Classification of agricultural soil contamination using Machine Learning
Mahalaxmi, Kaveri, Chaitra, Ashwini Telang, Giriraj Patil
Machine Learning, Degree of Contamination, Soil Degradation, Hydrocarbons etc.
Soil contamination has severely increased over the last years, especially due to petroleum hydrocarbons, heavy metals and pesticides from industrial wastes and human activities. Even though in general soil quality research is facing an important technological challenge and several actions have been taken in order to assess, remediate and reduce the effects of contaminants on soils, suitable and standardized monitoring and remediation strategies of soil are required. In this sense, in the last decade there has been a growing emphasis on the utilization of residues and waste materials, coming from different industrial activities, in several remediation technologies (e.g., chemical degradation, photo-degradation) and bioremediation in order to clean up contaminated soils. The critical point regarding contaminated soil monitoring is the intrinsic difficulty in defining fixed monitoring variables and indicators as the establishment of any a priori criterion and threshold for soil quality can be still considered subjective.
Article Details
Unique Paper ID: 149903

Publication Volume & Issue: Volume 7, Issue 1

Page(s): 1042 - 1048
Article Preview & Download

Share This Article

Join our RMS

Conference Alert

NCSEM 2024

National Conference on Sustainable Engineering and Management - 2024

Last Date: 15th March 2024

Call For Paper

Volume 11 Issue 1

Last Date for paper submitting for Latest Issue is 25 June 2024

About Us enables door in research by providing high quality research articles in open access market.

Send us any query related to your research on

Social Media

Google Verified Reviews