Detection of Diabetic Retinopathy Using Convolutional Neural Network
Diabetic Retinopathy, Convolutional Neural Network.
The objective of this paper is to develop a model for diabetic retinopathy, a prime cause for blindness that appears due to diabetes. A deep learning model based on fully convolutional neural network is developed to classify the disease from images of the patient. The combination of multi-structure morphological process and Segmentation technique is used effectively for retinal vessel detection to identify diabetic retinopathy using a neural network. The method is accomplished through various steps: Data Collection, Pre-processing, Augmentation and modelling. Our proposed model achieved 90% of accuracy. The Regression model was also employed, manifested up an accuracy of 78%. The main aim of this work is to develop a robust system for detecting DR automatically.
Article Details
Unique Paper ID: 156639

Publication Volume & Issue: Volume 9, Issue 4

Page(s): 273 - 277
Article Preview & Download

Share This Article

Join our RMS

Conference Alert

NCSEM 2024

National Conference on Sustainable Engineering and Management - 2024

Last Date: 15th March 2024

Call For Paper

Volume 11 Issue 1

Last Date for paper submitting for Latest Issue is 25 June 2024

About Us enables door in research by providing high quality research articles in open access market.

Send us any query related to your research on

Social Media

Google Verified Reviews