PNEUMONIA DETECTION USING CHEST X-RAY IMAGES
Author(s):
Shruti Hiralal Meshram, Rohini Pochhi
Keywords:
deep learning; transfer learning; medical image processing; computer-aided diagnosis
Abstract
Pneumonia is among the top diseases which cause most of the deaths all over the world. Virus, bacteria and fungi can all cause pneumonia. However, it is difficult to judge the pneumonia just by looking at chest X-rays. The aim of this study is to simplify the pneumonia detection process for experts as well as for novices. We suggest a novel deep learning framework for the detection of pneumonia using the concept of transfer learning. In this approach, features from images are extracted using different neural network models pre-trained on Image Net, which then are fed into a classifier for prediction. We prepared five different models and analyzed their performance. Thereafter, we proposed an ensemble model that combines outputs from all pre-trained models, which outperformed individual models, reaching the state-of-the-art performance in pneumonia recognition. Our ensemble model reached an accuracy of 96.4% with a recall of 99.62% on unseen data from the Guangzhou Women and Children’s Medical Center dataset.
Article Details
Unique Paper ID: 161493

Publication Volume & Issue: Volume 10, Issue 4

Page(s): 369 - 374
Article Preview & Download


Share This Article

Join our RMS

Conference Alert

NCSEM 2024

National Conference on Sustainable Engineering and Management - 2024

Last Date: 15th March 2024

Call For Paper

Volume 11 Issue 1

Last Date for paper submitting for Latest Issue is 25 June 2024

About Us

IJIRT.org enables door in research by providing high quality research articles in open access market.

Send us any query related to your research on editor@ijirt.org

Social Media

Google Verified Reviews