Mental Health Analyzer Using Facial Images, Deep-CNN & IQ Tests
Kotagiri Geethika, Patnam Rakesh, Jonnalagadda Kruthik Reddy, Mohammed Faisal
Convolutional Neural Network, IQ tests, Depression, anxiety, addictive behaviors.
Approximately 280 million individuals worldwide suffer from depression, making it a widespread disorder. Deep convolutional neural networks can recognize depression automatically thanks to its distinct facial traits. A person’s face is a significant component of their body and can reveal a lot about their emotional state. A person’s face is where they convey all of their fundamental feelings. The current system assesses the user’s mental state manually, which has several drawbacks. For example, we are unable to forecast any accurate answers based on the assessment score since we may not be aware of the user’s constant emotional state. This model provides a hybrid design that invokes a facial-based emotion sequence and an IQ test in order to overcome this issue and suggest an effective approach for dynamically forecasting the mental state. The human mental status is routed through regular observation of their emotions and administration of IQ tests. For mental health and self-control, combining these methods mentioned above yields encouraging outcomes. In addition to helping individuals with mental health disorders such as anxiety, depression, and addictive behaviors by identifying them, Mental health Analyzer is a platform that supports and encourages healing while also assisting in maintaining a balanced state of mental state of an individual.
Article Details
Unique Paper ID: 162458

Publication Volume & Issue: Volume 10, Issue 10

Page(s): 161 - 165
Article Preview & Download

Share This Article

Join our RMS

Conference Alert

NCSEM 2024

National Conference on Sustainable Engineering and Management - 2024

Last Date: 15th March 2024

Call For Paper

Volume 11 Issue 1

Last Date for paper submitting for Latest Issue is 25 June 2024

About Us enables door in research by providing high quality research articles in open access market.

Send us any query related to your research on

Social Media

Google Verified Reviews