Covid-19 Detection Using Chest X-Ray
Author(s):
Ahila T, Dr A C Subhajini
Keywords:
COVID-19, Coronavirus infections, Deep learning, Pneumonia, X-ray.
Abstract
COVID-19 continues to have a devastating impact on the lives of people all around the world. It is vital to screen the affected patients in a timely and cost-effective manner in order to combat this disease. Radiological examination is one of the most plausible steps in achieving this goal, with chest X-Ray being the most readily available and least priced option. We present a Deep Convolutional Neural Network-based approach to detect COVID-19 +ve patients using chest X-Ray pictures in this research. The implementation of a semi-quantitative CXR assessment has resulted from the addition of useful assistance to clinicians and the stratification of disease risk. Both severity scores and CXR results diagnosed early stage COVID-19 disease in this study. CXRs abnormalities were detected in 278 of 350 patients (78%) at certain points of the disease course. The DarkNet model was used in our study as a classifier for the you only look once (YOLO) real time object detection system. We implemented 17 convolutional layers and introduced different filtering on each layer. We have created a graphical user interface (GUI) application for public use. This application can be used by any medical personnel on any computer to detect COVID +ve patients using Chest X-Ray images in a matter of seconds.
Article Details
Unique Paper ID: 155791

Publication Volume & Issue: Volume 9, Issue 1

Page(s): 1788 - 1792
Article Preview & Download


Share This Article

Conference Alert

NCSST-2021

AICTE Sponsored National Conference on Smart Systems and Technologies

Last Date: 25th November 2021

SWEC- Management

LATEST INNOVATION’S AND FUTURE TRENDS IN MANAGEMENT

Last Date: 7th November 2021

Go To Issue



Call For Paper

Volume 10 Issue 1

Last Date for paper submitting for March Issue is 25 June 2023

About Us

IJIRT.org enables door in research by providing high quality research articles in open access market.

Send us any query related to your research on editor@ijirt.org

Social Media

Google Verified Reviews

Contact Details

Telephone:6351679790
Email: editor@ijirt.org
Website: ijirt.org

Policies