An Innovative Instruct Dynamic Intrusion Detection System With Particle Swarm Optimization and Radial Basis Functions
Incremental method, intrusion detection system, particles swarm optimization and radial based.
This research paper is an elaboration of Incremental Radial Based Function Neural Network model with Particles Swarm Optimization (IRBF-PSO) in Intrusion Detection System. This system is helpful to find the most featured misuse and anomaly detection. RBF network is most popular real-time classifier method. RBF method comprises of mostly analysis and the thorny part is finding the right weights and bias values for dynamic systems. The intrusion detection system has become highly dynamic. Many large or small enterprise systems are still facing with different problems in this area with dynamic form. So the main objective of my work is to employ Particles Swarm Optimization to detect the right weight and bias values for RBF method. In this method, apart from training with existing data and information for design, there is a need to extend or redesign the existing system to identify different pattern types and modulate the system using PSO with new patterns. After experimentation, this method has improved to identify the difficulty in anomaly detections and reduce the rate of false alarm and fail cases.
Article Details
Unique Paper ID: 162062

Publication Volume & Issue: Volume 10, Issue 7

Page(s): 297 - 304
Article Preview & Download

Share This Article

Join our RMS

Conference Alert

NCSEM 2024

National Conference on Sustainable Engineering and Management - 2024

Last Date: 15th March 2024

Call For Paper

Volume 11 Issue 1

Last Date for paper submitting for Latest Issue is 25 June 2024

About Us enables door in research by providing high quality research articles in open access market.

Send us any query related to your research on

Social Media

Google Verified Reviews