Using Multitier Ensemble Classifiers for Organizing Multimedia Big Data - An Visualization
Author(s):
Pavithra
Keywords:
Big data, multimedia resources, semantic link network, multimedia resources organization.
Abstract
This article initiates and considers large iterative multitier ensemble (LIME) classifiers specifically tailored for big data. These classifiers are very large, but are quite easy to generate and use. They can be so large that it makes sense to use them only for big data. They are generating repeatedly as a result of numerous iterations in applying ensemble meta classifiers. Here, we carry out an ample investigation of the concert of LIME classifiers for a trouble concerning security of big data. Our examines evaluate LIME classifiers with different base classifiers and standard common ensemble meta classifiers. The outcome obtained exhibit that LIME classifiers can significantly enlarge the precision of classifications. In this paper, the semantic link network model is second-hand for categorize multimedia resources. An entire model for generating the union relation among multimedia resources using semantic link network model is anticipated. A genuine data set counting 100 thousand images with public tags from Flickr is used in our trials. Two appraisal methods, including clustering and retrieval, are performed, which illustrate the planned method can compute the semantic relatedness linking Flickr images accurately and robustly.
Article Details
Unique Paper ID: 147058

Publication Volume & Issue: Volume 5, Issue 3

Page(s): 312 - 316
Article Preview & Download




Publish book

Recent Publication

Go To Issue



Call For Paper

Volume 6 Issue 2

Last Date 25 July 2019


About Us

IJIRT.org enables door in research by providing high quality research articles in open access market.

Send us any query related to your research on editor@ijirt.org

Social Media

Google Verified Reviews

Contact Details

Telephone:8200 61 5067
Email: editor@ijirt.org
Website: ijirt.org

Policies