Enhancing Object Detection: A Comprehensive Study and Implementation of Faster R-CNN with Streamlit Dashboard

  • Unique Paper ID: 161469
  • Volume: 10
  • Issue: 4
  • PageNo: 89-93
  • Abstract:
  • Object detection, a fundamental task in computer vision, has witnessed significant advancements in recent years. This research presents a comprehensive study that explores the integration of Faster R-CNN (Region Convolutional Neural Network), a state-of-the-art object detection model trained on the COCO (Common Objects in Context dataset), with Streamlit, an interactive web application framework. The goal is to create an intuitive and user-friendly dashboard that facilitates real-time object detection and visualization. The proposed approach combines the power of Faster R-CNN's accurate object localization with Streamlit's simplicity in creating interactive interfaces. To evaluate the effectiveness of the approach, a series of experiments were conducted using various images containing diverse objects. The results showcase the successful integration of Faster R-CNN with Streamlit. By combining the strengths of Faster R-CNN, the COCO dataset, and Streamlit, the research presents a novel approach that holds promise in various domains, including surveillance, retail, and automation.

Related Articles

Impact Factor
8.01 (Year 2024)

Join Our IPN

IJIRT Partner Network

Submit your research paper and those of your network (friends, colleagues, or peers) through your IPN account, and receive 800 INR for each paper that gets published.

Join Now

Recent Conferences

NCSEM 2024

National Conference on Sustainable Engineering and Management - 2024 Last Date: 15th March 2024

Submit inquiry