Machine Learning Approach For Accurate Segmentation Of Blood Vessels In Fundus Images
diabetic retinopathy; blood vessel extraction; peak detection; valley detection
Blood vessel segmentation is the necessary basis while developing retinal screening systems since vessels serve as one of the main retinal attraction features. Medical diagnostics has been drastically improved by the introduction of digital imagery, primarily because of the powerful digital image processing tools. Digital retinal images are used for diagnostics of various diseases containing diabetes, hypertension, stroke, etc. Since Retinal blood vessels are vital for such diagnostics, the segmentation of retinal blood vessels is an important and active research area. This paper proposes an automated method for the identification of blood vessels in color images of the retina. For every image pixel, a feature vector is computed that utilize properties of scale and positioning selective Gabor filters. In this paper, we propose a Support Vector Machine based algorithm for retinal blood vessel classification by using chromaticity and image matting coefficients as features. In this paper, the proposed algorithm was tested on the standard benchmark retinal images from the DRIVE data set. Results were equated with available ground truth images and other approaches from literature and vessel segmentation were excellent in all cases.
Article Details
Unique Paper ID: 149101

Publication Volume & Issue: Volume 7, Issue 2

Page(s): 375 - 383
Article Preview & Download

Share This Article

Conference Alert


International conference on Management, Science, Technology, Engineering, Pharmact and Humanities.

Go To Issue

Call For Paper

Volume 7 Issue 9

Last Date 25 February 2020

About Us enables door in research by providing high quality research articles in open access market.

Send us any query related to your research on

Social Media

Google Verified Reviews

Contact Details