Copyright © 2025 Authors retain the copyright of this article. This article is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
@article{145186, author = {C. Thejaswi and G. Ramanjaneya Reddy}, title = {A Generalized Algorithm And Reconfigurable Architecture For Efficient And Scalable Orthogonal Approximation Of DCT}, journal = {International Journal of Innovative Research in Technology}, year = {}, volume = {4}, number = {7}, pages = {593-602}, issn = {2349-6002}, url = {https://ijirt.org/article?manuscript=145186}, abstract = {Approximation of Discrete Cosine Transform (DCT) is useful for reducing its computational complexity without significant impact on its coding performance. Most of the existing algorithms for approximation of the DCT target only the DCT of small transform lengths, and some of them are non-orthogonal. This paper presents a generalized recursive algorithm to obtain orthogonal approximation of DCT where an approximate DCT of length could be derived from a pair of DCTs of length at the cost of additions for input preprocessing. We perform recursive sparse matrix decomposition and make use of the symmetries of DCT basis vectors for deriving the proposed approximation algorithm. Proposed algorithm is highly scalable for hardware as well as software implementation of DCT of higher lengths, and it can make use of the existing approximation of 8-point DCT to obtain approximate DCT of any power of two lengths. We demonstrate that the proposed approximation of DCT provides comparable or better image and video compression performance than the existing approximation methods. It is shown that proposed algorithm involves lower arithmetic complexity compared with the other existing approximation algorithms. We have presented a fully scalable reconfigurable parallel architecture for the computation of approximate DCT based on the proposed algorithm. One uniquely interesting feature of the proposed design is that it could be configured for the computation of a 32-point DCT or for parallel computation of two 16-point DCTs or four 8-point DCTs with a marginal control overhead. The proposed architecture is found to offer many advantages in terms of hardware complexity, regularity and modularity.}, keywords = {Algorithm, Reconfigurable Architecture, Modularity}, month = {}, }
Cite This Article
Submit your research paper and those of your network (friends, colleagues, or peers) through your IPN account, and receive 800 INR for each paper that gets published.
Join NowNational Conference on Sustainable Engineering and Management - 2024 Last Date: 15th March 2024
Submit inquiry