Munish Goswami, Anupama Sharma, Harshit Gupta, Sachin Wakurdekar
ML- Machine Learning, WHO- World Health Organization, CKD- Chronic Kidney Disease, SVM- Support Vector Machine, KFT- Kidney Function Test, LR- Logistic Regression, KNN- K Nearest Neighbours.
Timely Diagnosis in healthcare is very crucial and important. According to the World Health Organization (WHO) at least 8.8 million people die of cancer annually due to late diagnosis. In the present times and Technology, we can predict a diagnosis given the Important Features (example, red blood cell count, white blood cell count, etc). We can predict the diagnosis only after Analysis of Large Data Set of people having and not having a Disease. Currently, kidney disease is a major problem. Because there are so many people with this disease. The objective is to develop a simple yet powerful tool, Chronic Kidney Disease Predictor, which predicts whether a Person has CKD or not (through a Data Set of 400 people) and provides a prediction which can be confirmed by performing a KFT, Medical test. With the help of Machine Learning and use of several Algorithms like Random Forest, SVM etc we can be able to Predict whether a Patient has C.K.D. or not. Users can be a doctor or any person who is able to read Medical Reports and can send the result to the Patient in just one click. It is especially very useful for people in health care because of time diagnosis.
Article Details
Unique Paper ID: 152543

Publication Volume & Issue: Volume 8, Issue 3

Page(s): 714 - 719
Article Preview & Download

Share This Article

Join our RMS

Conference Alert

NCSEM 2024

National Conference on Sustainable Engineering and Management - 2024

Last Date: 15th March 2024

Call For Paper

Volume 11 Issue 1

Last Date for paper submitting for Latest Issue is 25 June 2024

About Us enables door in research by providing high quality research articles in open access market.

Send us any query related to your research on

Social Media

Google Verified Reviews