A CASE STUDY IN HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINES

  • Unique Paper ID: 144433
  • Volume: 3
  • Issue: 11
  • PageNo: 158-166
  • Abstract:
  • This paper reports an investigation that was carried out in a HCCI has characteristics of the two most popular forms of combustion used in SI (spark ignition) engines- homogeneous charge spark ignition (gasoline engines) and CI engines: stratified charge compression ignition (diesel engines). As in homogeneous charge spark ignition, the fuel and oxidizer are mixed together. However, rather than using an electric discharge to ignite a portion of the mixture, the density and temperature of the mixture are raised by compression until the entire mixture reacts spontaneously. Stratified charge compression ignition also relies on temperature and density increase resulting from compression, but combustion occurs at the boundary of fuel-air mixing, caused by an injection event, to initiate combustion. The defining characteristic of HCCI is that the ignition occurs at several places at a time which makes the fuel/air mixture burn nearly simultaneously. There is no direct initiator of combustion. This makes the process inherently challenging to control. However, with advances in microprocessors and a physical understanding of the ignition process, HCCI can be controlled to achieve gasoline engine-like emissions along with diesel engine-like efficiency. In fact, HCCI engines have been shown to achieve extremely low levels of Nitrogen oxide emissions (NOx) without an after treatment catalytic converter. The unburned hydrocarbon and carbon monoxide emissions are still high (due to lower peak temperatures), as in gasoline engines, and must still be treated to meet automotive emission regulations. Recent research has shown that the use of two fuels with different reactivities (such as gasoline and diesel) can help solve some of the difficulties of controlling HCCI ignition and burn rates. RCCI or Reactivity Controlled Compression Ignition has been demonstrated to provide highly efficient, low emissions operation over wide load and speed ranges.
email to a friend

Cite This Article

  • ISSN: 2349-6002
  • Volume: 3
  • Issue: 11
  • PageNo: 158-166

A CASE STUDY IN HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINES

Related Articles