Image based Feature Extraction and Segmentation using k-means for Disease Diagnosis in Agricultural Plants
Ms. Mercelin Francis, Dr. C. Deisy
Image Preprocessing, Image Segmentation, Feature Exatraction, Image Classification
This paper is intended to perform an analysis on various segmentation methods applied on an image, acquired from a crop field for effective detection of the object (leaf / disease spot). Traditionally disease diagnosis in agricultural plants is based on naked eye observations, which may vary depending on the individual experts experience and their visual perception. Thus traditional method is time consuming and is expensive. These problems faced can be resolved by developing automated or semi-automated systems to detect and classify diseases based on the symptoms found. Automated and semi-automated systems utilizes various steps in digital image processing namely image acquisition, preprocessing, segmentation, feature extraction and finally using an appropriate machine learning algorithm for classification. For effective classification, unique feature or a combination of features needs to be identified, which mainly rely on an effective segmentation algorithm, for extracting or clustering the similar pixels forming the target object (foreground) from the background. Analysis of various segmentation algorithms are performed highlighting its role in diagnosis and classification of any type of disease found in agricultural plants
Article Details
Unique Paper ID: 154189

Publication Volume & Issue: Volume 8, Issue 7

Page(s): 86 - 95
Article Preview & Download

Share This Article

Join our RMS

Conference Alert

NCSEM 2024

National Conference on Sustainable Engineering and Management - 2024

Last Date: 15th March 2024

Call For Paper

Volume 11 Issue 1

Last Date for paper submitting for Latest Issue is 25 June 2024

About Us enables door in research by providing high quality research articles in open access market.

Send us any query related to your research on

Social Media

Google Verified Reviews