prediction and diagnosis of liver disease using machine learning models
Author(s):
Vishnu Teja S Hingoli, Narendra G, Tejas SV, Predeep E , Narayana H M
Keywords:
Mean Square Error (MSE), Mean Absolute Error (MAE), R-Squared Error, Root Mean Square Error (RMSE)
Abstract
Liver disease is one of the key causes of high numbers of deaths in the country and is considered a life-threatening disease, not just anywhere, but worldwide. Liver disease can also impact peoples early in their life. More than 2.4 percent of annual Indian deaths are due to liver disorders. It is also difficult to detect liver disease due to mild symptoms in the early stages. If it is too late the signs always come to light. Thus liver-related disease poses more problems for people living and is more important nowadays to recognize the causes, and identification phase. So, for early detection of liver disease, an automated program is needed to build with more accuracy and reliability. Specific machine learning models are developed for this purpose to predict the disease. In this paper, the methods of Support Vector Machines (SVM), Decision Tree (DT) Neural Network and Random Forest (RF) is proposed to predict liver disease with better precision, accuracy and reliability.
Article Details
Unique Paper ID: 156200

Publication Volume & Issue: Volume 9, Issue 2

Page(s): 1134 - 1138
Article Preview & Download


Share This Article

Conference Alert

NCSST-2021

AICTE Sponsored National Conference on Smart Systems and Technologies

Last Date: 25th November 2021

SWEC- Management

LATEST INNOVATION’S AND FUTURE TRENDS IN MANAGEMENT

Last Date: 7th November 2021

Go To Issue



Call For Paper

Volume 10 Issue 1

Last Date for paper submitting for March Issue is 25 June 2023

About Us

IJIRT.org enables door in research by providing high quality research articles in open access market.

Send us any query related to your research on editor@ijirt.org

Social Media

Google Verified Reviews

Contact Details

Telephone:6351679790
Email: editor@ijirt.org
Website: ijirt.org

Policies