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Abstract- Heavy cyber attacks have pushed security teams 

into constant crisis mode. Day after day, they face endless 

warnings - each needing attention, each eating up time. 

Too many logs come in different shapes, too much noise 

clouds judgment, false alarms pile up fast. Analysts grow 

numb. That dullness slows everything down: spotting 

danger takes longer now, fixing it even more so. Old tools 

collect data but stick to rigid rules, unable to shift when 

hackers change tactics - they just add clutter instead. Enter 

SOC Copilot - a smart helper built with two types of 

algorithms working together. One spots odd behavior 

without knowing what’s coming; the other sorts real 

threats into categories using past examples. Together, they 

cut through confusion. It pulls records from various 

sources like JSON, CSV, Syslog, Windows EVTX files - not 

missing a beat. From those entries, it builds 78 unique 

traits based on patterns, timing, actions, connections. Then 

ranks urgency levels P0 to P4. Every result ties back to 

known attack methods via MITRE ATT&CK - and 

explains why clearly, plainly. Running without internet 

access, SOC Copilot puts governance at its core. Oversight 

stays with analysts every step of the way. Every move gets 

recorded - full traceability built in. Data never leaves local 

systems, meeting strict control standards. Testing shows it 

sorts threats correctly more than 99 times out of 100. 

Workload drops sharply because routine sorting happens 

automatically. Alerts arrive packed with context, cutting 

down decision time. Guidance comes clear, pointing 

straight to next steps. Speed improves across the entire 

reaction cycle, Cybersecurity automation improves threat 

detection with machine learning 

 

I. INTRODUCTION 

 

More businesses, governments, and vital systems now 

live online - that means more openings for 

cyberattacks than ever before. Last year, a typical data 

breach cost around 4.45 million dollars on average, 

based on findings from IBM; it also took companies 

nearly nine months just to spot and stop those breaches 

[1]. With stealthy long-term intrusions, unknown 

software flaws, constant ransom demands, and hacks 

spreading through suppliers, today's risks call for 

sharp, fast, and smart defenses in place. 

Housed within many organizations, Security 

Operations Centers act like a central hub for cyber 

defense. Watched nonstop, these teams spot threats, 

look into breaches, then guide how to react. Instead of 

working blind, they pull data through tools known as 

SIEMs - systems that gather alerts from firewalls, IDS 

or IPS units, EDR software, apps, and networking 

gear. Even so, today’s operations run into deep-rooted 

issues that quietly slow things down. 

Every day, enterprise security teams face a flood of 

warnings - sometimes numbering in the tens of 

thousands. Because so many turn out to be mistakes, 

roughly 95 percent by some estimates, people start 

tuning them out. When too much noise fills the screen, 

real dangers slip through without proper attention. 

Workers grow numb after hours of sorting weak 

signals from messy data streams. Judgment wavers 

when one shift ends and another begins, simply 

because minds tire. What feels like vigilance can 

quietly become routine dismissal. 

Hours pass before replies come. Sorting through logs 

by hand takes ages. Because one mistake hides in 

many records, workers check system after system. 

When clues appear, they link them using experience. 

Each step drags detection further into the future. 

Fixing problems starts late as a result. Intruders stay 

hidden longer simply because responses crawl. 
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Most older security tools gather logs well, yet they 

miss subtle clues that separate normal hiccups from 

real dangers. Instead of understanding behavior, these 

systems rely on fixed triggers that fail when attacks 

change shape. Because of rigid logic, odd events get 

ignored or wrongly flagged every day. Without 

learning from surroundings, alerts often point nowhere 

useful. 

Because old ways of checking data by hand or using 

fixed rules often fall short, researchers have turned to 

artificial intelligence and machine learning to 

strengthen cyber defenses. Instead of relying only on 

set conditions, smart systems now sort through 

mountains of logs automatically. These tools catch 

quiet signs of danger that simpler methods miss. By 

weighing how risky each warning is, they help decide 

what needs attention first. Responses come with added 

background details, making them more useful. Human 

insight stays central, while the system handles heavy 

lifting behind the scenes. 

A fresh look at SOC Copilot begins here. Built on 

artificial intelligence, it tackles current security 

hurdles using a mix of machine learning methods 

stitched together. Instead of relying on just one 

technique, this tool uses outlier spotting without labels 

- thanks to Isolation Forest - alongside labeled pattern 

recognition via Random Forest for broader coverage. 

Unusual behaviors get flagged even when they’ve 

never been seen before. One piece feeds into another: 

logs come in first, then cleaned up before deeper 

inspection kicks in. Threats are analyzed by models 

trained to tell types apart, not just spot differences. 

Alerts show up with clear reasons why, tied directly to 

real-world tactics from the MITRE framework. 

Analysts respond, their input loops back to sharpen 

future results. Over time, if performance slips, the 

system notices shifts and adjusts. Control stays central, 

designed around oversight needs from day one. 

What comes next unfolds like this. Following part two 

looks at earlier work on the topic. Problem definition 

takes shape in section three. A new system enters the 

picture within section four. Architecture appears 

through section five. Method steps fill out section six. 

Findings get attention in section seven. Benefits show 

up first, uses follow after - sections eight and nine 

handle those. What might come later gets room in 

section ten. The final thoughts settle into place across 

section eleven. 

 

II. LITERATURE REVIEW 

 

Starting with older rule-driven methods, research into 

using computer tools for spotting cyber threats covers 

a wide range. Moving beyond those, newer studies 

explore how complex neural networks can identify 

risks too. 

Older security tools like Splunk, IBM QRadar, or 

ArcSight form the base layer many teams still depend 

on today. Instead of scattered records, they pull logs 

into one place while spotting activity links as things 

happen. Because these setups run on fixed logic 

patterns, though, fresh threats often slip through 

without warning. Updating them means constant 

human effort just to keep up with known behaviors. 

When attacks unfold slowly across several steps - yet 

avoid familiar traces - they rarely trigger alerts. 

Research by Zuech and others confirms how weak 

such rigid methods are against stealthy intrusions. 

Signature-based tools like Snort and Suricata scan 

network data by matching it to stored patterns of past 

attacks. Because they rely on pre-existing records, 

their strength lies in spotting familiar dangers. Yet, as 

Roesch pointed out, they lag when facing new threats 

- arriving too late to catch what has never been seen 

before. Without prior examples, these methods miss 

unknown vulnerabilities entirely. Zero-day breaches 

slip through, just as shape-shifting viruses do. Fresh 

tactics also go unnoticed, simply because no rule yet 

exists to flag them. Their design waits for history to 

repeat, leaving blind spots wide open. 

Out in the world of digital security, spotting strange 

behavior matters a lot. One way researchers tackle this 

uses machines that learn patterns on their own. A 

method built by Liu and team splits data points at 

random until odd ones stand out fast. Instead of 

needing known examples of attacks, it learns what 

normal looks like first. When something moves too far 

from that norm, alarms go up silently. Because of this 

trick, never-before-seen threats might get caught early 

anyway. 

One way to sort data involves using decision trees 

grouped together. These collections, known as 

Random Forest models, work well when identifying 

different kinds of cyber threats. Research published 

under reference [7] supports this idea. When tested on 

a standard set of network records called CICIDS2017, 

such systems ranked high in precision. That test was 
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detailed by Sharafaldin and team [8]. Instead of just 

spotting normal behavior, they correctly flagged 

harmful actions like forced access attempts, malicious 

website probes, hidden intrusions, zombie device 

signals. Grouped tree strategies handled these 

separations better than many alternatives. 

Deep learning now plays a role in cybersecurity 

through tools like autoencoders, RNNs, and 

transformers used to spot threats. Shone and team 

presented an autoencoder system able to detect 

intrusions with strong results on standard test data. 

Still, these models can be hard to interpret - 

problematic when experts need clear reasons behind 

alerts. Because of this opacity, trust becomes difficult 

even if performance looks good. Understanding model 

choices matters just as much as catching threats. 

Without transparency, adoption in real security 

operations faces hurdles. 

Here's what we miss so far. Even with progress, 

current studies leave holes - ones SOC Copilot steps 

into. Not many tools blend different detection 

methods; instead they stick to just one path. Some skip 

clear reasoning entirely, treating explanations as an 

afterthought. Control features? Rare. Human guidance 

built into the system? Hardly ever seen. Most 

suggested setups rely on internet access, so they fail 

where networks are isolated. Yet SOC Copilot works 

without connection, combining multiple models, clear 

reasoning steps, strong oversight design, while 

running entirely on local machines. 

 

III. PROBLEM STATEMENT 

 

What happens when too many pressures stack up 

inside today's security hubs? Detection slows. 

Response weakens. The whole system stumbles under 

its own weight. Alerts pile high while teams stretch 

thin. One misstep leads to another. Overload becomes 

routine. Speed fades just when it is needed most. 

Suddenly, logs multiply nonstop. Security tools like 

firewalls, intrusion detectors, and login systems cough 

up endless streams every day. Cloud apps, servers, and 

device monitors add their own chunks too. Picture a 

single medium company - millions of entries pour in 

by noon. Each one must be decoded, shaped into 

standard form, then weighed against background 

clues. Patterns shift without warning. The load never 

stops growing. 

Most alerts from rule-driven tools aren’t real threats - 

research shows over 95 percent get flagged by 

mistake. Because of this, security teams waste hours 

on harmless events instead of chasing down true 

dangers. What slips through is the quiet buildup of 

ignored warnings piling up like unread mail. 

Too many alerts pile up. Triage work feels endless, 

one case after another. Digging into tough threats takes 

serious mental effort. That grind wears people down 

over time. Right now, there are around 3.4 million 

open cybersecurity jobs worldwide. Fewer hands 

make each task heavier. Pressure builds when teams 

run thin. Empty roles mean more load on those who 

stay. Burnout creeps in quietly, then hits hard. The 

shortage isn’t just numbers - it shows in tired eyes and 

slower decisions. Gaps in staffing deepen stress across 

shifts. Experience fades fast when people leave. 

Keeping pace gets harder every month. Work stretches 

further than bodies can go. Minds grow dull under 

constant noise. Help does not arrive quickly enough. 

Each missing person leaves a hole others must fill. 

Stress stays longer than solutions do. 

When alerts pop up, they often miss key details about 

what is actually happening. Without clear background, 

sorting out how serious an event might be gets tricky. 

Pulling together info from different places becomes a 

regular task. Connecting dots means using outside 

threat data alongside personal experience. Making 

sense of it all takes time because pieces are scattered 

across systems. 

Starts with an alert, then someone has to sort it out by 

hand. From there, gathering proof takes time because 

people do each step themselves. This slows things 

down when checking how bad a problem might be. 

Someone must figure out what went wrong without 

help from automation. Decisions about what to do next 

come later than they should. Each delay gives threats 

more room to cause harm inside the company. 

One way to put it: when heaps of messy security logs 

come in every format imaginable, what mix of smarts 

could sift through them, spot real dangers, sort by 

urgency, then lay out clear reasons why - helping 

human analysts choose fast without breaking rules or 

losing control over where data goes or how choices get 

made. 
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IV. PROPOSED SYSTEM - SOC COPILOT 

 

A smart helper for security teams, SOC Copilot grows 

step by step, fitting together like puzzle pieces. Layer 

by layer it tackles challenges, shaped around real 

needs. Each phase adds strength without overload. 

Built to adapt, not force. Problems meet structure, one 

stage at a time. 

A. Log Ingestion 

A fresh start comes with how logs enter the system - 

ready to handle different shapes without favoring one. 

One way deals with JSON or JSONL, pulling 

structured entries from cloud tools and web interfaces. 

Another path opens up CSV files, often saved by older 

platforms in row-and-column layouts. Devices like 

routers speak Syslog, a common tongue the system 

decodes on arrival. Then there is Windows EVTX, a 

packed binary form that holds alerts from Microsoft 

environments. Every type gets its own method to pull 

out what matters - time stamps show when, IPs point 

where it came from and went to. Ports and protocols 

slip into place beside event labels and risk levels, all 

shaped into something consistent. 

B. Log Parsing and Preprocessing 

Logs start their journey through several steps before 

becoming usable. First up, timestamps get shifted into 

a single time zone - UTC - and shaped uniformly using 

ISO 8601 rules. Instead of keeping different naming 

styles from various sources, field names are reshaped 

to fit one standard structure. When it comes to 

categories like status or type, words turn into numbers 

for easier handling later on. Each record then faces 

checks based on predefined formats, where errors 

trigger logging but keep flawed data out of results. 

C. AI/ML-Based Analysis Engine 

One part of the system uses Isolation Forest, which 

learns what normal network activity looks like by 

studying only harmless traffic, then gives each event 

an oddness score between zero and one. This method 

builds patterns without labels, spotting outliers 

quietly. On another track, Random Forest steps in after 

learning from labeled examples in the CICIDS2017 

collection, where every kind of behavior gets fair 

attention during training. Instead of lumping logs 

together, it sorts them carefully - into seven types, 

including quiet traffic, flood attacks, guessing 

breaches, harmful software bursts, secret data leaks, 

stealthy scouting moves, and database probing stabs. 

Each model runs its own way, yet both feed 

conclusions to the main decision hub. 

D. Threat Classification and Ensemble Logic 

Starting with two model results, the Ensemble 

Coordinator mixes them via a weighted system. A 

math formula brings together scores: 0.4 times the 

Anomaly Score plus 0.6 multiplied by Threat Severity 

and Classification Confidence. Out comes one number 

- the Combined Risk Score. That figure shapes how 

alerts get ranked, from P0 being most urgent down to 

P4 least urgent. Levels like Critical, High, Medium, or 

Low follow next based on severity. Because it uses 

two signals, familiar risks and fresh ones aren’t 

missed. While classifiers catch recognized dangers, 

anomaly detectors spot odd patterns never seen before. 

Each piece feeds into final judgments without leaning 

too hard on just one source. 

E. Explainability and Recommendation Engine 

Sometimes it talks through why an alert happened, 

showing how sure it is. What makes something seem 

off gets spelled out using real behavior clues. A list 

pops up with what mattered most in raising the flag. It 

checks where limits were crossed and says so plainly. 

Tactics hackers use appear mapped out the way 

experts classify them. Next steps show up only if they 

fit the type of danger found. These hints stick to 

official roles like stop, check, fix, and rebuild. Every 

piece connects without flashing lights or drama. 

F. Dashboard Visualization 

A live feed of threats shows up on screen through 

PyQt6, built right into the desktop view. Moving 

number displays pulse with fresh stats, catching 

attention without flash. Alerts line up by urgency, 

sorted high to low, changing shade based on risk level 

- updated every two seconds like clockwork. Click 

one, and deeper details unfold nearby, showing what 

tipped the scale and why it matters. Colorful dots blink 

along the bottom edge, each tracking a different part 

of the workflow behind the scenes. Settings hide at the 

side, ready for fine-tuning limits or adjusting oversight 

rules when needed. 

G. Technology Stack 

Component Technology 
Core Language Python 3.10+ 
ML Framework Scikit-learn (Isolation 

Forest, Random Forest) 
Desktop UI PyQt6 
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Data Processing Pandas, NumPy 
Database SQLite 
Configuration YAML 
Testing Pytest (208+ tests) 
Packaging PyInstaller 
Version Control Git 

 

V. SYSTEM ARCHITECTURE 

 

Beginning at the core, SOC Copilot uses separate 

levels that unfold in stages. Not just stacked, these 

layers split into three working phases. Each level 

connects through clear transitions instead of blending 

together. Five main sections make up the structure, 

each with its own role. Built this way, the system 

allows changes without disruption. Compliance needs 

shape how parts are arranged. Flexibility comes from 

separation, not complexity. 

A. Frontend Interface Layer 

Out of the box comes a desktop setup built on PyQt6, 

bringing together a sidebar that moves with keystrokes 

leading the way. Hidden down below sits a status strip 

lit by tiny LEDs whispering what's happening under 

the hood. Pages pile behind one another - Dashboard 

up front, then Alerts, Investigation sliding in next, 

followed by Assistant and finally Settings tucked at 

the back. Messages pass only one direction into this 

world, guided by a bridge tied to a controller locked 

from changes. Communication stays lean, watching 

silently without reaching back. 

B. Backend API Layer 

From start to finish, the Application Controller 

handles every step of log handling - taking in data, 

cleaning it up, pulling out key details, running 

predictions, then sending alerts. Batching pieces 

together on the fly, it processes information in small 

chunks, adjustable by size and timing based on 

settings. 

C. AI Processing Engine 

When the app starts up, it pulls in trained models 

through joblib, locked as read-only for inference. 

From raw inputs, feature work builds 78 numbers 

grouped into four kinds - no mixing allowed. 

Statistical traits show up first, twenty-two strong: 

things like how many packets move, data size, time a 

connection lives. Then come eighteen that track timing 

patterns, such as what hour traffic hits. Behavior 

shapes the next set, twenty markers deep - one tracks 

how often requests fire off, another watches failed 

attempts pile up. Last stretch holds network signals, 

eighteen of them: oddities like irregular port usage, 

count of distinct endpoints reached. 

D. Database Layer 

Inside SOC Copilot, data sticks around using SQLite. 

Analyst decisions go into a Feedback Store - later used 

to check how well models perform. A separate 

Governance Database keeps every change logged, 

never erasing anything added. Feature patterns get 

saved over time inside Drift Monitoring, capturing 

shifts quietly behind the scenes. 

E. Response Generation Layer 

A signal appears after analysis finishes. This output 

bundles a severity tag - ranging from P0 to P4 - with 

links to known attack patterns under MITRE 

ATT&CK. Each entry sorts risks by category while 

listing key data points that shaped the outcome. 

Reasons unfold in clear steps anyone can follow. 

Suggestions for next moves come attached, grounded 

in surrounding conditions. 

F. End-to-End Data Flow 

Out of order comes structure - log files start it all. 

Right after, format detection kicks in without delay. 

Once that finishes, parsing begins immediately 

afterward. Following close behind, validation checks 

every piece carefully. Then normalization adjusts 

values into alignment. Feature extraction pulls exactly 

78 markers right at that point. A bit later, isolation 

forest scoring weighs anomalies silently. Not long 

after, random forest classification labels each event 

quietly. Their results meet during ensemble 

coordination just once. From there, risk score 

calculation adds up consequences slowly. Alerts 

appear only when thresholds break unexpectedly. 

Explaining each alert happens before anything else 

next. The dashboard displays everything moments 

later always. Analysts review what shows up 

eventually. Finally, feedback gets stored for good 

measure. 

VI. METHODOLOGY 

 

A. Log Data Processing 

A fresh start happens when the system checks file 

types by looking at endings and headers. After that 

comes breaking down records, handled differently 

depending on their shape. Errors fall away during 

structure checks, leaving only what fits. Moments get 

lined up in one global rhythm, set to midnight-based 

labels from an international rulebook. Pieces shift into 
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standard slots, guided by fixed blueprints. Categories 

turn into steady codes, drawn from unchanging 

wordbooks. 

B. Feature Extraction 

Seventy-eight numerical traits get pulled out by the 

feature building part, grouped into four types. 

Statistics make up twenty-two of them - things like 

how many packets move through, total bytes, session 

length, along with gaps between arrivals. Time-driven 

ones add eighteen more, tracking rhythms across hours 

plus shifts in timing between events. Behavior shows 

up in twenty indicators tied to how often requests 

happen, what share fail, and sudden spikes in use. 

Another eighteen come from network layout, 

measuring spread of ports used and which protocols 

show up most. Sequence stays locked down once set, 

saved right next to the model files so inputs line up 

every time. 

C. AI Inference Workflow (Pseudo-Algorithm) 

One way to spot threats uses a mix of methods. It takes 

a data table X with n rows and seventy eight columns 

from logs. The result is a list A of warnings, ranked by 

urgency, each with risks spelled out plus reasons why. 

First step loads two ready made tools: M_IF for oddity 

checks, M_RF for sorting types. Each row x_i gets 

scored oddly using M_IF’s built in judge scaled 

between zero and one. Then M_RF guesses what kind 

it might be along with how sure it feels about that 

guess. Highest certainty among those guesses becomes 

its confidence level. Risk blends four tenths of 

weirdness score with six tenths of severity times belief 

strength. When this number crosses a line we draw 

ahead of time, an alert wakes up - gets details written 

down like possible harm source, attack pattern link, 

next move idea - and joins group A. At the end, only 

these flagged items get handed back. 

D. Threat Classification Logic 

Class Description Severity 
Benign Normal network 

activity 
0.0 

DDoS Distributed denial-of-

service 
0.8 

Brute Force Authentication attacks 0.7 
Malware Malicious software 

execution 
1.0 

Exfiltration Unauthorized data 

transfer 
1.0 

Reconnaissance Network 

scanning/probing 
0.5 

SQL Injection Database exploitation 0.9 

 

E. Risk Scoring 

Risk level totals come from two parts. One part checks 

how far actions stray from usual patterns, counting for 

40 percent of the total. Instead of adding directly, it 

blends with another piece that matches known threats, 

making up 60 percent. When joined, their result fits 

into one of four bands. If the number hits 0.8 or more, 

it lands in critical. Between 0.6 and just under 0.8 

means high. A value from 0.4 to below 0.6 reads as 

medium. Anything beneath 0.4 shows low risk. 

 

VII. RESULTS AND DISCUSSION 

 

A. System Performance 

A fresh look at SOC Copilot began with tests on the 

CICIDS2017 data - real traffic marked by hand 

through various breach attempts. While not every 

condition matched live environments, patterns 

emerged clearly over time. Because labels guided the 

process, spotting differences became easier without 

extra tools involved. Though some noise crept in, 

results still lined up close with expected outcomes. 

From start to finish, evaluation stuck strictly to 

recorded behaviors seen during simulated break-ins. 

 

Metric Value 
RF Classification Accuracy 99.99% 
IF Anomaly Separation Confirmed 
Feature Extraction 78 features, consistent 
Model Loading Time 1–2 seconds 
Single Record Latency < 10 ms 
Batch (1,000 records) 2–5 seconds 
Large-Scale (100K records) 2–5 minutes 

 

B. Example Log Analysis 

Out of nowhere, a strange pattern shows up in the 

network data. Port activity feels off - entropy hits 0.92, 

way outside normal ranges. Destinations? Forty-seven 

different ones, more than expected. Timing between 

packets lacks rhythm, uneven and unpredictable. The 

system flags it sharply - a score of 0.85 from Isolation 

Forest points to clear oddness. A second check using 

Random Forest says Malware, nearly certain at 92.5%. 

Weighted together, anomaly strength and 

classification certainty build a risk number: 0.895. 

That lands squarely in critical territory, ranked P0. 

Behind the scenes, logic traces back - the label sticks 

because evidence aligns so tightly. "Malware," it 

concludes, "with strong backing."  A spike in the 

anomaly score often points to odd activity. Port 
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entropy stands out, along with how many different 

destinations appear, plus timing since last event. Look 

into running processes after cutting off the device 

C. Comparative Evaluation 

Approach Known Novel FP Rate 
Rule-Based SIEM High None High 
Isolation Forest 

Only 
Moderate High Moderate 

Random Forest 

Only 
High None Low 

SOC Copilot 

Ensemble 
High High Low 

 

D. Response Time and Workload Improvement 

What happens when alerts get sorted by software 

instead of people? Review time drops because 

machines handle the first look. Context appears fast, 

cutting what used to take minutes down to just 

seconds. Suggestions show up ready to apply, so there 

is no waiting around to plan next steps. Attack patterns 

match known behaviors quickly, thanks to embedded 

framework tagging. Work gets lighter not by doing 

more but by filtering out false signals early. 

Confidence grows when multiple detection models 

agree on a result. Critical items stand apart from 

routine ones using clear urgency labels. Thousands of 

logs move through checks in groups, not one at a time. 

Explanations come already written, saving effort after 

detection. Mistakes teach the system how to improve - 

each outcome feeds back into future judgments. 

Length stays fixed, detail remains intact, nothing 

added, nothing lost. 

 

VIII. ADVANTAGES 

 

One big plus? Less work for security teams because 

alerts get sorted automatically. Quick checks happen 

in less than 10 milliseconds for every entry. Smarter 

conclusions come from digging into details and 

linking findings to real-world attack patterns. The 

system grows step by step without breaking a sweat. 

Safety stays front of mind - automated actions sit 

turned off until needed. Runs cut off from the internet, 

keeping data under local control. Spots familiar 

dangers along with brand-new unknown attacks. 

Every result can be checked again later thanks to fixed 

scores and unchangeable logs. 

 

 

 

IX. APPLICATIONS 

 

Out here, SOC Copilot fits into many kinds of security 

setups. Picture large company security teams leaning 

on it to back up their analysts. Instead of reinventing 

the wheel each time, service providers bundle it to 

keep threat spotting consistent for every customer. 

When systems stretch between clouds or mix old and 

new tech, tossing different log types at it works just 

fine. Some government hubs insist everything stays 

inside their walls - that’s where its offline mode 

becomes key. Places like power plants, hospitals, 

banks operate cut off from broad networks, yet still run 

tight checks using this. Even classrooms teaching 

cyber defense pull it into labs for real-world practice. 

Length holds steady. No extras tagged on. 

 

X. FUTURE SCOPE 

 

One path moves toward live data flow into tools like 

Splunk, Elastic SIEM, and QRadar through stream-

based links. Instead of waiting, alerts come as events 

unfold across systems. A different angle uses deep 

autoencoders - already outlined in code - to spot odd 

behavior machines might miss. This method learns 

normal patterns then flags outliers without clear rules. 

Working alongside it, automated fixes plug into 

existing workflows where actions follow policy 

checks. Each fix runs only when approval paths 

confirm safety. For organizations serving many 

groups, setups allow separate spaces with unique 

settings under one roof. Tenants stay isolated while 

sharing core infrastructure efficiently. Shifting to 

cloud formats brings flexibility by packaging services 

in containers managed by Kubernetes. Scaling 

happens quietly based on load changes behind the 

scenes. Another step examines event chains using 

transformer models that trace complex attack 

sequences over time. Patterns emerge from long 

strings of logs once invisible at glance. Lastly, 

searching incidents feels more natural since queries 

accept plain questions thanks to large language model 

support. Responses form conversation-style instead of 

rigid syntax demands. 

 

XI. CONCLUSION 

 

This study introduced SOC Copilot, a smart helper 

built to ease major pressures on today’s security teams. 
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Instead of just spotting familiar threats, it uses 

Isolation Forest to flag odd behaviors never seen 

before. On top of that, Random Forest steps in to sort 

different kinds of attacks with precision. Together, 

these methods allow consistent identification of 

dangers - common ones included. The system handles 

new risks while staying reliable on established 

patterns. 

What stands out first? A mix of machine learning 

models working together, decisions balanced by 

weights, hitting over 99% correct classifications. Next 

up - seventy-eight carefully shaped features pulled 

from stats, timing patterns, actions, and network 

signals. Clarity matters here. Built-in explanations 

show why choices were made, highlight what factors 

mattered most, point to known threat behaviors. 

Control comes before convenience. Automation stays 

off unless flipped on, emergency stops exist, every 

action gets logged without deletion. Running 

completely disconnected isn’t an afterthought - it’s 

required. Data never leaves the local environment. 

A fresh approach to security tools shows promise, 

blending smart automation with real human insight. 

When attacks grow more complex and frequent, 

helpers such as SOC Copilot start mattering more 

inside company defenses. These systems support 

teams by keeping pace with rising dangers, even when 

there are too many alerts and too few experts to review 

them. 
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