Only
High None Low

SOC Copilot

Ensemble
High High Low

D. Response Time and Workload Improvement

What happens when alerts get sorted by software

instead of people? Review time drops because

machines handle the first look. Context appears fast,

cutting what used to take minutes down to just

seconds. Suggestions show up ready to apply, so there

is no waiting around to plan next steps. Attack patterns

match known behaviors quickly, thanks to embedded

framework tagging. Work gets lighter not by doing

more but by filtering out false signals early.

Confidence grows when multiple detection models

agree on a result. Critical items stand apart from

routine ones using clear urgency labels. Thousands of

logs move through checks in groups, not one at a time.

Explanations come already written, saving effort after

detection. Mistakes teach the system how to improve -

each outcome feeds back into future judgments.

Length stays fixed, detail remains intact, nothing

added, nothing lost.

VIII. ADVANTAGES

One big plus? Less work for security teams because

alerts get sorted automatically. Quick checks happen

in less than 10 milliseconds for every entry. Smarter

conclusions come from digging into details and

linking findings to real-world attack patterns. The

system grows step by step without breaking a sweat.

Safety stays front of mind - automated actions sit

turned off until needed. Runs cut off from the internet,

keeping data under local control. Spots familiar

dangers along with brand-new unknown attacks.

Every result can be checked again later thanks to fixed

scores and unchangeable logs.

IX. APPLICATIONS

Out here, SOC Copilot fits into many kinds of security

setups. Picture large company security teams leaning

on it to back up their analysts. Instead of reinventing

the wheel each time, service providers bundle it to

keep threat spotting consistent for every customer.

When systems stretch between clouds or mix old and

new tech, tossing different log types at it works just

fine. Some government hubs insist everything stays

inside their walls - that’s where its offline mode

becomes key. Places like power plants, hospitals,

banks operate cut off from broad networks, yet still run

tight checks using this. Even classrooms teaching

cyber defense pull it into labs for real-world practice.

Length holds steady. No extras tagged on.

X. FUTURE SCOPE

One path moves toward live data flow into tools like

Splunk, Elastic SIEM, and QRadar through stream-

based links. Instead of waiting, alerts come as events

unfold across systems. A different angle uses deep

autoencoders - already outlined in code - to spot odd

behavior machines might miss. This method learns

normal patterns then flags outliers without clear rules.

Working alongside it, automated fixes plug into

existing workflows where actions follow policy

checks. Each fix runs only when approval paths

confirm safety. For organizations serving many

groups, setups allow separate spaces with unique

settings under one roof. Tenants stay isolated while

sharing core infrastructure efficiently. Shifting to

cloud formats brings flexibility by packaging services

in containers managed by Kubernetes. Scaling

happens quietly based on load changes behind the

scenes. Another step examines event chains using

transformer models that trace complex attack

sequences over time. Patterns emerge from long

strings of logs once invisible at glance. Lastly,

searching incidents feels more natural since queries

accept plain questions thanks to large language model

support. Responses form conversation-style instead of

rigid syntax demands.

XI. CONCLUSION

This study introduced SOC Copilot, a smart helper

built to ease major pressures on today’s security teams.

© February 2026| IJIRT | Volume 12 Issue 9 | ISSN: 2349-6002

IJIRT 192954 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2896

Instead of just spotting familiar threats, it uses

Isolation Forest to flag odd behaviors never seen

before. On top of that, Random Forest steps in to sort

different kinds of attacks with precision. Together,

these methods allow consistent identification of

dangers - common ones included. The system handles

new risks while staying reliable on established

patterns.

What stands out first? A mix of machine learning

models working together, decisions balanced by

weights, hitting over 99% correct classifications. Next

up - seventy-eight carefully shaped features pulled

from stats, timing patterns, actions, and network

signals. Clarity matters here. Built-in explanations

show why choices were made, highlight what factors

mattered most, point to known threat behaviors.

Control comes before convenience. Automation stays

off unless flipped on, emergency stops exist, every

action gets logged without deletion. Running

completely disconnected isn’t an afterthought - it’s

required. Data never leaves the local environment.

A fresh approach to security tools shows promise,

blending smart automation with real human insight.

When attacks grow more complex and frequent,

helpers such as SOC Copilot start mattering more

inside company defenses. These systems support

teams by keeping pace with rising dangers, even when

there are too many alerts and too few experts to review

them.

REFERENCES

[1] IBM Security, “Cost of a Data Breach Report

2023,” IBM Corporation, Armonk, NY, USA,

2023.

[2] Ponemon Institute, “The Economics of Security

Operations Centers: What is the True Cost for

Effective Results?,” Ponemon Institute LLC,

2020.

[3] A. Chuvakin, K. Schmidt, and C. Phillips,

Logging and Log Management: The Authoritative

Guide to Understanding the Concepts

Surrounding Logging and Log Management,

Syngress, 2012.

[4] R. Zuech, T. M. Khoshgoftaar, and R. Wald,

“Intrusion detection and big heterogeneous data:

a survey,” Journal of Big Data, vol. 2, no. 1, pp.

1–41, 2015.

[5] M. Roesch, “Snort — Lightweight intrusion

detection for networks,” in Proc. 13th LISA,

USENIX, 1999, pp. 229–238.

[6] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation

forest,” in Proc. IEEE ICDM, 2008, pp. 413–422.

[7] L. Breiman, “Random forests,” Machine

Learning, vol. 45, no. 1, pp. 5–32, 2001.

[8] I. Sharafaldin, A. H. Lashkari, and A. A.

Ghorbani, “Toward generating a new intrusion

detection dataset and intrusion traffic

characterization,” in Proc. ICISSP, 2018, pp.

108–116.

[9] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A

deep learning approach to network intrusion

detection,” IEEE Trans. Emerg. Topics Comput.

Intell., vol. 2, no. 1, pp. 41–50, 2018.

[10] M. Ferrag, O. Friha, D. Hamouda, L. Maglaras,

and H. Janicke, “Edge-IIoTset: A new

comprehensive realistic cyber security dataset,”

IEEE Access, vol. 10, pp. 40281–40306, 2022.

[11] M. Ahmed, A. N. Mahmood, and J. Hu, “A survey

of network anomaly detection techniques,” J.

Netw. Comput. Appl., vol. 60, pp. 19–31, 2016.

[12] G. Apruzzese et al., “On the effectiveness of

machine and deep learning for cyber security,” in

Proc. CyCon, 2018, pp. 371–390.

