Suspicious Activity Detection from Surveillance Video using Deep Learning
Author(s):
Shashank Reddy Nallu, Vamshi Krishna Kunuru, Harshavardhan Reddy, Praveen H
Keywords:
Suspicious activity, Video Surveillance, Deep learning, LSTM, Convolutional Neural Networks.
Abstract
Video surveillance has been used since long to ensure security in many sensitive places, so with this great advancement in various aspects of life, traditional surveillance operations face many challenges due to the large amount of information that has to be processed manually in a limited amount. time also the possibility of losing information that may contain important things such as suspicious behavior. Thus, a large amount of research has been conducted in the field of video surveillance recently.
We provide a system that supports intelligent monitoring to detect abnormal behavior that poses a security risk. The proposed algorithm is designed to detect two cases of human activity: walking and running. There is no limit to the number of people on stage or the direction of travel. However, video is limited to internal color movies taken from a still camera. A background subtraction algorithm is used to detect moving objects related to people in the scene. We consider the moving speed of the center of the segmented foreground region and the size change speed of the segmented region as two main features to classify the activity v. The proposed algorithm determines the types of activities with high accuracy.
Article Details
Unique Paper ID: 159270
Publication Volume & Issue: Volume 9, Issue 11
Page(s): 855 - 859
Article Preview & Download
Share This Article
Conference Alert
NCSST-2021
AICTE Sponsored National Conference on Smart Systems and Technologies
Last Date: 25th November 2021
SWEC- Management
LATEST INNOVATION’S AND FUTURE TRENDS IN MANAGEMENT