Leaf Disease Detection Using Image Processing
Manikrao Mulge, Sony, Suluxshana, Suma, Vinayashree
Disease, leaf , processing,virus
Plant disease automation in agriculture science is the primary concern for every country, as the food demand is increasing at a fast rate due to an increase in population. Moreover, the increased use of technology today has increased the efficacy and accuracy of detecting diseases in plants and animals. The detection process marks the beginning of a series of activities to fight the diseases and reduce their spread. Some diseases are also transmitted between animals and human beings, making it hard to fight them. For many years, scientists have researched how to deal with the common diseases that affect humans and plants. However, there are still many parts of the detection and discovery process that have not been completed. The technology used in medical procedures has not been adequate to detect all diseases on time, and that is why some diseases turn out to become pandemics because they are hard to detect on time. Our focus is to clarify the details about the diseases and how to detect them promptly with artificial intelligence. We discuss the use of machine learning and deep learning to detect diseases in plants automatically. Our study also focuses on how machine learning methods have been moved from conventional machine learning to deep learning in the last five years. Further more, different data sets related to plant diseases are discussed in detail. The challenges and problems associated with the existing systems are also presented.
Article Details
Unique Paper ID: 156081

Publication Volume & Issue: Volume 9, Issue 2

Page(s): 809 - 812
Article Preview & Download

Share This Article

Join our RMS

Conference Alert

NCSEM 2024

National Conference on Sustainable Engineering and Management - 2024

Last Date: 15th March 2024

Call For Paper

Volume 11 Issue 1

Last Date for paper submitting for Latest Issue is 25 June 2024

About Us

IJIRT.org enables door in research by providing high quality research articles in open access market.

Send us any query related to your research on editor@ijirt.org

Social Media

Google Verified Reviews